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Scrambling of quantum information is an important feature at the root of randomization and benchmarking
protocols, the onset of quantum chaos, and black-hole physics. Unscrambling this information is possible
given perfect knowledge of the scrambler [arXiv:1710.03363]. We show that one can retrieve the scrambled
information even without any previous knowledge of the scrambler, by a learning algorithm that allows the
building of an efficient decoder. Remarkably, the decoder is classical in the sense that it can be efficiently
represented on a classical computer as a Clifford operator. It is striking that a classical decoder can retrieve
with fidelity one all the information scrambled by a random unitary that cannot be efficiently simulated on
a classical computer, as long as there is no full-fledged quantum chaos. This result shows that one can learn
the salient properties of quantum unitaries in a classical form and sheds a new light on the meaning of quantum
chaos. Furthermore, we obtain results concerning the algebraic structure of t-doped Clifford circuits, i.e., Clifford
circuits containing t non-Clifford gates, their gate complexity, and learnability that are of independent interest.
In particular, we show that a t-doped Clifford circuit Ut can be decomposed into two Clifford circuits U0,U ′0
that sandwich a local unitary operator ut , i.e., Ut = U0utU ′0. The local unitary operator ut contains t non-Clifford
gates and acts nontrivially on at most t qubits. As simple corollaries, the gate complexity of the t-doped Clifford
circuit Ut is O(n2 + t3), and it admits a efficient process tomography using poly(n, 2t ) resources.

DOI: 10.1103/PhysRevA.109.022429

I. INTRODUCTION

In quantum mechanics, learning an unknown quantum state
or process is a crucial problem. The applications of this task
range from quantum information and benchmarking protocols
[1–3], the understanding of quantum chaos [4–6], quantum
chemistry [7–11], quantum cryptography [12–22], and black-
hole physics [23,24].

If the quantum process to be investigated is modeled by a
random unitary, its learning may prove an extremely daunting
task. If one were able to learn a random unitary, one could
do wonders: for example, to decode the information emitted
in Hawking radiation without any previous knowledge of
the black hole. In this paper, by learning, we mean learning
enough features of the process so that scrambled information
can be retrieved from it.

There is a special class of unitary operators, the Clifford
group, that has been proven to be efficiently learnable with a
polynomial effort [25,26]. It is not a coincidence that this class
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of unitary operators is the same that can be efficiently simu-
lated by a classical computer [27]. From a quantum advantage
point of view, the ability to learn only those unitaries that can
be classically simulated is unsatisfactory. One wants to learn
those quantum processes that cannot be efficiently simulated
classically. Is it possible? How costly is it?

In this paper, as well in the companion Letter [28], we
show that it is possible to learn a random unitary operator
that cannot be efficiently simulated, as long as this process
is not fully chaotic. Moreover, the learned features can be
efficiently represented on a classical computer. The fact that
something that cannot be efficiently simulated can then be
learned in a form that is efficiently represented is so surprising
that is almost sounds contradictory. It seems that then, after
all, the random unitary could be efficiently simulated. Our
result must be understood in terms of what we are learning.
We are learning just the features that are enough to unscramble
the information. The result is still very surprising, but at least
it starts sounding more believable: the complex features are
useless, and what is useful is efficiently representable. More-
over, the efficient representation is not always possible: when
quantum chaos kicks in, such a representation breaks down.
At that point, in order to unscramble information, one also
has to learn all the complex features of the unitary, and that
requires an exponentially complex representation. In some
sense, our result clarifies what quantum chaos is: that feature
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Classical Quasi-chaotic Chaotic

FIG. 1. Sketch of a t-doped Clifford circuit with variable depth proportional to the doping t counting the number of injected non-Clifford
gates (blue). The first part of the circuit (green-dashed box) has depth within log n and corresponds to a classical regime, where the circuit
can be efficiently simulated by a classical computer. As the depth reaches t ∼ n (blue-dashed box), the circuit reaches a quasichaotic regime,
where classical simulation is exponentially hard but, at the same time, it cannot reproduce the universal properties of Haar-random circuits.
However, quasichaotic circuits are learnable with an exponential effort in t . Quantum chaos is reached for t ∼ 2n (red-dashed box): then
universal properties are reached and no learning is possible.

of quantum evolutions that does not allow for any kind of
classical representation [29].

This work is organized as follows: in Sec. II we present
a more detailed overview of the problem and of our re-
sults, eschewing the heavy technical details; in Sec. III, we
briefly review previous results concerning the task of learning
quantum processes; in Secs. IV A and IV B, we review the
information scrambling setup introduced in Ref. [23] and the
meaning of learning quantum information scrambled after
a complex quantum dynamics; in Sec. IV C we present the
main results of the paper in a nontechnical fashion, while in
Sec. V A, after having introduced the technical tools needed
for the proof of the main theorems, we present the quantum
algorithm able to learn scrambled information.

II. OVERVIEW OF THE PROBLEM AND RESULTS

The notion of learning a quantum evolution is intimately
connected with the notion of irreversibility. Quantum me-
chanics is unitary; one can, in principle, undo any quantum
evolution by running it backward. Unfortunately, without any
prior knowledge of the unitary U , the ability to undo a quan-
tum evolution is almost never guaranteed. If one could learn
U by query accesses then one would be able to revert quan-
tum evolutions. However, for the overwhelming majority of
unitaries, the task of learning is exponentially hard [30–34]
and effectively reversibility is lost. This fact is related to the
exponential growth of the Hilbert-space dimension with the
number of degrees of freedom, which in turn would require
exponentially small precision per exponentially many experi-
ments.

As we mentioned above, there are some special quantum
processes that do not feature complex behavior: Clifford cir-
cuits can be efficiently learned and simulated. On the opposite
end of Clifford circuits, there are chaotic quantum circuits.
These circuits can be obtained by random Clifford circuits
on n qubits with the addition of cn (c � 2) non-Clifford re-
sources, e.g., T gates. They feature universal frame potentials
[35], fluctuations of entanglement and of the higher-order

out-of-time-order correlation functions (OTOCs) [29,36,37].
In view of the Gottesman-Knill theorem [27], they also require
an exponential number of resources to be simulated on a
classical computer.

In this paper, we discuss the learnability for a wide class of
unitary evolutions; that is, unitary operators obtained from a
random Clifford circuit enriched with t non-Clifford gates—
the so-called t-doped Clifford circuits Ut , see Fig. 1. As shown
in Ref. [29], there is a gradual transition from Clifford circuits
to quantum chaos. In the middle of the transition; that is, for
a number of Clifford resources cn with density c < 1, one
has not yet attained quantum chaos, although these circuits do
require an exponential number of resources to be simulated.
We call these circuits quasichaotic.

As we see in Sec. V B, we constructively show that every
t-doped Clifford circuit can be decomposed as

Ut = U0[1l[n−t] ⊗ u[t]]U
′
0, (1)

i.e., as a product of two Clifford circuits U0,U ′0 and a local
unitary [1l[n−t] ⊗ u[t]] acting on at most t qubits and con-
taining t non-Clifford gates, see Theorem 2 (Compression
Theorem). The decomposition in Eq. (1) is valid as long as
c < 1, i.e., for quasichaotic quantum circuits. It states that all
the non-Cliffordness in Ut can be compressed in t qubits only.
Moreover, all the Clifford parts of Ut can be learned by having
query access to Ut . Here and throughout the work, we refer
to query access as the ability to perform the unitary transfor-
mation Ut followed by a measurement on a quantum register
consisting of n qubits. We present an algorithm that learns the
Clifford operations U0 and U ′0 by poly(n, 2t ) query accesses
to Ut , see Theorem 3. As a corollary, we show that with time
complexity and query complexity both scaling as poly(n, 2t ),
it is possible to learn a full tomographic description of a
general t-doped Clifford circuit, see Corollary 3. Additionally,
a straightforward consequence of Eq. (1), a t-doped stabilizer
state |ψt 〉 ≡ Ut |0〉⊗n can be compressed as

|ψt 〉 = U0[|0〉⊗(n−t ) ⊗ |φ〉t ], (2)
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i.e., to the computational basis state |0〉⊗(n−t ) and a nonsta-
bilizer state |φ〉t living on a t-qubit subsystem (see Corollary
2). Again, a decomposition as in Eq. (2) is valid for c < 1.
What is more, the decomposition in Eq. (1) shows that the gate
complexity #(Ut )—i.e., the minimum number of gates neces-
sary to build Ut from the identity [38]—of Clifford+T circuits
obeys #(Ut ) = O(n2 + t3), which interpolates between O(n2)
for t = o(n) to O(n3) for t = �(n), see Corollary 1. Remark-
ably, Clifford circuits doped with a sublinear number of T
gates have the same gate complexity as Clifford circuits. In
this paper, we discuss the learnability of quantum evolutions
in the context of information scrambling [23]: we present a
quantum algorithm based on a constrained random Clifford
Completion (CC) that aims at learning a perfect and efficient
decoder without any previous knowledge of the scrambler.
The decoder is efficient in the sense that it can be efficiently
represented on a classical computer, more precisely, it is a
Clifford operator [27]. We show that such learning is effi-
cient in terms of resources as long as the scrambler can be
efficiently simulated, it is exponentially expensive in a qua-
sichaotic regime and becomes impossible in the presence of
full-fledged quantum chaos.

The main result of the paper is the following: if Ut is a
unitary obtained by a t-doped Clifford circuit, one can learn
a Clifford decoder V by means of a probabilistic quantum
algorithm based on a constrained random Clifford completion
algorithm, which employs poly(n, 2t ) query accesses to Ut

and a time poly(n, 2t ).
The scrambler is a unitary U AB

t acting on the |A| qubits of
information plus additional |B| qubits with n = |A| + |B|. The
output of the scrambler consists of |C| + |D| = n qubits of
which only |D| can be accessed by the decoder. The decoder
V takes in the qubits in D and returns an output that should
contain the information initially present in A with a fidelity

FV(Ut ) �
1

1+ 22|A|+t−2|D| , (3)

while the probability of learning the decoder V is

P (V ) � 1− 2t−2(n−|D|). (4)

Equations (3) and (4) are the content of Theorem 1. It is im-
portant to highlight that the proposed CC algorithm searches
for and implements a decoder V belonging to the Clifford
group. This means that the decoder, once (and if) found, can
be efficiently represented in a classical computer: it is, in this
sense, a classical decoder. In the companion Letter [28], we
present the result of Theorem 1 in a simplified fashion.

When can such a decoder be found? If the scrambler Ut is
a Clifford circuit (or Clifford circuits with doping up to t ∼
log n), the decoder exists and it can be learned by poly(n, 2t )
resources. If the doping scales like t = cn with c < 1, learning
is still possible, but it requires exponential resources, as for
simulability. We call this regime quasichaotic. As the density
of non-Clifford resources increases, a transition to full quan-
tum chaos is approached [29,39] and, for c � 2, no learning
is any longer possible, no matter the resources employed.

As one can see from Eq. (3), as the number t of T gates
in the circuit Ut increases, the size of the subsystem D the
decoder should access in order to unscramble the information
and reconstruct the state |ψA〉 must increase as well. No-

tably, the decoding via a Clifford operator breaks down only
when the number t of T gates approaches n, t ∼ n, i.e., in
the quasichaotic regime (cf. Fig. 1). In this case, to obtain
perfect fidelity, one has to acquire a number of qubits |D|
larger than half of the system, |D| � n/2, which in turn makes
the probability of decoding scale as ≈1− 2n−2|D|. As one
increases t beyond this threshold, the probability of decod-
ing decays exponentially. In other words, Clifford operations
can unscramble information as long as the dynamic is qua-
sichaotic (c < 1) while unscrambling becomes impossible for
fully chaotic dynamics (c � 1).

III. REVIEW OF PREVIOUS RESULTS

In this section, we provide a review of some known results
on the problem of learning unitary dynamics and explain the
advances of the present paper in the current literature. The task
of learning a unitary operator U—defined on n qubits—can be
generally defined in two ways: either (i) by the ability to learn
and synthesize U on a quantum device or (ii) by the ability
to learn some problem-depending properties of U and use
them to solve a particular task. The latter includes tasks like
disentangling a given quantum state [40,41], unscrambling
quantum information [42], or learning expectation values.
Intuitively, (ii) is a weaker form of learning, and, as a mat-
ter of fact, (i) implies (ii) (up to computational challenges).
Both approaches have been widely explored in the literature
[40–49].

Naively, one can define the task of learning a unitary op-
erator U by knowing all the matrix elements 〈x|U |x′〉 of U ,
where |x〉 , |x′〉 are basis vectors. The above task is immedi-
ately found to be inefficient because O(22n) matrix elements
need to be determined and stored in a classical memory. The
weaker requirement of applying an unknown unitary on a
quantum state is more suitable: in Ref. [47], the authors show
that unitaries acting on O(poly log(n)) qubits can be emulated
by having access to unknown samples of input-output states.
While storing matrix elements of the unknown unitary would
scale superpolynomially in the number of qubits, both the
runtime and the query access of their algorithm scale poly-
nomially. A more efficient way to define the learning task is
knowing an efficient decomposition in elementary gates of a
given unitary operator U . It is well known that a universal
set of gates is given by a CNOT, a Hadamard gate that allows
superposition in the computational basis, an S gate (a ẑ rota-
tion of π/2), and finally a T gate (a ẑ rotation of π/4). The
Solovay-Kitaev theorem ensures that any unitary operator can
be approximated by an ordered product of elementary gates
within any desired accuracy ε [50,51]. While learning the
right order of gates to approximate a target unitary operator,
in general a very hard combinatorial problem [51], the de-
composition in elementary gates allows an efficient classical
representation of a quantum unitary operator. A third approach
is to use the operator basis of Pauli operators. Thanks to the
unitarity of U , only the action on O(n) Pauli operators needs
to be determined, but at the same time (a) exponentially many
measurements are typically required to learn each element of
the map P 
→ U †PU for P being an element of operator basis
of the Pauli group, and (b) classical postprocessing requires,
in general, exponentially many memory bits.
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Clifford unitary operators constitute a particular example in
which the latter approach is suitable. Indeed, Clifford opera-
tions map elements of the Pauli group to elements of the Pauli
group. This means that it is just sufficient to learn the Pauli op-
erators resulting from the adjoint action of U , P 
→ U †PU ∈
P . The learning of Clifford circuits and states created by
Clifford circuits has been studied in Refs. [25,26,52,53]. In
Ref. [53] it has been shown that, with O(n) queries to two
copies of a given stabilizer state |ψ〉, it is possible to learn its
tomographic decomposition. While in Ref. [26], generalizing
the results of Refs. [25,53], it has been shown how O(n)
queries to a Clifford circuit U are sufficient to learn and syn-
thesize U on a quantum computer. However, the algorithms
developed in Refs. [25,26,53] are specifically designed to
learn a Clifford unitary, and therefore cannot be employed in
the task of learning of a general unitary operator.

The task of learning quantum unitary dynamics is inti-
mately connected to the problem of classical simulability
of quantum computation. Clifford circuits admit an efficient
classical representation. This means that computation made
by states created by the action of Clifford unitary operators—
the so-called stabilizer states—can be efficiently reproduced
by a classical computer [27]. No quantum advantage can
be achieved. At the same time, stabilizer states are typically
highly entangled, a condition that has been believed to be the
key property to unlock a quantum computational advantage.
Nevertheless, fine-grained properties in entanglement struc-
ture reveal the profound difference between the entanglement
produced by Clifford circuits from that produced by universal
unitary operators. Previous works [40,41,48] probed the oper-
ational difference between these two types of entanglement. It
has been shown that, by employing a Monte Carlo metropolis
kind of algorithm, it is possible to completely disentangle a
state evolved by Clifford gates. Conversely, the metropolis
algorithm fails at disentangling a state evolved by a universal
circuit. At this level, the task of disentangling can be thought
as that of finding a unitary operator V that, when applied on
the evolved state U |ψ0〉, makes the evolved state VU |ψ0〉
nonentangled in a given bipartition. The success or failure
of such a disentangling algorithm reveals the different entan-
glement structures produced by Clifford gates and universal
gates. Besides connecting classical simulability and learnabil-
ity of quantum dynamics, the above result naturally defines
two complexity classes: (I) states that can be efficiently disen-
tangled and (II) states that are not disentangleable.

It is noteworthy that, while it is possible to learn the
classical representation of Clifford unitaries in terms of
Pauli operators and to learn how to disentangle states en-
tangled by Clifford circuits, there are other approaches to
learning Clifford circuits that fail. One example is provided
in the context of quantum machine learning by varia-
tional quantum algorithms (VQAs). Compilation of a given
unitary operator U aims to find the minimum set of el-
ementary gates that approximate the target U (e.g., see
Refs. [30–34,44,46,54]). In this context, the strategy of VQAs
is to classically train a parametrized (fix depth) quantum
circuit to minimize a problem-dependent expectation value
tr[OV †(θ )U †ψ0UV (θ )]. Unfortunately, the above strategy
fails in general: no-go theorems have been established that

prevent the compilation of a unitary U drawn from a unitary
k design with k � 2 (set of unitaries that reproduces up to
the second moment of the full unitary group) [55]. It is note-
worthy that the above VQA task fails even for the Clifford
group, being a unitary 3-design. At the same time, if in a
VQA task, the learner accepts to spend exponentially many
resources, in Ref. [56] it has been shown that gradient descent
can learn an arbitrary random unitary using an exponentially
large parameter landscape. Another example is provided by
probably approximately correct (PAC) learning [57–61]. The
goal of PAC learning is to learn a function relative to a
certain distribution of inputs. In the context of unitary cir-
cuits, the goal is to learn the output distribution of a set of
observables Px (that can be reasonably be thought as being
Pauli operators labeled by x) through U given a set of input
states ρy, i.e., f (x, y) := tr(PxUρyU †). Then, a PAC learner
aims to design a function f̃ (x, y) such that with probability at
least 1− δ, obeys Ex,y[ f (x, y)− f̃ (x, y)]2 < ε. Interestingly,
Clifford unitary operators cannot be PAC learned without a
collapse of polynomial hierarchies [62].

After describing various results within the domain of learn-
ing Clifford circuits, let us now move beyond the confines of
the Clifford group. Any Clifford circuit can be built out of
three elementary gates: CNOT, Hadamard, and phase gate S.
The addition of one non-Clifford gate makes the above set
universal for quantum computation. In other words, Clifford
circuits fail to be universal because of the lack of just one
element, which is traditionally chosen to be the T gate. The
injection of non-Clifford gates into Clifford circuits gradually
drives the circuits to feature universal properties [63]. This is
reflected by the fact that the best-known classical simulation
algorithm scales exponentially in the number of non-Clifford
gates [64]. While for Clifford circuits the road map of what
can or cannot be learned and relative strategies is sufficiently
complete and, for universal circuits, the task of learning is be-
lieved to be unfeasible, regarding the gray area between these
two “complexity classes,” there are still many open questions.
For example, how does the success of a learning task change
for t-doped Clifford circuits, i.e., Clifford circuits polluted by
t non-Clifford gates? Does the learnability encounter a sharp
transition or a continuous crossover driven by the amount t of
non-Cliffordness in the circuit?

The doping of Clifford circuits is intimately connected
with the concept of quantum pseudorandomness: a set of
unitary operators is a unitary k design if it reproduces up to
the kth moment of the Haar (uniform) distribution over the
unitary group [65,66]. The Clifford group has been proven
to be a unitary 3-design, and to fail to be a unitary 4-design
[67]. In Ref. [68], one can see that a vanishing density t/n
of non-Clifford resources is sufficient to break the 4-design
barrier and reproduce any k design (for k < log n) with an
error ε. In other words, in the framework of unitary k de-
sign, it is possible to homeopathically dope Clifford circuits
to obtain approximate k designs within the desired accuracy
ε. Unfortunately, reproducing up to the kth moment of the
distribution over the full unitary group within an error ε is not
always sufficient to reproduce the complex universal behavior.
In Refs. [29,39], it has been shown that to truly address the
transition between the noncomplex behavior of Clifford cir-
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cuits and the complex Haar random behavior, an exponentially
small error ε ∼ 2−n is required. Indeed in Ref. [35], it has
been shown that a necessary and sufficient condition to form
a 4-design is to reproduce the universal value of the 8-point
OTOC:

OTOC8(U ) := 1

d
tr[P1P2(U )P3P4(U )P1P4(U )P3P2(U )], (5)

where P1, P2, P3, P4 are nonidentity Pauli operators, and
P2(U ) ≡ UP2U † and similarly for P4(U ). The average
OTOC8(U ) for t-doped Clifford circuits U ∈ Ct is (proved in
Ref. [29]):

〈OTOC8(U )〉Ct
= 


[
1

d2

(
3

4

)t

+ 1

d4

]
, (6)

that interpolates between the Clifford value 〈OTOC8(U )〉C0
=


(d−2) and the Haar value 〈OTOC8(U )〉C∞ = 
(d−4). As
a result, the injection of cn (with c � 2) non-Clifford gates
in a Clifford circuit is both necessary and sufficient to drive
the transition towards the universal behavior 
(d−4). The
value of the eight-point OTOC discriminates between various
regimes of interest of doped Clifford circuits. In particular, the
injection of t = 
(1) non-Clifford gates does not change at all
the value of OTOC8. The doping with 
(log n) non-Clifford
resources—being part of the class of circuits that can be effi-
ciently classically simulable—do not change the value of the
OTOC up to a polynomial overhead, i.e., 
(d−2 poly−1(n)).
Instead, the injection of a number �(log n) < t < n of non-
Clifford resources lies in the quasichaotic quantum circuit
regime, i.e., a class of circuits that is transient between two
universality classes (Clifford and Haar) that are nonuniversal
but, at the same time, cannot be simulated by classical means.
This transient regime is reflected by a value of the eight-point
OTOC of 
(d−3) [cf. Eq. (6)].

The above results thus suggest that the task of learning
could, in principle, become unfeasible for universal (chaotic)
circuits only, thus when the number of non-Clifford gates is
≈2n.

The question about the learning of Clifford circuits pol-
luted with t non-Clifford gates has been explored in several
ways. First, from the point of view of the disentangling al-
gorithm, in Ref. [48], it has been shown that the success of
the disentangling algorithm is exponentially suppressed in the
number t of non-Clifford gates. In Ref. [26], using techniques
similar to those introduced by in Ref. [25,53], is proposed an
efficient way to encode, learn and synthesize a particular class
of t-doped Clifford circuit, i.e., circuit made as U (1)

0 TkU
(2)
0 ,

where U (1)
0 , U (2)

0 are Clifford operations and Tk are k parallel
single qubit T gates. In the paper, it is also proven that the task
of learning and synthesis is possible as long as the number
of non-Clifford gates t = O(log n). Remarkably, this is the
same threshold for a t-doped Clifford circuit to be efficiently
simulated classically [64]. Conversely, in Ref. [69] the authors
claim that, while the output distribution P(x) = | 〈x|U |0⊗n〉 |2
of a Clifford circuit can be efficiently learned, the injection
of even a single T gate in a Clifford circuit makes the task
of learning the output distribution P(x) hard [assuming the
learning parties with noise (LPN) assumption [70] ]. Their
result provides a sharp separation between Clifford circuits

and doped Clifford circuits, in contrast with the result previ-
ously discussed. Note that, the injection of a single T gate in
a Clifford circuit falls inevitably in the class of circuits that
can be written as U (1)

0 TU (2)
0 , that can be efficiently encoded

classically and learned, as shown in Ref. [26]. After all, it is
well known the difference in performances of learning tasks
with or without the possibility of having access to two copies
of the target, being a unitary or a quantum state. At the same
time, the question of whether the output distribution of a
1-doped Clifford circuit can be learned when measurements
in arbitrary single-qubit bases are available remains an open
question.

Along these lines, in this work, the problem of learning
doped Clifford circuits has been studied in the context of
unscrambling quantum information. While the technicalities
of the protocol will be discussed in the following sections, the
concept of unscrambling is cognate to the one of disentan-
gling: the task is to find a decoder unitary V that, mocking
the action of a unitary operator Ut , undoes the action of Ut

only on a subspace (say A) VUt |ψA〉 |ψB〉, retrieving quantum
information |ψA〉 scrambled by Ut . In a previous work [42], a
metropolis algorithm has been employed—similar to the one
for disentangling—with the task of searching for the decoder
V . By modeling the unitary Ut as a t-doped Clifford circuit,
it is numerically shown that the success rate of the algorithm,
quantified by recovery fidelity |〈ψA|VU |ψA ⊗ ψB〉|2, is expo-
nentially decaying in t . In other words, the recovery fidelity is
smaller than ε just after t = �(log ε−1) non-Clifford gates.

Is it possible to do better? The answer is yes, as the present
paper shows. We show that the proposed CC algorithm is
able to learn—with poly(n, 2t ) resources—a perfect decoder
V for a t-doped Clifford circuit, up to t < n non-Clifford
gates, as we set out to show starting from the next section.
The main technical contribution, as mentioned earlier in the
above section, is the development of the compression theorem
(Theorem 1) which reveals the existence of a compression
method for t-doped Clifford circuits [as seen in Eq. (1) above].
This compression effectively concentrates all the non-Clifford
elements into a subsystem of t qubits (thus independent from
n), enabling the use of a brute-force tomographic algorithm to
learn the non-Clifford components. Therefore, this task is fea-
sible only up to t = O(log n). We then put this consideration
in rigorous grounds in Corollary 3, where we show that it is
possible to learn an efficient classical description of a t-doped
Clifford circuit using poly(n, 2t ) resources, which includes
both sample and computational complexity. In fact, this repre-
sents an advancement over the state-of-the-art algorithms for
learning t-doped Clifford circuits, which had previously been
constrained to specific circuit structures.

IV. LEARNING QUANTUM INFORMATION
FROM AN UNKNOWN SCRAMBLER

A. Information scrambling and decoupling theorem

In this section, we make a brief review of the decoupling
theorem introduced by Hayden and Preskill in Ref. [23], in the
context of black-hole evaporation. Consider the Hilbert space
of n = |A| + |B| = |C| + |D| qubits partitioned as

H = A⊗ B = C ⊗ D (7)
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and a unitary map

UAB : A⊗ B 
→ C ⊗ D. (8)

Denote as P (�) the Pauli group (modulo phases) on the
subsystem � composed of |�| qubits with � ∈ {A, B,C, D},
d� ≡ 2|�| and define the average four-point out-of-time-order
correlation function �(UAB) as

�(UAB) := 〈OTOC4(UAB)〉PA,PD

≡ 1

d
〈tr[PAPD(UAB)PAPD(UAB)]〉PA,PD

, (9)

where PD(UAB) ≡ U †
ABPDUAB and 〈·〉PA

≡ 1
d2

A

∑
PA∈P (A)(·) is

the average over the Pauli group on A and similarly for PD.
The OTOC operationally quantifies how information initially
encoded in A is scrambled by U through the output system
HC ⊗HD, see Ref. [4]. The function �(UAB) is a quantity
related to the group commutator between the local Pauli group
on A and D: it attains the value one if the (average) support
of PD(UAB) commutes with Pauli operators in A while it de-
creases as the support of PD grows in space, the so-called
operator growth, which in turn defines scrambling behavior
[71–73]: a unitary operator UAB is said to be a scrambler if
and only if [4]

�(UAB) � 1

d2
A

+ 1

d2
D

− 1

d2
Ad2

D

, (10)

where � means up to an order d−2.
Scrambling of quantum information is connected to that

of the information retrieval [23]: imagine Alice decides to
encode some quantum information in A. As this is quantum
information, we need to possess a reference state on R that
is perfectly entangled with A. By denoting the EPR pair
between two spaces of the same dimension dX by |XX ′〉 =
d−1/2

X

∑
iX
|iX 〉 ⊗ |iX ′ 〉, the quantum information possessed by

Alice is encoded in the EPR pair |RA〉. At this point, Alice
tosses her half of such an EPR pair (A) in the scrambler. On
the other hand, Bob wants to retrieve the information encoded
by Alice and tossed into the scrambler by Alice by having
access to part of the output state, namely, D. If Bob initially
possesses one half of an EPR pair |BB′〉, the initial state of the
system is |RA〉 |BB′〉, while after scrambling the total state on
RB′CD is

|�〉RB′CD = UAB ⊗ IRB′ |RA〉 |BB′〉 . (11)

In the context of black-hole evaporation, an old black hole
B is maximally entangled with the Hawking radiation B′ pos-
sessed by Bob, while D is the Hawking radiation emitted by
the black hole after UAB has scrambled the quantum infor-
mation tossed in it by Alice and C represents the shrinking
black-hole interior and is inaccessible for any observer, being
beyond the event horizon. At this point, the question is how
much information, initially possessed by Alice, is, after the
scrambling unitary, in Bob’s possession? One quantifies the
information shared by two parties, e.g., R and C, by the quan-
tum mutual information between R and C, defined through
von Neumann entropies:

I (R|C) := S(ρR)+ S(ρC)− S(ρRC ), (12)

where S(ρ) := −tr(ρ log ρ) and ρ� := tr�̄(|�〉 〈�|) with �̄

being the complement of �. Simple calculations [4] show that
for the state |�〉RB′CD [in Eq. (11)] one obtains S(ρR) = |A|
and S(ρC ) = |C|. One can also show that the two Rényi en-
tropy S2(ρ) := − log trρ2 obeys [4]

S2(ρRC ) = − log
dA

dC
�(UAB). (13)

From the hierarchy of Rényi entropies one then finds that, if
UAB is a scrambler, the decoupling theorem applies:

I (R|C) = O(22|A|−2|D|), (14)

that is, only an ε amount of information is shared between
Alice (R) and the output of the scrambler C provided that
|D| = |A| + log ε−1. Thanks to the unitarity of the evolution,
all the information is in Bob’s possession, i.e., DB′: the mutual
information between R and B′D is maximal,

I (R|B′D) = |A| − O(22|A|−2|D|). (15)

Let us make some remarks concerning why the model can be
applied in the context of black-hole evaporation. Let us take
a step back and review the Page calculations on the entropy
production from a black hole, see Ref. [74]. Indeed, modeling
a black hole as a complex random unitary U , Page finds that
the entanglement entropy between the black-hole interior I
and the emitted Hawking radiation E is

SI = − log
dI + dE

dI dE + 1
= − log

[
d−1

I + d−1
E + O(d−1)

]
.

Thus, if |I| = f n for f < 1/2 one has SI = |I| + O(2(1−2 f )n),
i.e., maximal entropy up to a exponentially small error. Thus,
following the Page reasoning, one has (i) as long as |I| � |E |
the Hawking radiation E does not contain any information
about the black-hole interior I , but rather it is the black-hole
interior that knows all about E ; (ii) as soon as |E | � |I|
the Hawking radiation E contains all the information about
the black hole interior I , being maximally entangled with
it; while (iii) between the two regimes there is a gray area
where the entanglement is not maximal. In the context of the
Hayden-Preskill thought experiment, the hypothesis that Bob
B′ shares an EPR pair with the black-hole initial interior B
relies exactly upon the Page reasoning: sharing an EPR pair
means being maximally entangled with the initial black-hole
interior, which is possible only if the black hole has emitted
much more than half of the initial qubits, i.e., |I| � |E |. Thus,
among all the radiation E emitted in the history of this black
hole, the qubits in Bob’s possession are only a subset B′ ⊂ E .

That said, the decoupling theorem, being a pure
information-theoretic result, finds its own applications as a
tool for, exempli gratia, quantum communication and quan-
tum teleportation [75]. Thus, there is no need to specialize the
discussion on black-hole physics.

B. Recovery algorithm after a scrambling dynamics

The decoupling theorem says that the quantum informa-
tion initially encoded in the input state in A is completely
transferred through the scrambling unitary dynamics to Bob,
i.e., the system D and B′. The very scrambling behavior of
UAB has destroyed any correlation between the reference state
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in R and the inaccessible part of the information in C. Since
now the state in R must be perfectly correlated with the state
in the hands of Bob, there should exist a unitary operator V
on B′D able to recover all the information encoded in A. In
other words, there should exist a unitary V which enables Bob
to distill an EPR pair between R and a reference system of
the same dimension of R, say R′. One calls such operator a
decoder. In Ref. [24], it is shown how Bob can operate such
distillation by picking as decoder the transpose of the scram-
bler UAB: Bob needs a further EPR pair |A′R′〉 on auxiliary
spaces A′ and R′ and appends it to the output of the scrambler,
obtaining |�〉RCDB′ |A′R′〉. The dimension of A′ is chosen such
that A′ ⊗ B′ is isomorphic to A⊗ B. Then Bob applies the
operator V ∗B′A′ and finally projects onto an EPR pair on D⊗ D′
by DD′ ≡ |DD′〉 〈DD′|. The final state after the algorithm
performed by Bob is thus

|�out (V )〉 ≡ 1√
Pout

DD′V
∗

B′A′ |�〉RCDB′ |A′R′〉 , (16)

where Pout is a normalization. The success of the algorithm;
that is, V ∗B′A′ being a decoder, is guaranteed if the state (16)
looks like |�out (V )〉 � |RR′〉 ⊗ |rest〉CC′ ⊗ |DD′〉, i.e., a fac-
torized state with an EPR pair between Alice qubits R and
Bob qubits R′. The factorization is possible only because
no information is shared between R and CC′ thanks to the
decoupling theorem. To check whether the algorithm is suc-
cessful, one computes the fidelity between |�out (V )〉 and
the target EPR pair one wants to distill, i.e., |RR′〉. The
fidelity between the state in Eq. (16) and |RR′〉, FV (U ) ≡
tr(RR′ |�out (V )〉〈�out (V )|), being a function of the scrambler
UAB and the decoder V , can be recast as [42]

FV(U ) = 1

d2
A

〈tr(PD(U )PD(V ))〉PD

〈tr(PD(U )PAPD(V )PA)〉PA,PD

, (17)

where we dropped the subscript for both U and V . Then one
can see that, if V = U and the unitary U is a scrambler, i.e.,
�(U ) � d−2

A + d−2
D − d−2

A d−2
D one obtains a fidelity

FV (U ) = 1− O(4|A|−|D|), (18)

i.e., to have a fidelity 1− ε, one must have |D| = |A| +
log ε−1/2. In the context of black-hole physics, the radiation
emitted by the black hole, after Alice tosses their qubits in its
interior, must contain |D| = |A| + log ε−1/2 qubits to ensure a
successful recovery by Bob [23].

As we have seen, the decoder V can be easily found if
one knows perfectly UAB. The main goal of this paper is to
present a way of learning the decoder V without any previous
knowledge of UAB.

In the following, we drop the subscript AB and denote the
scrambler as Ut because we will always be concerned with a
t-doped Clifford circuit; that is, a Clifford circuit in which a
number t of single-qubit non-Clifford gates has been injected,
see Fig. 1.

In the following sections, we present a learning quantum
algorithm that aims at finding a decoder V that maximizes the
fidelity FV (Ut ). The main question of this paper is can one
learn the behavior of Ut by limited access to it and limited
resources? The answer is yes, provided that the scrambler is
not too chaotic [29]. The learning quantum algorithm is a CC
algorithm.

C. Main result

In this section, we present the main result of the paper,
avoiding technical details of the CC algorithm, later presented
in Sec. VC. We first present the main result as a main claim,
and then make a rigorous statement in the form of Theorem 1.

Main claim. If Ut is a t-doped Clifford circuit it is possible to
build a perfect Clifford decoder V using a quantum algorithm
requiring poly(n, 2t ) resources, provided that t < n, that is if
Ut is at most quasichaotic.

Remark M1. The Clifford decoder V still satisfies the
decoupling theorem (see Sec. IV A), as random Clifford uni-
taries are good scramblers [29,76]. Surprisingly, a Clifford
operator can decode a unitary Ut that makes extensive use of
non-Clifford resources. As stated above, a Clifford decoder
exists as long as Ut is quasichaotic. Beyond that threshold,
Ut finally becomes too complex to be decoded by a Clifford
decoder V .

Remark M2. For nonchaotic t-doped Clifford circuits; that
is, for t = O(log n), the Clifford decoder exists and can be
found with resources (time and sample complexity) both poly-
nomial in n. The learning of the decoder is thus efficient.
For quasichaotic circuits, i.e., for t � n, the efficient Clifford
decoder can be found, but with a exp(n) amount of resources.

Remark M3. From the fidelity formula, Eq. (17), we can
see that a perfect decoder [i.e., with fidelity FV (U ) � 1] must
reproduce the action of U †

t PDUt for any PD ∈ P (D). For t =
0, this requirement can obviously be fulfilled. However, for
every t > 0, it is not possible to exactly reproduce the action
of a non-Clifford unitary Ut on a Pauli operator PD. How is it
then possible that a decoder even exists? To understand this,
let us explore the consequences of the fact that we only need
to reproduce the behavior of Ut on the Pauli operators in D.
First, it might happen that for some Pauli operators, Ut would
send them again in Pauli operators, effectively behaving on
them like a Clifford operator. Define the subgroup of the Pauli
group on D

GD(U ) := {P ∈ P (D)|U †PDU ∈ P}, (19)

where P is the Pauli group on n qubits. If Ut is a Clifford
operator, then GD(Ut ) ≡ P (D). Similarly to Eq. (9), we can
define a truncated OTOC by averaging over the group GD(Ut )
instead of P (D):

�GD (Ut ) := 1

d
〈tr(PAPD(Ut )PAPD(Ut ))〉P (A),GD (Ut ) . (20)

If Ut is a scrambler, one can easily see that [75],
if |GD(Ut )| > 1,

�GD (Ut ) � 1

d2
A

+ 1

|GD(Ut )|2 −
1

d2
A|GD(Ut )|2 . (21)

As far as the operators in GD(Ut ) are concerned, a Clifford op-
erator would still be a perfect decoder. In building the decoder
V then, we choose a Clifford operator with the constraints

∀ P ∈ GD(Ut ), V †PV = U †
t PUt ; (22)

that is, V equals the action of Ut on the subgroup GD(Ut ).
The above requirement can be fulfilled because Ut acts as a
Clifford operator on GD(Ut ) and because of the unitarity of
both Ut and V or, equivalently, thanks to the group structure
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of GD(Ut ). While a unitary operator Ut is uniquely defined by
its adjoint action on every Pauli operator (or, to be rigorous,
on all the generators of P ), Eq. (22) constraints the unitary
V only on the generators of the group GD(Ut ), leaving the
other degrees of freedom free. This will be the key insight
for the success of the randomized algorithm presented in
Sec. V C. The randomized algorithm builds a decoder V by
first imposing the constraints Eq. (22) and then completing the
Clifford operator in a random way. We name this algorithm
the constrained random Clifford completion (CC) algorithm.
We show that the fidelity attained by the decoder V is

FV(Ut ) = 1+ R

d2
A�GD (Ut )+ R′

, (23)

where

R := [d|GD(Ut )|]−1
∑

PD∈P (D)\GD (Ut )

tr(PD(Ut )PD(V )),

R′ := [d|GD(Ut )|]−1
∑

PD∈P (D)\GD (Ut ),PA

tr(PAPD(Ut )PAPD(V ))

(24)

(see proof in Appendix C). Is not surprising that, if
tr(PD(Ut )PD(V )) = 0 for every PD �∈ GD(Ut ), then R = R′ =
0. Whether R, R′ = 0 depends on both Ut and V . Since V
is partially random, we can consider the probability of R =
R′ = 0. Remarkably, the unconstrained degrees of freedom in
choosing the decoder V allow finding, with an overwhelming
probability, a decoder for which R = R′ = 0. As we shall see,
the size of the set of constrained degrees of freedom is of
crucial importance.

Remark M4. The CC algorithm searches for and imple-
ments a decoder V belonging to the Clifford group. There
are two important consequences of this result: First, Clifford
circuits admit an efficient classical representation and can
be stored easily in a classical memory. Second, synthesis of
Clifford circuits is also efficient [77]: starting from the clas-
sical representation of a Clifford unitary V , one needs O(n2)
moves in terms of CNOT, Hadamard, and phase gates. Lastly,
the implementation of Clifford circuits can be easily done
fault-tolerantly, making the above algorithm not too expensive
in terms of quantum resources. The following theorem is the
main result of the paper:

Theorem 1. Let Ut be a t-doped Clifford scrambler. Let
VD

Ut
:= {V ∈ C(n)|V †PV = U †

t PUt , ∀ P ∈ GD(Ut )}, the set of
Clifford circuits obeying Eq. (22). The CC algorithm builds a
Clifford decoder V ∈ VD

Ut
with time complexity and a number

of query accesses scaling as poly(n, 2t ) such that, with proba-
bility

Pr
V∈VUt

(R = 0, R′ = 0) � 1− 2−(2|C|−t ), (25)

it yields a fidelity obeying R = R′ = 0. The decoder V thus
retrieves the information with a fidelity given by

FV(Ut ) = 1

d2
A�GD (Ut )

. (26)

If Ut is a scrambler, then the fidelity reads

FV (Ut ) � 1

1+ d2
A−1

|GD (Ut )|
� 1

1+ 22|A|+t−2|D| , (27)

cf. Eq. (21) and Lemma 4 in Appendix C.

The above theorem says that a randomized decoder built
according to the CC algorithm presented in Sec. V C re-
covers the information scrambled by Ut with probability
Pr(R = 0, R′ = 0) that converges to one exponentially fast
with 2|C| − t , and success fidelity converging to one expo-
nentially fast with 2|D| − 2|A| − t . In Sec. V E, we provide
numerical evidence of the success of the CC algorithm in
finding a perfect decoder for quasichaotic scramblers.

Remark T1. As later shown in Sec. V C, a query access to
the unitary Ut corresponds to the ability to apply the unitary Ut

on an n-qubit quantum register. We remark that querying the
unitary Ut twice enables the application of U⊗2

t on a 2n-qubit
quantum register.

Remark T2. The key insight for the success of the algorithm
is that the randomization over the unconstrained degrees of
freedom in V [which dictate the behavior of the decoder V
on the elements of P (C) ∪ P (D) \ GD(Ut )], yields, with high
probability, a value R = R′ = 0. First of all, this condition
is not necessary to achieve perfect fidelity. What is needed
is that R, R′ � 1. However, there is an intuitive explanation
as to why the stronger condition R = R′ = 0 is likely, given
the assumptions. Both the quantities R, R′ are proportional
to the sum over Hilbert-Schmidt inner products. This sum
depends on at most 2t terms. Since PD(V ) is still a Pauli
operator (because V is Clifford), it is the tensor product over
n qubits of single qubit Pauli matrices and can be represented
by a 2n-bit string. The Hilbert-Schmidt inner product then
becomes the bit-string inner product. Of these 2n bits, though,
the constraints in Eq. (22) fix at least 2|D| − t bits leaving
2n− 2|D| + t = 2|C| + t bits free. The probability that this
string is orthogonal to another 2n bit string is thus lower-
bounded by 1− 2−(2|C|+t ). However, the operator PD(Ut ) is the
linear combination of 2t strings, because every T gate evolved
by a Clifford circuit produces two strings. In other words,
a t-doped Clifford circuit produces string entropy [63,78].
Finally, we can conclude that the probability that 2t strings
of type PD(V ) are orthogonal to the corresponding PD(U ) is
then lower-bounded by 1− 2−(2|C|+t )22t = 1− 2−(2|C|−t ).

Remark T3. From the above formulas, it can be easily
checked that the number of T gates increases the size of the
subsystem D that must be processed for a successful decoding.
Indeed, the size of the subsystem D that must be read by
the decoder scales as |D| = |A| + t/2+ log ε−1/2 to ensure a
decoding fidelity ε close to one. Notably, the decoding is still
possible when the number of T gates scales as t ∼ n, while
it becomes no longer possible as t > n because the success
probability becomes exponentially suppressed.

Remark T4. One of the reasons why the result of Theorem
1 is surprising is that, if we read out too many bits |D|, for
example, capturing too many bits of the Hawking radiation,
then the algorithm fails. After all, one might think that the
more one learns, the better it is. However, the fidelity cru-
cially depends on the fact that we can imitate the unitary
Ut , which is not Clifford, with a Clifford operator V . This
is only possible if V encodes away in C all the differences
between the two. If |D| grows to become the full number
of qubits n, the fidelity (23) becomes the unitary fidelity
d−2|tr(U †

t V )|2 which is obviously less than one even for a
vanishing density of non-Clifford gates (see Lemma 5 in
Appendix C).
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Remark T5. The fact that, in order to achieve fidelity
FV (Ut ) = 1, the density c of non-Clifford gates cannot exceed
the unity is also important and it is connected to the transition
in quantum complexity and crossover to quantum chaos driven
by the doping by non-Clifford resources, see Refs. [29,39]. To
obtain universal purity fluctuations and universal behavior for
the 8-OTOC [Eq. (5)], the amount of non-Clifford gates must
be greater than 2n, cf. Eq. (6). The same result is obtained in
Ref. [79] with the tool of the unitary stabilizer nullity. Similar
conclusions can be reached by looking at the stabilizer Rényi
entropy M(|Ut 〉) of the Choi state |Ut 〉 associated with Ut .
A necessary condition to obtain the universal (and maximal)
value M(|Ut 〉) � 2n is that the number of non-Clifford gates
t � 2n [78,80].

Remark T6. The use of a Clifford circuit that learns a
t-doped Clifford circuit allows efficient classical memory
storage; indeed, Clifford operators can be efficiently encoded
in classical memory using O(n2) parameters. Thus, although
beyond t = O(log n) the algorithm becomes exponentially
hard in t , the fact that Clifford operators are suitable decoders
for quasichaotic quantum circuits implies that, at least from
a memory-storage point of view, the algorithm remains
efficient in terms of classical resources. Conversely, in the
regime when the density c of non-Clifford gates is c � 2, a
chaotic circuit maps all the Pauli operators to a superposition
of exponentially many Pauli strings that, preventing the
possibility of finding a suitable Clifford decoder, leads to an
exponential needs of classical memory and the consequent
impossibility of the learning process, even provided an infinite
measurement precision.

All the above considerations show why we call qua-
sichaotic, doped Clifford circuits having finite densities less
than one. As the density of non-Clifford resources overcomes
c = t/n > 1, a transition quantum complexity happens and
eventually the dynamic reaches the Haar random behavior for
t/n � 2 after which nothing can be reliably learned.

V. THE CLIFFORD COMPLETION ALGORITHM

A. Technical preliminaries

In this section, we review well-known notions on the sta-
bilizer formalism because they are instrumental in proving
the main result of the paper. We refer to Appendix A for
the list of notations used throughout the paper. Consider the
Hilbert space of n qubit H and let d = 2n its dimension. Let
us introduce the Pauli matrices 1l[1], σ x, σ y, and σ z:

1l[1] =
(

1 0
0 1

)
, σ x =

(
0 1
1 0

)
,

σ y =
(

0 −i
i 0

)
, σ z =

(
1 0
0 −1

)
, (28)

where 1l[1] is the identity on the space of one qubit. Through-
out the paper, we denote operators O[m] acting on a subsystem
[m] containing m qubits with subscript [m]. The Pauli group
P on n qubits is defined as the n-fold tensor product of the
single-qubit group P ([1]) obtained by {1l[1], σ

x, σ y, σ z} times
a multiplicative factor of ±1,±i. Note that choosing two
Pauli operators P, Q ∈ P , they either commute [P, Q] = 0 or
anticommute {P, Q} = 0. In what follows, we consider the

quotient group of the Pauli group (that is, we ignore the global
phases {±1,±i}),

P := P/{±1,±i}. (29)

Note that P , the group of Pauli strings, is an Abelian group
with respect to the matrix multiplication modulo phases. In
the following, we take the license to refer to both P and P
as the Pauli group, but mind that the two different notations
mean slightly different things. A set of generators for the
Pauli group is given by the set l = {σ x

i , σ z
i }ni=1, where σ x,z

i is
the operator acting as σ x, σ z on the ith qubit and identically
elsewhere. Otherwise, we denote as g any other generators
of the Pauli group. Thanks to the unitarity of U ∈ U (n), one
can compute the adjoint action U †PU on every P ∈ P by
knowing all the (adjoint) actions of U on the set of generators
g, i.e., U †σU for any σ ∈ g. Thus, the knowledge of U †PU
for every P ∈ g completely determines U up to a global phase.
This property is particularly useful because |g| = 2n, i.e., the
size of the set of generators scales linearly with n. Although,
only O(n) chunks of information are required to completely
determine a 2n × 2n matrix, for a general unitary operator, the
knowledge of U †PU requires 4n complex numbers. However,
there exists a special class of unitary operators for which the
knowledge of U †PU requires just O(n) bits of information:
the Clifford group.

Denote as C(n) the Clifford group on n qubit, i.e., a sub-
group of the unitary group with the following property:

C(n) := {U0 ∈ U (n)|U †
0 PU0 ∈ P, ∀ P ∈ P}. (30)

In other words, the Clifford group is the normalizer of the
Pauli group P . Thanks to the aforementioned property, quan-
tum computation employing Clifford unitary operators can be
simulated classically in a time scaling as O(n3) [27,77]. As
we shall see, any Clifford operator U0 can be encoded in a
tableau [77] TU0 , which efficiently encodes the action of U0 on
a set of generators g, which is conventionally chosen to be the
local set of generators l. Let us first introduce some technical
notions. Let us first recall that l = {σ x

i , σ z
i }ni=1 represents the

set of generators for the Pauli operators. Hence, any Pauli
operator P in P can be expressed as

P = (−i)◦
∑n

i xizi
(
σ x

1

)x1
(
σ z

1

)z2 ⊗ (
σ x

2

)x2
(
σ z

2

)z2

⊗ · · · ⊗ (
σ x

n

)xn
(
σ z

n

)zn
, (31)

where
∑◦ denotes the sum modulo 2, and where

(x1, z1, . . . , xn, zn) belongs to F2n
2 , with F2 being the

finite field of integers with arithmetic modulo 2. For
sake of clarity, let us introduce the following notation:
(P)xz ≡ (x1, z1, . . . , xn, zn). Thanks to Eq. (31), (P)xz
completely characterizes the Pauli operator P, and so there
exists an isomorphism between P and the field F2n

2 .
Example 1. The single qubit Pauli group P ([1]) is isomor-

phic to F2
2 :

(1l[1])xz = (00), (σ x )xz = (10),

(σ z )xz = (01), (σ y)xz = (11).

The above example clearly shows how one can associate
a pair of integers modulo 2 with each Pauli matrix. In this
isomorphism, the product of two Pauli operators is given by
the XOR operation performed on the corresponding binary
strings.

022429-9



LEONE, OLIVIERO, LLOYD, AND HAMMA PHYSICAL REVIEW A 109, 022429 (2024)

Example 2. Consider P1 = σx and P2 = σy; their product is
equal to

σ xσ y 
→ (10)⊕ (11) = (01) 
→ σ z.

The final element to characterize the isomorphism between
P and the field F2n

2 is given by the commutation relations of
two Pauli operators. Given P1, P2 ∈ P , then [67]

P1P2 = (−1)ω[(P1 )xz,(P2 )xz]P2P1, (32)

where ω[(P1)xz, (P2)xz] ≡ (P1)T
xz�(P2)xz is the symplectic

form, with � a 2n× 2n block-diagonal matrix with each block
equal to (0 1 1 0).1 In formulas,

� :=
n⊕

i=1

(
0 1
1 0

)
. (33)

As a consequence ω[(P1)xz, (P2)xz] is able to tell us if two
Pauli operators P1 and P2 commute.

Example 3. Consider n = 1 and P = σ x, P′ = σ y. Then
(P)xz = (10) and (P′)xz = (11). Computing the symplectic
form ω[·, ·], we have

ω[(P)xz, (P′)xz] = [(1 · 1)+ (1 · 0)] = 1, (34)

and therefore σx anticommutes with σy, as expected. Now
consider n = 2 and P ≡ σ x ⊗ σ x and P′ ≡ σ z ⊗ σ y. One has
(P)xz = (1010) and (P′)xz = (0111), thus

ω[(P)xz, (P′)xz] = 1 · 1+ 0 · 0+ 1 · 1+ 1 · 1 = 0, (35)

and therefore σ x ⊗ σ x commutes with σ z ⊗ σ y as expected.

The isomorphism between P and the field F2n
2 sets the first

building block in the implementation of a 2n× 2n tableau
that encodes all the Clifford information. Notably, with the
efficient description of a Pauli operator P in terms of a
2n-dimensional vector (P)xz, the possibility of implement-
ing a classical representation of a Clifford operator becomes
less surprising. Consider the symplectic group Sp(2n,F2n

2 ), a
group of 2n× 2n matrices M satisfying the following equa-
tion:

M�MT = �. (36)

It has been shown [81] that, for every Clifford operator U0 ∈
C(n), there exists a unique symplectic matrix T̃U0 ∈ Sp(2n,F2)
such that, for U0PU †

0 =∝ P′, one has

T̃U0 (P)xz = (P′)xz. (37)

Conversely, the opposite is also true, so every symplectic
matrix is associated with a Clifford unitary U0 ∈ C(n). The
aforementioned facts highlight that a Clifford unitary can be
represented by a 2n× 2n matrix, providing an efficient en-
coding scheme. The action of a Clifford operator on σ ∈ l can
be efficiently encoded—being U †

0 σU0 a Pauli operator—in a
(2n+ 1)-bit string, where the first 2n bits encode (U †

0 σU0)xz,
while the last bit encodes the phase of U †

0 σU0, that can be
either +1 or −1. One can implement the tableau TU0 through
a (2n)× (2n+ 1) Boolean matrix, where each row stores
the action of U0 on one of the 2n generators of P and, by
convention, the set of generators is chosen to be l. A generic
tableau TU0 can be written in the following way:

TU0 ≡ (T̃U0 |φ) =

⎛⎜⎜⎜⎜⎝
(
U †

0 σ x
1 U0

)
x1z1

(
U †

0 σ x
1 U0

)
x2z2

. . .
(
U †

0 σ x
1 U0

)
xnzn

φ1(
U †

0 σ z
1U0

)
x1z1

(
U †

0 σ z
1U0

)
x2z2

. . .
(
U †

0 σ z
1U0

)
xnzn

φ2
...

...
. . .

...
...(

U †
0 σ z

nU0
)

x1z1

(
U †

0 σ z
nU0

)
x2z2

. . .
(
U †

0 σ z
nU0

)
xnzn

φ2n

⎞⎟⎟⎟⎟⎠, (38)

where T̃U0 ∈ Sp(2n,F2n
2 ) is the partial tableau [81,82], a 2n×

2n symplectic matrix that encodes the action σ 
→ U †
0 σU0 ∈

P ; while φ is a 2n× 1 matrix (vector) that encodes the phases
of the adjoint action of U0 on every σ . In the right-hand
side (r.h.s.) of Eq. (38), the notation (U †

0 σU0)xizi stands for
the two bits corresponding to the ith component of the Pauli
matrix on the ith qubit, while φi stands for the phase of
U †

0 σU0. For example, let U †
0 σU0 = σ x ⊗ σ y ⊗ σ z ⊗ · · · ⊗ 1l,

then (U †
0 σU0)x1z1 = (10), while (U †

0 σU0)x3z3 = (01), etc. Ac-
cording to the lighter notation for the 2n bit string introduced
above, (P)xz ≡ (x1, z1, x2, z2, . . . , xn, zn), the partial tableau

1Note that the matrix � presented in our work deviates from the
usual representation, which is commonly expressed as a block off-

diagonal matrix (0 I
I 0), consequence of a different choice for the

basis of F 2n
2 . The usual representation can be recovered by setting

(P)xz ≡ (x1, x2, . . . , xn, z1, z2 . . . , zn).

T̃U0 in Eq. (38) can be written as

T̃U0 =

⎛⎜⎜⎜⎜⎜⎜⎝

(
U †

0 σ x
1 U0

)
xz(

U †
0 σ z

1U0
)

xz
...(

U †
0 σ x

n U0
)

xz(
U †

0 σ z
nU0

)
xz

⎞⎟⎟⎟⎟⎟⎟⎠. (39)

Note that the generators σ x,z
i ∈ l in the tableau TU0 are ar-

ranged so that {σ x
i , σ z

i } = 0 for any i = 1, . . . , n and that
[σ x,z

i , σ x,z
j ] = 0 for any i, j = 1, . . . , n and j �= i. Let us set

up the following notation for the rest of the paper: let A be a
square matrix, then [A]α denotes the αth row vector of A, for
example, [T̃U0 ]1 = (U †

0 σ x
1 U0)xz. Let us make an example.

Example 4. Consider the phase gate S, the partial tableau
T̃S ≡ (1 1

0 1) is symplectic

TS�T T
S =

(
1 1
0 1

)(
0 1
1 0

)(
1 0
1 1

)
=

(
0 1
1 0

)
= �,

(40)

022429-10



LEARNING EFFICIENT DECODERS FOR QUASICHAOTIC … PHYSICAL REVIEW A 109, 022429 (2024)

where we used that the arithmetic is modulo 2. This simple
example illustrates that the partial tableau T̃S corresponds
to the unique symplectic matrix associated with the phase
gate S.

The generating set of the Clifford group is given by the
controlled NOT gate (CNOT), the Hadamard gate H, and the
phase gate S. The action of these native gates is mapped to a
matrix operation on the tableau TU0 by looking at their action
on a Pauli string P ∈ P . The Hadamard gate H(i) acting on
the qubit i results in swapping the xith and the zith component
on the entire column, namely:

(P)xizi

H (i)−−→ (P)zixi
(41)

for all i = 1, . . . , n, φi = φi ⊕ xizi, while the phase gate S(i)
acting on the qubit i results in an XOR operation between the
xi and zi:

(P)xizi

S(i)−→ (P)xizi⊕xi
, (42)

for all i = 1, . . . , n, φi = φi ⊕ xizi. Finally, the CNOT(k, i)
having control qubit k and acting on the qubit i reads

(P)xkzk (P)xizi

CNOT(k,i)−−−−−→ (P)xkzi⊕zk (P)xi⊕xkzi . (43)

for all i = 1, . . . , n, φi = φi ⊕ xkzi(xi ⊕ zk ⊕ 1). Let us con-
clude this paragraph by introducing the concept of a symplec-
tic transformation as a map denoted by S : Sp(2n,F2n

2 )→
Sp(2n,F2n

2 ). This map transforms one tableau T̃U0 into
another tableau T̃U ′0. Despite the general nature of this trans-
formation, since it is a mapping between two symplectic
matrices, there always exists an element TU ′′0 ∈ Sp(2n,F2n

2 )
within the group such that TU ′′0 TU0 = TU ′0 . In the paper, while
we introduce other symplectic transformations, our focus will
be on determining the specific symplectic matrix (Clifford
unitary) that accomplishes the desired task. We will not pursue
a general mapping approach but rather identify the particular
symplectic matrix that achieves the desired transformation.

Let us define the diagonalizer transformation Dh(·), a
symplectic transformation, that will be the core of the CC
algorithm in Sec. VC. We first need to define the following
encoding on a subset of generators.

Definition 1. [τh] Consider a set g of generators of the
Pauli group, and a subset h ≡ {g1, g2, . . . gh} ⊂ g with h el-
ements. From a subset of generators h, we define the matrix
τh as follows:

τh ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(g1)xz
(g2)xz

...

(gi )xz
0
...

(gh)xz
0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (44)

where (gi )xz corresponds to the 2n-bit string (x1z1 . . . xnzn) ∈
F2n

2 encoding the generator gi, and 0 is a 2n-bit string of zeros.

The matrix τh is build from the subset of generators h in the
following way: if for a given gi ∈ h there is no g j ∈ h such that
{gi, g j} = 0, the generator gi is just followed by a null vector
0, otherwise gi and g j (such that {gi, g j} = 0) are placed in
two consecutive rows. There can be many ways to build the
matrix τh; however, in this paper, we adopt the following
convention: paired generators, which are couples of anticom-
muting generators, occupy the initial rows of the matrix τh.
The subsequent rows are filled with unpaired generators, each
followed by a null vector 0. The remaining part of the matrix
is just filled by null vectors 0 (see Matrix initializer for a
step-by-step algorithm detailing how to construct this matrix
given a subset of generators denoted as h). Let us provide a
concrete example:

Example 5. Consider n = 2 and a set of genera-
tors g = {σ x ⊗ σ x, σ y ⊗ σ y, σ z ⊗ σ x, σ y ⊗ σ z}. Let g ⊃ h =
{σ x ⊗ σ x, σ y ⊗ σ y, σ z ⊗ σ x}. To construct τh, note that
[σ x ⊗ σ x, σ y ⊗ σ y] = [σ z ⊗ σ x, σ y ⊗ σ y] = 0, while {σ x ⊗
σ x, σ z ⊗ σ x} = 0. Therefore we can assign [τh]1 = (σ x ⊗
σ x ) ≡ (1010), [τh]2 = (σ z ⊗ σ x ) ≡ (0110), [τh]3 = (σ y ⊗
σ y) ≡ (1111), and [τh]4 = 0 ≡ (0000). Therefore, we can as-
sign to h the following matrix τh:

τh =

⎛⎜⎜⎝
1 0 1 0
0 1 1 0
1 1 1 1
0 0 0 0

⎞⎟⎟⎠. (45)

Note that, the way the matrix τh is filled is the same as
the partial tableau T̃U0 with the only difference that the partial
tableau encodes all the 2n generators ∈ g of P , while τh
encodes only a subset h ⊂ g. This fact motivates us to define
the following set of Boolean matrices:

Definition 2. Let B2n the set of 2n× 2n Boolean matrices.
Define T2n ⊂ B2n the set of matrices with the following prop-
erties:

(1) ∀ τ ∈ T2n, ω̃([τ ]2i+1, [τ ] j ) = 0 for i = 1, . . . , n and
j = 1, . . . , 2n, j �= 2i + 2.

(2) ∀ τ ∈ T2nω̃([τ ]2i+1, [τ ]2i+2) = {1, if [τ ]2i+2 �= 0
0, else for

i = 1, . . . , n.
where ω̃ is an extension of the symplectic form ω applied to
the rows of τh.

Remark 1. Given a subset h ⊂ g of generators g, then τh ∈
T2n. The partial tableau T̃U0 corresponding to a Clifford circuit
U0 belongs to TU0 . Moreover, the 2n× 2n identity matrix
I2n ∈ T2n.

Let us define the following 2n-bit strings eα ≡
(δα1, . . . , δα2n), where δαβ is the Kronecker delta.

Definition 3 (Diagonalizer). Let h be a subset of gen-
erators and τh ∈ T2n the corresponding matrix defined in
Definition 1. The diagonalizer Dh(·) is a map Dh : T2n 
→ T2n,
whose action is defined as

[Dh(τh)]α =
{

eα, if [τh]α = (gi )xz for some gi ∈ h

0, if [τh]α = 0.

(46)
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In other words, the diagonalizer Dh(·) maps τh to a partial
identity matrix belonging to T2n ⊂ B2n:

Dh(τh) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0 . . . 0 0 . . . 0 0
0 1 . . . 0 0 . . . 0 0 . . . 0 0
...

...
. . .

...
...

...
...

...
...

...
...

0 0 . . . 1 0 . . . 0 0 . . . 0 0
0 0 . . . 0 0 . . . 0 0 . . . 0 0
...

...
...

...
...

. . .
...

...
...

...
...

0 0 . . . 0 0 . . . 1 0 . . . 0 0
0 0 . . . 0 0 . . . 0 0 . . . 0 0
...

...
...

...
...

...
...

...
. . .

...
...

0 0 . . . 0 0 . . . 0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (47)

In Appendix B, we introduce the algorithm that, given any ma-
trix τh ∈ T2n, performs the diagonalizer in time O(n2) in terms
of symplectic transformations. As a consequence, the diago-
nalizer Dh itself is a symplectic transformation and therefore
equivalent to a Clifford operator, denoted D̂h, that maps the
set h in a subset of the set l (the local generators of the Pauli
group), i.e., D̂†

h
hD̂h ≡ {D̂†

h
g1D̂h, D̂†

h
g2D̂h, . . . , D̂†

h
ghD̂h} ⊂

l. For example, consider the partial tableau T̃U0 defined in
Eq. (38), with set of generators g := {σ1, σ2, . . . , σ2n} such
that {σ2i, σ2i+1} = 0 for all i, then the diagonalizer Dg on the
partial tableau T̃U0 acts as follows:

Dg

(
T̃U0

) =
⎛⎜⎜⎜⎜⎝

(D̂†U †
0 σ1U0D̂)x1z1

(
D̂†U †

0 σ1U0D̂
)

x2z2
. . . (D̂†U †

0 σ1U0D̂)xnzn

(D̂†U †
0 σ2U0D̂)x1z1 (D̂†U †

0 σ2U0D̂)x2z2 . . . (D̂†U †
0 σ2U0D̂)xnzn

...
...

. . .
...

(D̂†U †
0 σ2nU0D̂)x1z1 (D̂†U †

0 σ2nU0D̂)x2z2 . . . (D̂†U †
0 σ2nU0D̂)xnzn

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎝

e1

e2
...

e2n

⎞⎟⎟⎠ = I2n, (48)

where I2n is the 2n× 2n identity matrix. We remark here that,
in the above case, one has D̂g ≡ U †

0 and the diagonalizer is
unique up to a phase. Before concluding the section, let us
give a basic example of diagonalizer.

Example 6. Let n = 2. Consider the subset of generators
h = {σ x ⊗ σ x, σ y ⊗ σ y, σ z ⊗ σ x}. In Eq. (45), we computed
the matrix τh ∈ T4. The diagonalizer Dh acting on τh results
in

Dh

⎡⎢⎢⎣
⎛⎜⎜⎝

1 0 1 0
0 1 1 0
1 1 1 1
0 0 0 0

⎞⎟⎟⎠
⎤⎥⎥⎦ =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎠ (49)

and corresponds to the Clifford operator D̂h =
H (0)H (1)CNOT(1, 2)H (1)CNOT(1, 2).

B. The structure of doped Clifford circuits: Compression
theorems, gate complexity, and learnability

Equipped with the notions introduced in the previous sec-
tion, here we discuss the structure of t-doped Clifford circuits,
i.e., Clifford circuits doped with a finite number t of (single-
qubit) non-Clifford gates, which for simplicity are considered
T gates.2 Denote as Ut a t-doped Clifford circuit. Let P ∈ P
be a Pauli operator. In general, U †

t PUt �∈ P . However, there
exists a subgroup G(Ut ) ⊂ P of the Pauli group such that
U †

t PUt ∈ P for every P ∈ G(Ut ). The group G(Ut ) is defined
as

G(Ut ) = {P ∈ P |U †
t PUt ∈ P}, (50)

whose cardinality is lower-bounded by |G(Ut )| � 22n−t [79],
i.e., at most a fraction of 2t Pauli operators is not preserved

2The extension of this discussion to arbitrary single-qubit non-
Clifford gates is straightforward.

by the action of Ut . Note that this notion is tied to the one
introduced in Sec. IV C, where we discussed the number of
preserved Pauli operators with support on a subspace D. Let
GD(Ut ) be the group defined in Eq. (19), clearly we have
GD(Ut ) ⊂ G(Ut ). Since G(Ut ) is a subgroup of the Abelian
group P , it is finally generated by a subset g(Ut ) ⊂ G(Ut ) of
generators, whose cardinality is lower-bounded by |g(Ut )| �
2n− t . We denote with brackets 〈·〉 the generating operation,
e.g., G(Ut ) = 〈g(Ut )〉. Thanks to the unitarity of Ut , there
exists a set of Clifford operations VUt defined as3

VUt := {V ∈ C(n)|V †PV = U †
t PUt , ∀ P ∈ G(Ut )}. (51)

After all, the action of Ut on the group G(Ut ) is Clifford-like
and can be replicated by some Clifford operations. Since
G(Ut ) is a subgroup of the Pauli group with cardinality
|G(Ut )|, there exists an integer s and a Clifford operation
D̂g(Ut ) such that P ([s]) ⊂ D̂†

g(Ut )G(Ut )D̂g(Ut ), where P ([s]) de-
note the local Pauli group on a system [s] containing s qubits.
Note that the Clifford operation D̂g(Ut ) introduced above is
exactly the Clifford operation corresponding to the symplectic
diagonalizer operation Dg(Ut ) defined in Definition 3. In par-
ticular, let τg(Ut ) be the matrix corresponding to g(Ut ), then
[Dg(Ut )(τg(Ut ) )]α = eα if [τg(Ut )]α �= 0. Let D̂g(Ut ) be the Clif-
ford operator corresponding to the diagonalizer, then D̂g(Ut )

acts on the subset g(Ut ) ⊂ g (for some set of generators g)

3The reason why there are Clifford unitaries capable of emulating
a general unitary Ut on G(Ut ) can be explained as follows: as shown
in Sec. V A, Clifford unitaries (as well as all the unitaries) are
solely characterized by their action on Pauli operators. In particular,
Clifford circuits map Pauli operators to Pauli operators with the only
condition of preserving commutation relations between them. Since
the conditions imposed by the unitary Ut on G(Ut ) pertain to Pauli
operators and, due to the unitarity of Ut , preserve their commutation
relation.
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and transforms it to a subset of the local generating set l of the
Pauli group. The integer s obeys the following lower bound:

s � n− t, (52)

i.e., in the worst case, only a local Pauli group on t qubits is
not preserved by the adjoint action of Ut . Equation (52) easily
descends from the fact that |g(Ut )| � 2n− t : the set g(Ut ) is a
subset of g, which consists of a set of generators containing
n pairs of anticommuting generators. As the cardinality of
g(Ut ) is bounded from below by 2n− t , it implies that g(Ut )
contains at least n− t pairs of generators from g. These pairs,
when diagonalized by Dg(Ut ), correspond to the local generat-
ing set of the Pauli group P([s]) of a subsystem consisting of
s qubits, where s is greater than or equal to n− t . The above
considerations allow us to decompose any unitary Ut in Clif-
ford blocks plus a non-Clifford operation acting on (at most)
t qubits. To see this, let us show that for every V ∈ VUt , the
unitary operator given by the product D̂†

g(Ut )UtV †D̂g(Ut ) acts

identically on s qubits. Let Ps ∈ P ([s]) ⊂ D̂†
g(Ut )G(Ut )D̂g(Ut ) a

local Pauli operator on s qubits, then

D̂†
g(Ut )VU †

t D̂g(Ut )PsD̂†
g(Ut )UtV

†D̂g(Ut ) = Ps; (53)

indeed, D̂g(Ut )PsD̂†
g(Ut ) ∈ G(Ut ) by definition, VU †

t PUtV † =
P for every P ∈ G(Ut ) thanks to Eq. (51), and D̂g(Ut )

sends P back to Ps. This remarkable fact means that
D̂†

g(Ut )UtV †D̂g(Ut ) = 1l[s] ⊗ u[n−s] for some local unitary u[n−s]

acting on n− s qubits where n− s � t [see Eq. (52)]. More-
over, note that the unitary u[n−s] contains all the T gates, since
D̂g(Ut ), V ∈ C(n), and thus is a t-doped Clifford circuit on
(n− s) qubits. We denoted 1l[s] the identity matrix acting on
the subsystem [s] containing s qubits. All the above consider-
ations are summarized in Eq. (1), as well as in the following
theorem, which is one of the main results of the paper.

Theorem 2 (Compression theorem). Let Ut a t-doped Clif-
ford circuit and V ∈ VUt . There exists a integer s � n− t , a
subset [s] of s qubits and a Clifford operation D̂g(Ut )—where
Dg(Ut ) is the diagonalizer defined in Definition 3—that allows
the following decomposition for Ut :

Ut = D̂g(Ut )(1l[s] ⊗ u[n−s] )D̂†
g(Ut )V (54)

for some unitary operator u[n−s] acting on (n− s) qubit and
containing at most t non-Clifford (T ) gates.

The above result, besides giving strong insights on the
structure of t-doped Clifford circuit, as discussed in Sec. II,
allows us to bound gate complexity of t-doped Clifford cir-
cuits. The gate complexity #(U ) of a unitary operator U is
defined as the minimum number of elementary gates, cho-
sen from a certain universal subset (such as, e.g., {H, CNOT,
T }), necessary to build U from the identity. Given that any
Clifford unitary operator acting on n qubits can be distilled
using O(n2) gates [83], a simplistic upper bound for the gate
complexity would be O(tn2). This is because the structure
of a t-doped Clifford circuit can always be seen as Clifford
circuits interleaved by t non-Clifford (T ) gates, leading to the
crude bound provided. If t � n, the bound can be improved by
employing the techniques of Clifford compression derived in
Theorem 2. We know that #(V ) = O(n2), #(D̂g(Ut ) ) = O(n2),
#(u[n−s] ) = O(t3), because n− s � t . From this fact, the fol-
lowing corollary of Theorem 2 readily descends:

Corollary 1. Let Ut be a t-doped Clifford circuit. The gate
complexity #(Ut ) = O(n2 + t3).

Moreover, as expected, the compression theorem above
gives an analogous compression result for t-doped stabilizer
states, i.e., states |ψt 〉 obtained from a stabilizer initial state
|σ 〉 by the action of Ut .

Corollary 2. Consider a t-doped Clifford circuit Ut and the
t-doped stabilizer state obtained |ψt 〉 = Ut |0〉[n]. Then, there
exists a choice of the diagonalizer of Eq. (54) of Theorem 2,
denoted D̃g(Ut ), such that the state |ψt 〉 can be compressed as

|ψt 〉 = D̃g(Ut )(|0〉[s] ⊗ |φ〉[n−s] ), (55)

where |φ〉[n−s] is a quantum state defined on the system [n− s]
of n− s � t qubits.

Proof. Call GV |0〉 the stabilizer group of the stabilizer state
V |0〉. The only thing to note is that, exploiting the freedom in
defining the diagonalizer Dg(Ut ), it is possible to define a diag-
onalizer, denoted D̃g(Ut ), such that the group G(Ut ) ∩ GV |0〉 ⊆
G(Ut ) is mapped in a local Pauli group Z[s], where s �
n− t . In formulas, D̃†

g(Ut )G(Ut ) ∩ GV |0〉D̃g(Ut ) ⊆ Z[s]. This is
because G(Ut ) ∩ GV |0〉 is a commuting subgroup of G(Ut )
with cardinality lower-bounded by 2n−t and thus it is always
possible to design a diagonalizer with this desired property
(see Sec. V A). Therefore, choosing D̃g(Ut ) we have the fol-
lowing chain of identities:

Ut |0〉 = D̃g(Ut )1l[s] ⊗ u[n−s]D̃†
g(Ut )V |0〉

= D̃g(Ut )1l[s] ⊗ u[n−s](|0〉[s] ⊗ |ω〉[n−s] )

= D̃g(Ut )(|0〉[s] ⊗ |φ〉[n−s] ). (56)

To conclude the proof, we remark that the choice of the diag-
onalizer D̃g(Ut ) that annihilates the action of V on |0〉[n] strictly
depends on the (stabilizer) input state. �
The following theorem and its subsequent corollary establish
the methodology for learning a t-doped Clifford circuit Ut .

Theorem 3. Let Ut be a t-doped Clifford circuit and let
G(Ut ) the associated group, g(Ut ) its generating set, and
VUt = {V ∈ C(n)|V †PV = U †

t PUt , ∀ P ∈ G(Ut )}. Then, with
poly(n, 2t ) query accesses to Ut , the CC algorithm finds
and efficiently encodes g(Ut ), V ∈ VUt , and D̂g(Ut ) in a time
poly(n, 2t ). In particular, the CC algorithm finds the Clifford
operations U0 and U ′0 in Eq. (1).

Proof. Call the CC algorithm in Sec. V C with m = 0.
Thanks to Eq. (54), then U0 = D̂g(Ut ) and U ′0 = D̂†

g(Ut )V .
The above theorems say that we can always decompose a

t-doped Clifford circuit in a product of Clifford operations and
a local unitary acting on (at most) t qubits. Surprisingly, by
employing a finite number of query accesses to Ut , one is able
to isolate the non-Clifford gates and concentrate them into
a local unitary acting on at most t qubits, and learn Clifford
blocks of the decomposition in Eq. (1). Once again, this fact
discriminates circuits where the number of T gates is less
than or exceeds the number of qubits n: while for t < n a
Clifford compression is possible, for t > n (in general) the
circuit cannot be compressed as in Eq. (54). Let us conclude
the section with the following corollary:

Corollary 3. Let Ut be a t-doped Clifford circuit, then us-
ing poly(n, 2t ) total resources including time complexity and
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query complexity to the unitary Ut , is possible to learn a full
tomographic description of Ut .

Proof. From Theorem 2, we know that Ut = U0(1l[n−t] ⊗
u[t] )U ′0 for U0 = D̂g(Ut ) and U ′0 = D̂g(Ut )V . From Theorem 3,
the CC algorithm learns and synthesizes U0 and U ′0 with
poly(n, 2t ) query accesses to Ut . As a consequence, U †

0 UtU
†′
0

acts nontrivially on at most t qubits. This fact allows us to run
a unitary process tomography that requires exp(t ) resources
[56]. �

C. The learning Clifford completion algorithm

In this section, we present the Clifford completion (CC)
algorithm. Let Ut be a t-doped Clifford circuit. Let m be a in-
teger, 0 � m � n, then one can define the following quantities
for a t-doped Clifford circuit Ut :

G[n−m](Ut ) = {P ∈ P ([n− m])|U †
t PUt ∈ P},

g[n−m](Ut ) ⊂ G[n−m]| 〈g[n−m]〉 = G[n−m](Ut ),

V [n−m]
Ut

≡ {V ∈ C(n)|V †PV = U †
t PUt , ∀ P ∈ G[n−m](Ut )}.

Note that, for m = n, one has G[n](Ut ) ≡ G(Ut ) defined in
Eq. (50), g[n](Ut ) ≡ g(Ut ) and V [n]

Ut
≡ VUt . From Lemma 2, we

have that the following facts hold:
(1) |G[n−m](Ut )| � 22(n−m)−t .
(2) |g[n−m](Ut )| � 2(n− m)− t .
(3) G[n−m](Ut ) ⊂ G[n−m′](Ut ) for m > m′.
(4) V [n−m]

Ut
⊂ V [n−m′]

Ut
for m < m′.

The CC algorithm is capable of learning g[n−m](Ut ), D̂g[n−m] ,
and V ∈ V [n−m]

Ut
corresponding to a t-doped Clifford circuit

Ut by allowing query accesses to Ut (which correspond to
apply multiple times the unitary Ut on a quantum register).
In particular, the CC algorithm can learn (i) for m = 0 the
decomposition of Ut as Ut = U0[1ln−t ⊗ ut ]U ′0 (see Theorem
2), and (ii), as later discussed in Sec. V D, for m = |C| the
Clifford decoder for the information recovery protocol.

Tools. The algorithm will extensively utilize the tools pre-
sented in Sec. V A. In particular, it will make use of the
matrix τh ∈ T2n, as defined in Definition 1. This matrix can be
systematically constructed from a subset h of a generating set
of the Pauli group, along with the diagonalizer transformation,
which can be built out from any matrix in T2n. Therefore, we
recommend that interested readers first familiarize themselves
with the formalism presented in Sec. V A.

Main idea. Let us briefly explain the underlying idea be-
hind the CC algorithm in a more technical fashion. First,
define g[n−m](Ut ) as the set of generators such that, to-
gether with g[n−m](Ut ), is able to generate all the Pauli
group P ([n− m]) on n− m qubits, i.e., P ([n− m]) =
〈g[n−m](Ut ) ∪ g[n−m](Ut )〉. Every operator V ∈ V [n−m]

Ut
mocks

the action of Ut on all σ ∈ g[n−m](Ut ), i.e., V †σV = U †
t σUt ;

the action of V on every other σ �∈ g[n−m](Ut ) is free and
it is constrained only by the commutation relations with
σ ∈ g[n−m](Ut ). This shows that the set V [n−m]

Ut
contains more

than one element. Thus, the algorithm needs first to search
the generating set g[n−m](Ut ) ∪ g[n−m](Ut ), and then write the
tableau corresponding to V ∈ V [n−m]

Ut
in such a generating

basis, cf. Sec. V A. Naively, the search for this generating set
is exponentially hard in n− m because, in general, one should

pick every Pauli operator P in P ([n− m]) and check whether
P ∈ G[n−m](Ut ) or not, i.e., one should check whether P is pre-
served by the action of Ut . In what follows, we describe how to
sample Pauli operators in a way that allows us to find the gen-
erating set g[n−m](Ut ) ∪ g[n−m](Ut ) in poly(n, 2t ) steps. Once
that g[n−m](Ut ) ∪ g[n−m](Ut ) is found, the algorithm learns the
Clifford-like action of Ut on every σ ∈ g[n−m](Ut ). The algo-
rithm thus generates one instance of V ∈ V [n−m]

Ut
uniformly

at random. Implementing the diagonalizer Dg[n−m] , defined in
Definition 3, on τg[n−m] [where g[n−m] is a short notation for
g[n−m](Ut )], defined in Definition 1, the algorithm builds the
Clifford operation D̂gn−m . In the case m = 0, it thus finds
U0 ≡ D̂g(Ut ) and U ′0 ≡ D̂†

g(Ut )V .
Sampling Pauli operators. Let us describe the sampling

method that allows us to find a generating set g[n−m](U − t ).
Let gk−1 ≡ {g1, . . . , gNk−1} ⊂ g[n−m](Ut ) be the set of Nk−1

generators of G[n−m](Ut ) already found by the algorithm
after k − 1 steps. Note that, in general, Nk−1 � 2(k − 1).
Consider the 2n× 2n matrix τgk−1 corresponding to the sub-
set of generators gk−1. Let Dgk−1 be the diagonalizer acting
on τgk−1 as [Dgk−1 (gk−1)]α = eα if [τgk−1 ]α ∈ gk−1, other-
wise [Dgk−1 (τgk−1 )]α = 0 (see Definition 3). Let D̂gk−1 be the
Clifford unitary operator associated with the diagonalizer
Dgk−1 . Define G̃k−1 := G[n−m](Ut )/ 〈gk−1〉 the quotient group
of G[n−m](Ut ) respect to the normal subgroup 〈gk−1〉. The
operator D̂gk−1 maps the group G̃k−1 to a subgroup of the
Pauli group P ([n− m− k + 1]) on n− m− k + 1 qubits,
i.e., D̂†

gk−1
G̃k−1D̂gk−1 ⊂ P ([n− m− k + 1]); this is because,

by construction [see Eq. (47)], the diagonalizer maps the
generators gk−1 in a subset of the local generators l of the Pauli
group on the first k − 1 qubits. Therefore, to find the gen-
erators of the Pauli group P ([n− m]) containing g[n−m](Ut ),
we sample a random Pauli operator on n− m − k + 1 qubits,
say Px, and then check whether D̂gk−1 PxD̂†

gk−1
belongs to

G[n−m](Ut ). In this way, we are sure that D̂gk−1 PxD̂†
gk−1
�∈

〈gk−1〉.
The diagonalizer thus allows us to extract independent

Pauli operators at every step, making the effort to find the
generators g[n−m](Ut ) exponentially hard in t , rather than in
n− m. To see this, let us compute the probability of finding
a Pauli operator belonging to G[n−m](Ut ) at the kth step. The
cardinality of the quotient group is

|G̃k−1(Ut )| = |G[n−m](Ut )|
| 〈gk−1〉 |

� 22n−2m−t

2Nk−1

� 22(n−m−k+1)−t . (57)

The first inequality follows from Lemma 4, and the second
inequality follows from the fact that | 〈gk−1〉 | � 4k−1. The
probability that the extracted Pauli operator belongs to G̃k−1

is therefore

Pr[D̂gk−1 PxD̂†
gk−1
∈ G̃k−1] = |G̃k−1| − 1

4n−k+1

� 2−t − 4−n+m+k−1, (58)
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TABLE I. Sketch of the subroutines used in the CC algorithm, see Appendix B for details.

Subroutine Input Output Time Complexity Description

Diagonalizer τh Dh, D̂h O(n2) It transforms the matrix τh to the partial identity,
see Eq. (46), saving the Clifford operator D̂h.

Constrained
random Clifford

τh, φh TU0 O(n3) It generate a tableau TU0 corresponding to the
Clifford U0 constrained by mapping some local
generators to the generators h. The remaining
local generators are mapped into random ones.

Learning a Pauli
string

U, P ∈ P Q ∈ P O(n2M ) It aims at learning U †PU using O(nM ) queries to
U . It learns a Pauli string Q regardless that P is
preserved by U . The algorithm fails with
probability O(n2−M ).

Verification and
removal

P, Q Yes or no O(25t ) It checks whether the learned Pauli operator Q via
the Learning a Pauli string subroutine is
accurate and, consequently, whether P is
preserved.

Phase check P, Q ≡ ±U †PU ±1 O(n3) It learns the phase of the adjoint action of U on a
given Pauli operator P using one single query
to U .

i.e., the total dimension of the set we want to pick an element
from (i.e., G̃k−1 \ 1l) divided by the dimension of the set we
are sampling Pauli operators from [i.e., P ([n− m− k + 1])].
Note that, the −1 is neglecting the identity. The (bound on
the) above probability becomes zero for 2k = 2n− 2m− t +
2; that is because the algorithm already found a maximum
number of generators [recall indeed that g[n−m](Ut ) � 2(n−
m)− t , see Lemma 4].

In summary using the above sampling method, the prob-
ability of extracting a valid Pauli operator is lower-bounded
by 3/2−(t+2) for every step and, sampling 2t+2/3× n number
of Pauli operators in P ([n− m − k + 1]) (given that k � n−
m− t/2), one has an overwhelming probability, i.e., �1−
exp(−n), to extract a Px such that D̂gk−1 PxD̂†

gk−1
∈ G[n−m](Ut ).

Subroutines. The upcoming algorithm will utilize several
subroutines, namely, diagonalizer, Constrained Random Clif-
ford, Learning a Pauli string, Verification and Removal and
Phase Check, which are described in the Appendix B. The
decision to present these subroutines in the Appendix is to
enhance the readability of the algorithm. Nonetheless, the
input, output, and time complexity are summarized in Table I
for clarity. The algorithm is shown below.

Input: n, m < n, Ut .

Output: g[n−m](Ut ), V ∈ V [n−m](Ut ), D̂g[n−m] .
Let T̃V a 2n× 2n Boolean matrix such that [T̃V ]α =
0 for any α = 1, . . . , 2n, φ = 0, g0 ≡ ∅, and D̂g0 ≡ 1l
and k = 1.

(I) While k � n− m, do:
(i) For M ′′4 times do:

4Note that, if the algorithm does not find a valid Px
D such that

D̂k−1Px
DD̂†

k−1 ∈ GD(Ut ) after 2t+2/3 n, we can say that the algorithm
found all the generators of GD(Ut ) with probability �1− exp(−n).

(a) Extract a random Pauli operators on
(n− m)− k + 1 qubits px ∈ P ([n− m− k +
1]) and define Px := 1l[m+k−1] ⊗ px.

(b) Use Learning a Pauli string subrou-
tine to learn the adjoint action of Ut on
D̂†

gk−1
PxD̂gk−1 . Denote the learned Pauli string

as Px(V ), and the corresponding encoding
string as (Px(V ))xz.

(c) Use Verification and Removal sub-
routine on Px, Px(V ) to check whether
D̂gk−1 Px

k D̂†
gk−1
∈ G[n−m](Ut ).

(d) If D̂gk−1 Px
k D̂†

gk−1
∈ G[n−m](Ut ) quit the

while-loop and go to step (iii).
(ii) Go to step (II).
(iii) Use the Phase Check subroutine to read the

phase φ2k−1 of D̂†
gk−1

Px
k D̂gk−1 .

(iv) Update:

[T̃V ]2k−1 
→ [T̃V ]2k−1 ⊕ (Px
k (V ))xz,

gk−1 
→ gk−1 ∪ D̂†
gk−1

Px
k D̂gk−1 ,

(φ)2k−1 
→ (φ)2k−1 ⊕ φ2k−1.

(v) While m < M ′′, do:
(a) Extract a random Pauli operator pz ∈

P ([n− m− k + 1]) such that {px, pz} = 0 de-
note Pz ≡ 1l[m+k−1] ⊗ pz, and do steps (b) and
(c) of the algorithm with Pz instead of Px.5

(b) if D̂gk−1 PzD̂†
gk−1
∈ G[n−m](Ut ), quit the

for-cycle and go to step (vii).6

5The probability of extraction an anticommuting Pauli operator
is 1/2.

6Let us compute the probability of success. There are two cases to
discuss: (i) either � Q ∈ GD(Ut ) such that {Q, D̂k−1Px

Dk
D̂†

k−1} = 0, or
(ii) it needs to be found. It is easy to be convinced that, in the second
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(vi) Go to step (ix).
(vii) Use the Phase Check subroutine to learn

the phase φ2k of Pz
k (Ut ).

(viii) Update:

[TV ]2k 
→ [TV ]2k ⊕ (Pz
k (V ))xz,

gk−1 
→ gk−1 ∪ D̂†
gk−1

PzD̂gk−1 ,

(φ)2k 
→ (φ)2k + φ2k .

(ix) Use the diagonalizer subroutine on gk−1,
and denote D̂gk−1 the Clifford circuit corresponding
to the diagonalizer Dgk−1 [cf. Eq. (46)].

(x) k → k + 1.
(II) Use the Constrained Random Clifford subrou-

tine on the tableau TV ≡ (T̃V |φ) to extract a random
constrained Clifford V . Define

g[n−m](Ut ) ≡ gk,

D̂g[n−m] (Ut ) ≡ D̂gk ,

V [n−m]
Ut

� V 
→ D̂†
g[n−m]

V. (59)

The above algorithm builds a random instance in V [n−m]
Ut

and finds the generating set g[n−m](Ut ) and the diagonalizer
Dgn−m . The algorithm runs in time O(n526t ). Specifically,
the time complexity is O(nM ′′(n2M + 25t )), while the query
complexity is O(nM ′′(nM + 25t )), where M is the number
of shot measurements for Learning a Pauli string subrou-
tine which fails with probability O(n2−M ). Thus, choosing
M ′′ = 1

3 2t+2n, and M = n, one has time complexity O(n526t ),
query complexity scaling as O(n426t ) and exponentially small
probability of failure O(poly(n)2−n), obtained by the union
bound.

D. Random Clifford decoder generation based on Clifford
completion algorithm

In this section, we show the quantum algorithm based on
CC capable of learning a Clifford decoder V for the informa-
tion recovery protocol by means of poly(n, 2t ) queries to Ut .

We want to remark once again that the CC algorithm
finds a Clifford decoder: we first construct the tableau TV

corresponding to the decoder V , and subsequently, we em-
ploy the distillation algorithm described in Ref. [77] to distill
the circuit in terms of CNOT, S, H. Recall the definition
of the group GD(Ut ), given in Sec. IV C, GD(Ut ) := {PD ∈
P (D) |U †

t PDUt ∈ P}, i.e., the set of all the Pauli operators (de-
fined on D) sent by the adjoint action of Ut in Pauli operators
P . We want the decoder V to mock the action of Ut on all
σ ∈ gD(Ut ), i.e., V †σV = U †

t σUt for any σ ∈ gD(Ut ); for any
other σ �∈ gD(Ut ) we choose the action of V at random. As in
Eq. (V C), we define VD

Ut
(see Theorem 1) as

VD
Ut
= {

V ∈ C(n)|V †PV = U †
t PUt , ∀ P ∈ GD(Ut )

}
. (60)

case, if such a Pauli operator exists then the probability to be found
is again lower-bounded by 2−t , and choosing M ′′ = 2t+2/3 n one has
1− exp(−4/3n) probability to success after M ′′ steps.

Since GD(Ut ) ⊂ G(Ut ), we clearly have VUt ⊂ VD
Ut

. We can
run the CC-algorithm, presented in Sec. VC, and learn a
decoder V ∈ VD

Ut
for m = |C|. Once again, the reasons why we

look for a decoder in VD
Ut

, instead of one in VUt , is twofold:
(1) The entire CC algorithm can be run by an observer that

has access to the subsystem D only, thus making the whole CC
algorithm suitable for the information unscrambling problem.

(2) The set VD
Ut

is way larger than VUt , having 2|C| + t
unconstrained rows instead of t . The CC algorithm draws
a decoder V ∈ VD

Ut
at random, making the probability of

learning P (V ) in Eq. (4) exponentially close to one in the
size of C.

E. Numerics

In this section, we perform numerical tests on the CC
algorithm to probe the accuracy of the scalings we derived in
Sec. V C. Due to the computational cost of the CC algorithm
on a classical computer, we do not specifically test the scaling
with the number of qubits. Instead, we focus on providing the
scaling in terms of t , that is the number of non-Clifford gates
used within a Clifford circuit. For the scrambler Ut , we utilize
a T -depth 1 doped Clifford circuit model, which consists
of a non-Clifford unitary acting on t/2 qubits, sandwiched
between two deep Clifford circuits. We chose this specific
architecture for the sake of numerical simulation convenience.
However, it is important to note that, according to Theorem 2,
such architecture is applicable in an (almost) general sense
for t-doped Clifford circuits. The non-Clifford unitary circuit
consists of t T gates and is constructed as

∏t/2
i=1 TiHiTi for

even t while (
∏(t−1)/2

i=1 TiHiTi )Tt+1
2

for odd t , where Ti, Hi

are Hadamard and T gates acting on the ith qubit. On the
other hand, the deep Clifford circuits are randomly generated.
The simulations were executed on a standard laptop, thus
we set the values of n = 8 and |D| = |C| = 4, while |A| = 1
and |B| = 7. For each value of t = 0, 1, . . . , 6, we collect
Nsample = 100 distinct samples of scramblers Ut .

In Fig. 2(a), we plot the average time taken by the CC
algorithm to find a Clifford decoder V for the scrambler Ut .
As shown in the inset, the estimated average time complexity
is much more favorable with respect to the algorithm’s worst
case prediction (see Sec. VC), which is O(26t ). In Fig. 2(b),
we plot the averaged fidelity FV (Ut ) over multiple realizations
of the scrambler Ut . The inset showcases the failure probabil-
ity of finding perfect decoders that align perfectly with the
lower bound stated in Eq. (4), i.e., 1−P (V ) � 2t−8.

VI. CONCLUSIONS

The possibility of learning relevant features of complex
quantum dynamics from its observable behavior is of crucial
importance for the understanding of quantum many-body sys-
tems away from equilibrium, loss of coherence and control
in quantum devices, quantum chaos, criticality, and black-
hole physics, and the general understanding of what quantum
complexity is [38]. In particular, scrambling and information
retrieval in quantum circuits pose a set of challenging ques-
tions in this context [4,6,35,84–94], the most relevant of which
is to what extent one can learn how to unscramble information
having no previous knowledge of the scrambling dynamics
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FIG. 2. The results of the CC algorithm for decoding scramblers
Ut are depicted in this plot. The parameters used are n = 8, |D| =
|C| = 4, |A| = 1, and |B| = 7. For each value of t = 0, 1, . . . , 6, we
collected Nsample = 100 different samples of scramblers Ut . Panel
(a) illustrates the average number of steps S over Nsample taken by
the CC algorithm to find a Clifford decoder V for each scrambler
Ut . The legend reveals that the average number of steps S = O(4t ) is
much more favorable compared with the worst case time complexity
estimated as O(26t ), see Sec. VC. Panel (b) displays the averaged
fidelity FV (Ut ) over Nsample realizations of the scrambler Ut . The
inset highlights the failure probability, 1−P (V ), of finding perfect
decoders that perfectly match the lower bound stated in Eq. (4),
where 1−P (V ) � 2t−8.

and limited access (e.g., Hawking radiation) to the system.
Unscrambling is achieved by means of a unitary operator
called the decoder. One asks: is there always a decoder? Can it
be found, and under which conditions? Is the decoder in itself
efficient? The general answer to the existence of a decoder
was given in Ref. [23]. The decoder exists provided the infor-
mation is properly scrambled and one has sufficient access to
the system. A suitable decoder requires complete knowledge
of the scrambling dynamics. It is important to highlight that,
even with this knowledge, this decoder is a complex quantum
unitary operator and cannot in itself be efficiently simulated
classically. This is hardly surprising: complex quantum dy-
namics must not be unscrambled classically, after all.

In this work, we explore the very ambitious problem of
learning an efficient decoder. This means that, at the same

time, we want to build the decoder by limited access to the
system, without any previous knowledge of the internal dy-
namics, and have a decoder that is efficiently represented on
a classical computer. One may think that this might be only
possible if the scrambling dynamics is, in itself, classically
simulable, for instance, the dynamics described by a random
Clifford circuit: in this case, we indeed show an algorithm
(CC) that can learn a perfect and efficient decoder with only
polynomial resources. As the Clifford circuit is polluted by t
non-Clifford gates, the cost of simulation grows exponentially
in t . As t reaches a scaling with the number of qubits n, there is
no efficient simulation. At this point, one would think that the
system is chaotic, and one needs an exponential number of re-
sources on a classical computer to perform the decoding even
if the decoder is given [24]. The surprising result presented
here is that the CC algorithm, in spite of requiring exponential
resources to build the decoder, does build a decoder that is
itself classical: it is a Clifford unitary that can be efficiently
encoded in a classical computer. We see then that we are in
a gray area where simulation and finding the decoder is hard,
while the decoding itself is efficiently represented even on a
classical computer and still achieves perfect recovery. Only
when the doping crosses over to t � 2n, the decoder loses its
capability of retrieving information. At that point, there is real
quantum chaos [29,39]: learning is hard, and what one has
learned is hard to keep in a classical memory.

Why is this possible? How can a classical decoder be
so good at retrieving quantum information that has been
scrambled by a unitary dynamic that cannot be represented
classically? Is this a contradiction in terms? First of all, this
is not a contradiction. We do not learn the full scrambling
dynamics. The gate fidelity between the decoder and the
scrambler is strictly less than one. Indeed, one cannot turn a
complex quantum unitary into a classical one. However, what
we learn are the relevant features of the dynamics, defined
in terms of being able to decode the scrambled information.
And we find that, to some extent, these can be represented
in a classical operator even for very complex (but not fully
chaotic) quantum dynamics.

Again, how this is possible requires an explanation. The
decoder might be acting like a quantum correction code, en-
coding away the non-Cliffordness in the part of the system
that is inaccessible and this process is found to be possible
until the onset of full-fledged quantum chaos. If this is true,
then the amount of non-Cliffordness (i.e., magic [80,95–103])
shoved in the inaccessible part by the decoder must increase
after the decoding.

Finally, one can ask: can one improve access to resources
needed to find the decoder in the low doping case, by looking
for decoders that are not Clifford? These operators must have,
after all, better global gate fidelity. We believe the answer is
no. Looking outside the Clifford group will pollute the search
and make the search more complex, as it has been shown in
the case of disentangling algorithms [40–42,48,49]. This kind
of effect is also at play in the appearance of barren plateaus in
VQAs even in the case of Clifford circuits as one tries to learn
Clifford operations by using non-Clifford resources [55].

Quantum complexity is thus not necessarily featured in the
number of elementary gates needed to decompose a unitary
[38], but in the hardness of search problems, i.e., in the size
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of neighborhoods of target quantum states and processes, a
point of view that is more reminiscent of Boltzmann’s entropy
[104]. All the above questions beg for an answer, and we
believe they will be the source of very exciting future works.
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APPENDIX A: NOTATION

In the following, we list the notations used throughout the
paper:

(1) n: total number of qubits.
(2) H: Hilbert space of n qubits.
(3) P: Pauli group on n qubits.
(4) P := P/{±1,±i}, is the group of Pauli strings, also

referred to, with license, as just Pauli group. Note that P �= P .
(5) C(n): Clifford group on n qubits.
(6) Ut : Clifford unitary operator doped with a number t of

single qubit non-Clifford gates.
(7) Ct set of Clifford circuits doped with t single qubit non-

Clifford gates.
(8) O(U ) ≡ U †OU , where O is a operator on n qubits and

U a unitary operator on n qubits.
(9) |A|: number of qubits in the subsystem A.
(10) A, B,C, D: subsystem of qubits such that |A| + |B| =

|C| + |D|.
(11) [m]: subsystem of m qubits.
(12) u[m]: local unitary acting on a subsystem [m] of m

qubits.
(13) P ([m]): a local Pauli group on a region [m] of m

qubits.
(14) 〈 f (PA)〉PA

: average over the local Pauli group P(A).
(15) Let G be a group. Then if G ⊂ G is a generating set,

we write G = 〈G〉.
(16) g ⊂ P denotes a generating set of the Pauli group P .
(17) l ≡ {σ x

i , σ z
i }ni=1 is the local generating set of P .

(18) Let h ⊂ g. Then τh is the 2n× 2n Boolean matrix
defined in Definition 1.

(19) Let h ⊂ g. Then Dh is the diagonalizer acting on h

defined in Definition 3.
(20) D̂h: Clifford operator corresponding to the diagonal-

izer Dh.

APPENDIX B: SUBROUTINES

In this section, we present the subroutines used throughout
the paper.

(1) Matrix initializer
(2) Sweeping
(3) Random Clifford Sampling
(4) Diagonalizer
(5) Constrained random Clifford
(6) Learning a Pauli string
(7) Verification and Removal
(8) Phase check
Note that the algorithms for the subroutines Sweeping and

Random Clifford Sampling have been introduced in Ref. [105].

1. Matrix initializer

This section is devoted to the subroutine required to ini-
tialize the matrix τh given a subset of generators h Below, we
give an algorithm that builds the matrix τh from the subset h.

Input: h
Output: τh
(1) Initialize τ ′

h
, τh as two 2n× 2n matrices filled by

zeros.
(2) let h = card(h).
(3) for i ∈ (0, h− 1) do:

(a) [τ ′
h
]2i+1 
→ [τ ′

h
]2i+1 ⊕ (h[1])xz.

(b) h 
→ h \ {h[1]}.
(c) for j ∈ (0, card(h)− 1) do:

(i) if ω̃([τh]2i+1, (h[ j + 1])xz) = 1:
(A) [τ ′

h
]2i+2 
→ [τ ′

h
]2i+2 ⊕ (h[ j + 1])xz.

(B) h 
→ h \ {h[ j + 1]}.
(4) k = 0.
(5) for i ∈ (0, h− 1) do:

(a) if [τ ′
h
]2i+2 �= 0:

(i) [τh]2k+1 
→ [τh]2k+1 ⊕ [τ ′
h
]2i+1.

(ii) [τh]2k+2 
→ [τh]2k+2 ⊕ [τ ′
h
]2i+2.

(iii) k 
→ k + 1.
(6) for i ∈ (0, h− 1) do:

(a) if [τ ′
h
]2i+1 �= 0 and [τ ′

h
]2i+2 = 0:

(i) [τh]2k+1 
→ [τh]2k+1 ⊕ [τ ′
h
]2i+1.

(ii) k 
→ k + 1.

Let us briefly explain the content of the algorithm. The
first for cycle fills the matrix with generators. Each generator
is followed either by an anticommuting generator or by 0 if
there is no anticommuting generator in h. The other two for
cycles are used to order the matrix according to the convention
outlined in Sec. V A: paired generators are placed first, then
followed by unpaired generators, and then by zeros. The time
complexity of the matrix initializer is O(nh)

2. Sweeping

The following algorithm is called as a subroutine for both
the Diagonalizer and Random Clifford Sampling subroutines.
The sweeping is a symplectic transformation, denoted Sw,
whose task is to manipulate two rows of 2k bits (odd and even)
at a time and map them to the 2k-bit string encoding σ x

1 /σ z
1 ,
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FIG. 3. Sketch of the Sweeping subroutine summarized in five steps.

i.e., (
1 0 0 1 . . . 0 1
0 1 1 0 . . . 1 1

)
Sw−→

(
1 0 0 0 . . . 0 0
0 1 0 0 . . . 0 0

)
, (B1)

through symplectic transformations (equivalent to elementary
Clifford gates). A sketch of the algorithm as follows: Denote
by P1, P2 the Pauli operators corresponding to the odd and
even rows, respectively. First, it maps P1 in a Pauli string of
σ x. Such mapping can be realized by the repetitive application
of Hadamard and phase gates. Then, it cancels the redundant
σ x, leaving just the σ x on the most significant qubit by using
CNOTs and results in P1 
→ P̃1 = σ x

1 . After that, the task of the
algorithm is to map P2 to σ z. By applying the Hadamard gate
on the first qubit, it transforms P̃1 to σ z

1 . This operation allows
us to map P2 to σ x

1 following the same procedure described
above for P1. The subsequent application of a Hadamard gate
on the first qubit restores the right order; in this way, one has
the encoding of σ x

1 on the odd row and the one of σ z
1 on the

even row (see Fig. 3 for a sketch of the Sweeping subroutine).
The algorithm proceeds as follows:

Input: k, P1, P2 ∈ P | {P1, P2} = 0

Output: σ x
1 , σ z

1

(1) Look at the odd row: if zi = 0, do nothing; if instead
zi = 1 and xi = 0 apply a Hadamard gate H to the circuit on
ith qubit, otherwise if zi = 1 and xi = 1 apply a phase gate S
to the circuit on the ith qubit.

(2) Search for the xi = 1 and build a sorted list of indices
J = {i|xi = 1} then apply CNOT gates on the different indices
of J as follows:

(a) Pair the indices of J from the less significant
qubit to the most significant qubits, then apply in parallel
CNOT(Ji,Ji+1) on the different pairs.

(b) Update the set J removing the last element of the
pairs from it.

(c) Repeat step 2b ntil only the most significant qubit
index is contained in the set J .
(3) Apply a SWAP between the ith location and the first

location.

(4) Apply a Hadamard gate on the first qubit.
(5) Repeat the steps from (i) to (iii) on the even row.
(6) Apply a Hadamard gate on the first qubit.

The time complexity of the sweeping is O(n2) [105].

3. Random Clifford sampling

The task of the algorithm is to build a random Clifford
operator (following Refs. [77,105]). As shown in Sec. V A, a
tableau TU0 can efficiently encode a Clifford operator, and thus
sampling TU0 is equivalent to sampling a Clifford operator.
The algorithm to sample a tableau TU0 works on two rows
per time, namely, the ith and the i + 1st row, and proceeds
as follows:

Input: n

Output: TU0

Let T̃U0 be a two 2n× 2n Boolean matrix such that [T̃V ]α =
0 for any α = 1, . . . , 2n, φU0

= 0. While j � n:
(i) Extract a random Pauli operators acting on n− j + 1

qubits Px
n− j+1 ∈ P ([n− j + 1]).

(ii) Extract a random Pauli operators acting n− j + 1
qubits Pz

n− j+1 ∈ P ([n− j + 1]), such that {Px
n− j+1, Pz

n− j+1} =
0.

(iii) Update:

[T̃U0 ]2 j−1 
→ [T̃U0 ]2 j−1 ⊕
(
1l j−1 ⊗ Px

n− j+1

)
xz,

[T̃U0 ]2 j 
→ [T̃U0 ]2 j ⊕
(
1l j−1 ⊗ Pz

n− j+1

)
xz. (B2)

(iv) Perform a Sweeping Sw j on the rows [T̃U0 ]2 j−1 and
[T̃U0 ]2 j−1.

(v) Sample [φU0
]2 j−1 ∈ {0, 1}.

(vi) Sample [φU0
]2 j ∈ {0, 1}.

The Tableau TU0 is the 2n× 2n+ 1 matrix obtained as

TU0 = ((SwnSwn−1 · · · Sw1)−1(I2n)|φU0
), (B3)

where I2n is the identity 2n× 2n matrix. Sw(A) denotes the
action of the symplectic transformations Sw j for j = 1, . . . , n
on a symplectic matrix A. The algorithm has a time com-
plexity of O(n2). To synthesize a Clifford circuit from the
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random tableau built out from the algorithm, one can employ
the algorithm described in Ref. [77] with time complexity of
O(n3).

Let us comment on the above algorithm. In steps (i) and
(ii), we perform the sampling of an anticommuting pair of
Pauli operators. In step (i), the task is to sample a noniden-
tity Pauli operator whose sampling probability is equal to
(1− 4−k ). In step (ii), the task is to sample a Pauli operator
anticommuting with the one obtained from step (i). The prob-
ability of such sampling is equal to 1/2 since a k-qubit Pauli
operator anticommutes with 4k/2 Pauli operators. Thus, the
probability to sample a pair of anticommuting Pauli operators
P1, P2 ∈ P ([k]), having nontrivial support on k qubits reads

Pr(P1, P2 | {P1, P2} = 0) = (1− 4−k )

2
� 3

8
. (B4)

The time complexity of a single iteration of this subroutine is
O(n). The reason why the algorithm works on 2n− 2 j bits
each jth step of the while loop is due to the constraints given
by the commutation relations between the Pauli operators of
a tableau (cf. Sec. V A). In more detail, at the j + 1st step
of the while loop, the algorithm has already sampled j pairs
of generators. Via the sweeping transformation the algorithm
transforms the j pairs of generators to {σ x

i , σ z
i } ji=1. A new pair

of anticommuting generators must commute with the already
found j pairs of generators. The only way to sample a pair
of generators, that commutes with {σ x

i , σ z
i } ji=1, is that it acts

identically on the first j qubits, which in turn implies that the
first 2 j bits are zeros.

4. Diagonalizer

This section describes the subroutine that maps an incom-
plete tableau to a partial identity, i.e., the diagonalizer Dh(·),
where h ⊂ g a generating set of P , introduced in Sec. V A.
Let τh be the matrix corresponding to the subset h, as the one
introduced in Eq. (44):

τh ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(g1)xz
(g2)xz

...

(gi )xz
0
...

(gh)xz
0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B5)

The algorithm can then be written in the following way:

Input: n, τh

Output: Dh, D̂h

(i) For each j = 1, . . . , n, do:
(a) Perform the Sweeping of the pair ([τh]2 j−1, [τh]2 j ).

(ii) For each j = 1, . . . , n, do:
(a) Check all the elements corresponding to the

columns 2 j − 1, 2 j, and the rows 2 j < r < 2n.
(b) Locate the extra 1 bits, and store the row index r

and the column index c. If c is even, apply a Hadamard

gate on the jth qubit, while if r is even, apply a Hadamard
gate on the r/2th qubit.

(c) If r is even, apply CNOT(r/2, j), else apply
CNOT((r − 1)/2, j).

(d) In the end, if c is even, apply a Hadamard gate on
the jth qubit, while if r is even, apply a Hadamard gate on
the r/2th qubit.

The algorithm after step (i) maps the matrix τh in a new
matrix τ̃h, that reads

τ̃h :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0 . . . 0 0 . . . 0 0
0 1 . . . 0 0 . . . 0 0 . . . 0 0
...

...
. . .

...
...

...
...

...
...

...
...

0 0 . . . 1 0 . . . 0 0 . . . 0 0
0 0 . . . 0 0 . . . 0 0 . . . 0 0
...

...
...

...
...

. . .
...

...
...

...
...

0 0 . . . 0 z1 . . . 1 0 . . . 0 0
0 0 . . . 0 0 . . . 0 0 . . . 0 0
...

...
...

...
...

...
...

...
. . .

...
...

0 0 . . . 0 0 . . . 0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(B6)

As also shown in Eq. (B6), the action of the sweeping on
two anticommuting rows cancel all the 1 bits in the most
significant columns. Instead, when the sweeping is performed
on unpaired rows, the cancellation of 1 bits is partial since it is
not constrained by the commutation or anticommutation rela-
tions. Step (ii) addresses this issue: it locates all the spurious
σ zs in the string and converts them to σ x through the ac-
tion of Hadamard gates [H(σ z )H = σ x]. Then it removes the
redundant σ x through the action of CNOT gates [CNOT(σ x ⊗
σ x )CNOT = σ x ⊗ 1l[1]]. In the end, a layer of Hadamard gates
(equal to the one applied before) is applied to restore the most
significant σ z. After the steps (ii) the matrix τ̃h is then mapped
in

[Dh(τh)]α =
{

eα, if [τh]α = (gi )xz for some gi ∈ h

0, if [τh]α = 0.

(B7)

Note that, at the end of the algorithm, both the diagonalizer, as
a 2n× 2n symplectic matrix, and the corresponding Clifford
circuit is revealed. The time complexity of the diagonalizer
subroutine is O(n2) due to the time complexities of the two
main steps: step (i) and (ii). Both steps can be shown to
possess time complexity O(n2).

5. Constrained random Clifford completion

This section describes the novel algorithm to generate a
random Clifford when some rows of the tableau are already
fixed. Such random Clifford is constrained because its adjoint
action on some Pauli operators is fixed by the given rows of
the tableau. As explained in Sec. V A, the tableau is organized
as a list of 2n-bit strings (ignoring the last phase-bit) describ-
ing the map σ 
→ U †

0 σU0 for σ ∈ {σ x
1 , σ z

1 , . . . , σ x
n , σ z

n }. The
fixed rows of the given incomplete tableau can be of two
types: (i) paired, i.e., the tableau contains the information
about the map σ x

j 
→ U †
0 σ x

j U0 and σ z
j 
→ U †

0 σ z
j U0 for some

j; or, unpaired, i.e., the tableau just contains the information
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about either σ x
j 
→ U †

0 σ x
j U0 or σ z

j 
→ U †
0 σ z

j U0 for some j.
Therefore, without loss of generality, one can consider an
incomplete tableau τh as the one introduced in Definition 3,
and a phase vector φh = (φ1, φ2, . . . , φi, 0, . . . , φh, 0 . . . 0).
The matrix τh will be written as

τh =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(g1)xz
(g2)xz

...

(gi )xz
0
...

(gh)xz
0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎝ P = Paired rows
N = Unpaired rows

02(n−nP−nN )

⎞⎠, (B8)

where P is a matrix of dimension 2nP × 2n that encodes the
set of anticommuting pairs of Pauli operators, N is a matrix
of dimension 2nN × 2n that encodes the set of unpaired Pauli
operators; 02(n−nP−nN ) is a matrix of dimension 2(n− nP −
nN )× 2n that encodes the set of unconstrained rows. Note that
the total number of constrained rows is 2nP + nN . The task is
to fill the missing rows uniformly at random and implement
one of the corresponding Clifford operators. The algorithm
proceeds as follows:

Input: n, τh,φh

Output: TU0

(i) For i = 1, . . . , np do:
(a) Perform the Sweeping on the pair ([τh]2i−1, [τh]2i ).

(ii) Apply a random symplectic transformations Sym on
the last n− nP qubits. Denote with τ̃h the tableau after the
action of Sym.

(iii) For i = np + 1, . . . , nN + nP do:
(a) Perform the Sweeping on the pair ([̃τh]2i−1, [̃τh]2i ).

(iv) For j = nP + 1, . . . , nN + nP:
(a) Check all the elements corresponding to the

columns 2 j − 1, 2 j, and the rows 2 j < r < 2(nP + nN ).
(b) Locate the extra 1 bits, and store the row index r

and the column index c. If c is even, apply a Hadamard
gate on the jth qubit, while if r is even, apply a Hadamard
gate on the r/2th qubit.

(c) If r is even, apply CNOT(r/2, j), else apply
CNOT((r − 1)/2, j).

(d) In the end, if c is even, apply a Hadamard gate on
the jth qubit, while if r is even, apply a Hadamard gate on
the r/2th qubit.

(e) Sample [φ]2 j ∈ {0, 1}.
(v) Fill the incomplete rows by completing the identity.
(vi) Fill the last 2(n− nP − nN ) columns of 02(n−nP−nN )

with a random tableau (see Random Clifford Sampling).
(vii) for j = nN + nP, . . . , n:

(a) Sample [φh]2 j−1 ∈ {0, 1}.
(b) Sample [φh]2 j ∈ {0, 1}.

The final tableau is then given by

TU0 = (τh|φh) = (
(S̃w2Sw2SymSw1)−1TU (1)

0
(I2n)|φh

)
, (B9)

where Sw1 denotes the action of step (i), Sym the action of
step (ii), Sw2 and S̃w2 denote respectively the action of step
(iii) and (iv), and TU (1)

0
labels instead the random tableau gen-

erated in step (vi). At the end of the subroutine, a constrained
random Clifford has been generated, where the randomness
comes from two elements: the application of the random
Clifford USym in step (ii)(a) and the generation of a random
Clifford U (1)

0 on n− (nP + nN ) qubits.
The algorithm runs in a time O(n3). The time complexity

of step (i) is O(n2
P ), due to the time complexity of the Sweep-

ing [105]. Step (ii) has time complexity O((n− nP )3). Step
(iii) has time complexity O((nN )2). Step (v), corresponding
to the generation or a random tableau, has time complexity
O((n− nP − nN )2). While the last steps have time complexity
O(n). Then, one can synthesize the Clifford operator from the
tableau in terms of CNOT, H, S with an overhead of O(n3) steps
(see Ref. [77]). In the following, it will be discussed in more
detail the action of every step on the incomplete tableau. Step
(i) being the iterated action of the Sweeping subroutine on the
first nP pair of rows, maps P to I2nP (the 2nP × 2nP identity
matrix ), so step (i) acts on the tableau as

τh
Sw1−−→ Sw1(τh) ≡

⎛⎝I2nP 0
0 NSw1

0 W

⎞⎠, (B10)

where NSw1 denotes the image of the matrix N through the
action of the sweeping Sw1. The unknown part 02(n−nP−nN ) is
untouched by any operation, being filled by zeros. The iterated
action of the sweeping, being symplectic, preserves the com-
mutation relations between the rows, and thus erases all the 1
bits in the most significant qubit columns, which explains the
zeros below I2nP . In step (ii) to avoid the introduction of bias
it is first applied a symplectic transformation Sym on the last
2(n− nP ) bits of the tableau τh. The resulting action is

Sw1(R)
Sym−−→ SymSw1(R) ≡

⎛⎝InP 0
0 NSymSw1

0 02(n−nP−nN )

⎞⎠, (B11)

where NSymSw1 denotes the action of Sym on NSw1 . Step (iii),
denoted with Sw2, corresponds to the action of an iterated
sweeping on NSymSw1 . Looking only at the matrix NSymSw1 , one
obtains

NSymSw1

Sw2−−→ NSw2SymSw1 ≡

⎛⎜⎜⎜⎜⎝
1 0 0 0 . . . 0
− − − − . . . −
0 z1 1 0 . . . 0
− − − − . . . −
...

...
...

...
...

...

⎞⎟⎟⎟⎟⎠.

(B12)

Note that the iterated sweeping Sw2, contrary to the previous
cases, is unable to remove all the 1 bits in the most significant
columns. This degree of freedom is manifest in Eq. (B12)
with the free z1 bit: indeed, both 1l[1] ⊗ σ x, and σ z ⊗ σ x do
commute with σ x ⊗ 1l[1]. The action of step (iv), labeled with
S̃w2, is necessary to address this issue. S̃w2 is a symplectic
transformation that can be built from a Clifford circuit. The
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circuit, described in step (iv), is made by a layer of Hadamard
gates, a layer of CNOT gates, and another layer of Hadamard
gates. The first layer is necessary to convert σ z into a σ x, the
second layer is required to remove the redundant σ x, and the
last one to restore the σ z. As a result the matrix NSw2SymS1 is
then mapped in

NSw2SymS1

S̃w2−−→NS̃w2Sw2SymSw1

≡

⎛⎜⎜⎜⎜⎝
1 0 0 0 . . . 0
− − − − . . . −
0 0 1 0 . . . 0
− − − − . . . −
...

...
...

...
...

...

⎞⎟⎟⎟⎟⎠. (B13)

In step (v) we complete NSw2SymS1 with 1 bits to be the identity
matrix. In step (vi), the tableau is completed by the addition
of a random tableau TU (1)

0
. The resulting incomplete tableau is

equal to

τh S̃w2Sw2SymSw1

Random Clifford sampling−−−−−−−−−−−−−→
⎛⎝InP 0 0

0 InN 0
0 0 TU (1)

0

⎞⎠.

(B14)

The final steps sample the phases of the constrained Clifford
operator. At the end we obtain

TU0 = (τh|φ) = (
(S̃w2Sw2SymSw1)−1TU (1)

0
(I2n)|φ)

. (B15)

6. Learning a Pauli string

In this section, we describe the subroutine able to learn the
adjoint action of a unitary operator U on a given Pauli string,
say P. We assume that U †PU ∈ P . Note that the following
subroutine works also in the case U †PU �∈ P and returns
still a Pauli string by construction that, of course, will not
correspond to the correct operator resulting from the adjoint
action of U on P. We want to stress that the strategy of the
algorithm presented in Sec. VC is to pretend that U †PU ∈ P
for all P ∈ P [n− m] and then check the correct learning by
Verification and Removal subroutine.

Input: n,U, P ∈ P

Output:

U †PU ∈ P , if U †PU ∈ P
P � Q �= U †PU, else.

For each j = 1, . . . , n, do:
(i) Prepare the following states, defined on two

copies of H: ∣∣ψ (0)
j

〉
:= |EPR j〉 ⊗ |0〉⊗2 ,

|ψ (+)
j 〉 := |EPR j〉 ⊗ |+〉⊗2 , (B16)

where |EPR j〉 = 2(n−1)/2 ∑
k �= j |kk〉 is a EPR pair but

on the jth qubit.
(ii) Evolve each branch pair with the scrambler U ,

i.e., |ψ (0,+)
j (U )〉 = U ⊗U |ψ (0,+)

j 〉.
(iii) Measure M times the operator P⊗2 on

both |ψ (0,+)
j (U )〉, collecting a string of 2M bits

FIG. 4. Pictorial representation of Learning a Pauli string sub-
routine. The algorithm works with the quantum circuit sketched
above consisting in 4 main steps: preparation of the Bell state via
|+〉 states and CNOTs; application of two copies of the scrambler U0; a
rotation RP conditioned on the measurement of the expectation value
of a given Pauli operator P, e.g., P = X ⊗ Z ⊗ Y ⊗ 1l⊗ · · · ⊗ Z
then RP = H ⊗ 1l⊗ HS ⊗ 1l⊗ · · · ⊗ 1l. Finally, a measurement in
the computational basis.

{σ (0)
1 , . . . , σ

(0)
M , σ

(+)
1 , . . . , σ

(+)
M }. If σ

(0)
1 = . . . = σ

(0)
M

assign s(0)
j = 1 to the binary variable s(0)

j , otherwise

assign s(0)
j = 0. Analogously for s(+)

j .

(a) if {s(0)
j , s(+)

j } = {1, 1}, then the jth compo-
nent of U †σU is the identity.

(b) if {s(0)
j , s(+)

j } = {1, 0} is the Pauli matrix σ z.

(c) if {s(0)
j , s(+)

j } = {0, 1} is the Pauli matrix σ x.

(d) if {s(0)
j , s(+)

j } = {0, 0} is the Pauli matrix σ y.

The above algorithm requires O(nM ) queries to the unitary
U , runs in a time O(n2M ), and reveals the Pauli string image
of the adjoint action of U on P. We are interested in estimating
the failure probability only for P ∈ G(Ut ). Thus, if P ∈ G(Ut ),
then U †

t PUt ∈ P and we can easily estimate the probability of
failure of the above algorithm. Indeed, the probability to fail
the learning of P is 2n× 2−M , indeed the failure probability
is given by the probability that an unbiased coin gives tail
for M tosses in a row, i.e., 2−M . See Fig. 4 for a pictorial
representation of the above algorithm.

7. Verification and removal

In this section, we describe the algorithm to verify whether
the Learning a Pauli string subroutine worked correctly. De-
note with P the input and Q the output of Learning a Pauli
string respectively, and proceed as follows:
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Input: n, P, Q ∈ P ,Ut

Output: yes or no

(i) Construct a Bell pair |EPR〉 between two copies of H.
(ii) Evolve one branch with Ut and obtain |Ut 〉 ≡ 1l⊗

Ut |EPR〉.
(iii) Measure the expectation value 〈Ut |Q⊗ P|Ut 〉 up to an

error ε � 2−2t .
(iv) If 〈Ut |Q⊗ P|Ut 〉 = ±1, then output yes; otherwise

output no.

The above discrimination works because

〈Ut |Q⊗ P|Ut 〉 = ±1 iff U †
t PUt = ±Q. (B17)

The above algorithm requires O(ε−2) queries to Ut , and runs
in a time O(ε−2). The key insight here is that since Ut is a
t-doped Clifford circuit, the expectation value 〈Ut |Q⊗ P|Ut 〉
takes discrete values. In other words, there exists a minimal
resolution δt , defined as the minimum difference between
two consecutive values of 〈Ut |Q⊗ P|Ut 〉, denoted as δt ≡
min | 〈Ut |Q⊗ P|Ut 〉 − 〈Ut |Q′ ⊗ P′|Ut 〉 |. Thus, given ε such
that ε � δt , the learner can determine the expectation value
〈Ut |Q⊗ P|Ut 〉 exactly. In Appendix D, we present the finite
resolution Lemma 7, for which we bound δt � 2−bt , where
b � 2.27. Additionally, we expect that the average case sce-
nario will yield even more favorable results as our numerics
in Sec. V E demonstrate. We therefore arrive at the conclusion
that, in the worst case scenario, by selecting b < 2.5, it is
possible to determine whether P ∈ G(Ut ), meaning whether P
is a preserved Pauli string, with O(25t ) queries to the t-doped
Clifford circuit Ut .

8. Phase check

In this section, we introduce the subroutine to learn the
phase of the Pauli string, associated with the adjoint ac-
tion U †PU . Let be |epr〉+ ≡ 1√

2
(|00〉 + |11〉) and |epr〉− ≡

1√
2
(|00〉 − |11〉). The action of 1l2, σ x⊗2 or σ z⊗2 on |epr〉+

returns |epr〉+; similarly the action of σ y⊗2 on |epr〉− returns
|epr〉−. Let P be the Pauli string of which one wants to learn
the phase s ∈ {0, 1} of through the action of a unitary U . In
the algorithm, it is assumed that P(U ) ≡ U †PU ∈ P .

Input: n, P(U ) ≡ U †PU

Output: s ∈ {0, 1}

(i) Use the Constrained random Clifford subroutine to
build a Clifford U0 such that U †

0 PU0 = ±P(U ).
(ii) Read each element of the Pauli string U0PU †

0 and build
the n-fold state |s〉, constructed as a tensor product of |epr〉+
and |epr〉− in the following way: if the ith element of the Pauli
string is 1l[1], σ

x or σ z, then the ith element of |s〉 is |epr〉+,
otherwise the ith element of |s〉 is |epr〉−.

(iii) Evolve |s〉 with U ⊗V , and let s be the result of a
one-shot measurement of the operator P⊗2. If s = 1, then the
phase is +1; conversely, if s = −1 the phase is −1.

The algorithm needs one query to U , and runs in a
time O(n3).

APPENDIX C: PROOF OF THEOREM 1

To prove Theorem 1, we first enunciate and prove a series
of lemmas. Afterward, the proof of the theorem will descend
in a straightforward fashion.

Lemma 1. [Eq. (23)] Let Ut be a t-doped Clifford circuit,
the fidelity in Eq. (17) can be written as

FV(Ut ) = 1+ R

d2
A�GD (Ut )+ R′

, (C1)

where

R := 1

d|GD(Ut )|
∑

PD∈GD

tr(PD(Ut )PD(V )),

R′ := 1

d|GD(Ut )|
∑

PD∈GD,PA

tr(PAPD(Ut )PAPD(V )).

Lemma 2. Let Ut be a t-doped Clifford circuit, the cardi-
nality of G[n−m](Ut ), defined in Eq. (19), is lower-bounded as
|G[n−m](Ut )| � 22n−2m−t .

Corollary 4. Let Ut be a t-doped Clifford circuit, the car-
dinality of GD(Ut ), defined in Eq. (19), is lower-bounded as
|GD(Ut )| � 22|D|−t .

Lemma 3. If tr(PD(Ut )PD(V )) = 0 for all PD ∈ P (D) \
GD(Ut ), then R = 0 and R′ = 0. Thus

Pr
V∈VUt

[R = 0, R′ = 0] � Pr
V∈VUt

[tr(PD(Ut )PD(V )) = 0,

∀ PD ∈ P (D) \ GD(Ut )]. (C2)

Lemma 4. For a random Clifford decoder V ∈ VD
Ut

, the
probability that tr(PD(Ut )PD(V )) = 0 for all PD ∈ P (D) \
GD(Ut ) is lower-bounded by

Pr
V∈VD

Ut

[tr(PD(Ut )PD(V )) = 0,

∀ PD ∈ P (D) \ GD(Ut )] � 1− 2t

d2
C

.

Lemma 5. Let FV (Ut ) the fidelity defined in Eq. (17). If
V ∈ VUt and |D| = n, |C| = 0 then the fidelity becomes the
gate fidelity,

FV(Ut ) = |tr(V †Ut )|
d2

, (C3)

and FV (Ut ) < 1 is strictly less than one if and only if Ut is a
non-Clifford unitary operator.

Proof of Lemma 1. Rewrite the fidelity FV in Eq. (17) as

FV(Ut ) =
d−1 ∑

PD
tr(PD(Ut )PD(V ))

d−1
∑

PA,PD
tr(PAPD(Ut )PAPD(V ))

. (C4)

Then, let us evaluate the numerator and denominator sepa-
rately, the numerator can be rewritten as

d−1
∑
PD

tr(PD(Ut )PD(V ))

= |GD(Ut )| + d−1
∑

PD∈GD (Ut )

tr(PD(Ut )PD(V )), (C5)
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where we used the fact that U †
t PDUt = V †PDV for any PD ∈

GD(Ut ), and defined GD(Ut ) as the complement set of GD.
While for the denominator:

d−1
∑
PA,PD

tr(PAPD(Ut )PAPD(V ))

= d−1
∑

PD∈GD,PA

tr(PAPD(Ut )PAPD(Ut ))

+ d−1
∑

PD∈GD,PA

tr(PAPD(Ut )PAPD(V )).

Define the following two quantities:

R := 1

d|GD(Ut )|
∑

PD∈GD

tr(PD(Ut )PD(V )),

R′ := 1

d|GD(Ut )|
∑

PD∈GD (Ut ),PA

tr(PAPD(Ut )PAPD(V )).

Then define the truncated OTOC similarly to Eq. (9) as

OTOCGD (Ut ) = 1

d
〈tr(PAPD(Ut )PAPD(Ut ))〉P (A),G(Ut )

, (C6)

where we defined 〈·〉GD
:= |GD(Ut )|−1 ∑

PD∈GD (Ut )(·). Note
that we can write

FV(Ut ) = |GD(Ut )|(1+ R)

|GD(Ut )|
[
d2

AOTOCGD (Ut )+ R′
]

= 1+ R

d2
AOTOCGD (Ut )+ R′

. (C7)

�
Proof of Lemma 2. First of all, let us recall the definition

G[n−m](Ut ) := {P ∈ PD |P(Ut ) ≡ U †
t PUt ∈ P}. (C8)

Let us prove that it is a subgroup of the full Pauli group.
It is trivial to say that 1l ∈ G[n−m](Ut ). Than, since P−1 = P
we have that for any P ∈ G[n−m](Ut ), then P−1 ∈ G[n−m](Ut ).
Finally, thanks to the unitarity of Ut we have that if P, Q ∈
G[n−m](Ut ) then PQ ∈ G[n−m](Ut ). Now, let us prove that
|G[n−m](Ut )| � 22n−2m−t . First of all define G(Ut ) as

G(Ut ) := {P ∈ P |P(Ut ) ∈ P}. (C9)

It is known that [79] |G(Ut )| � 22n−t , and it is clear that
G(Ut ) � P . Let us use the following group theory result: let
A, B � H two subgroup of H , then:

|A ∩ B| � |A||B||H | . (C10)

First, note that we can write

G[n−m](Ut ) = [P ([n− m]) ∩UtPU †
t ]

= [P ([n− m]) ∩ P ∩UtPU †
t ]

= [P ([n− m]) ∩ G(Ut )].

We find

|G[n−m](Ut )| � |P ([n− m])||G(Ut )|
|P | = 22n−2m−2t . (C11)

�

Proof of Lemma 3. Let us recall the lemma: The proof for
R = 0 is trivial. Let us proceed to the proof for R′ = 0. Since
V is a Clifford operator, then PD(V ) ∈ P , and thus PD(V )PA =
φ(PA, PD(V ))PAPD(V ), where the phase is defined as

φ(PA, PD(V )) := 1

d
tr(PAPD(V )PAPD(V )). (C12)

We can thus rewrite R′ as

R′ =
∑

PD∈P (D)\GD (Ut ),PA

φ(PA, PD(V ))tr(PD(Ut )PD(V )). (C13)

Thus, from the last equality if tr(PD(Ut )PD(V )) = 0 for all
PD ∈ P (D) \ GD(Ut ), then R′ = 0. �

Proof of Lemma 4. Let VD
Ut
= {V ∈ C(n) |V †PV =

U †
t PUt , ∀ P ∈ GD(Ut )} be the set of all Clifford decoders that

can be found by the algorithm in Sec. VC. We are indeed only
interested in random Clifford decoders modulo phases. �

First of all, defined gD(Ut ) as the set of Pauli operators
such that 〈gD ∪ gD(Ut )〉 = P (D). After the injection of t non-
Clifford gates, we have that |gD(Ut )| � t . Each PD ∈ P (D) \
GD(Ut ) can be rewritten as PD = P′DP̃D, where P′D ∈ GD(Ut ),
while P̃D belongs to the set GD(Ut ) generated by GD(Ut ) =
〈gD(Ut )〉 \ 1l. Since |P (D) \ GD(Ut )| = d2

D − |GD(Ut )|, we
have that |GD(Ut )| = d2

D/|GD(Ut )| − 1, where the −1 comes
from the fact that GD(Ut ) does not contain the identity. For
any PD ∈ P (D) \ GD(Ut ), we thus write

tr(PD(Ut )PD(V )) = ±tr(P̃D(Ut )P̃D(V )), (C14)

where we used the unitarity of Ut and V to write PD(Ut ) =
P′D(Ut )P̃D(Ut ), and PD(V ) = ±P̃D(V )P′D(V ). Thus,

Pr
V∈VD

Ut

[tr(PD(Ut )PD(V )) = 0, ∀ PD ∈ P (D) \ GD(Ut )]

= Pr
V∈VD

Ut

[tr
(
P̃D(Ut )P̃D(V )

) = 0, ∀ P̃D ∈ GD(Ut )]. (C15)

P̃D(Ut ) is, in general, a combination of l Pauli oper-
ators, where 2 � l � 2t , i.e., P̃D(Ut ) =

∑l
i=1 αi pi, where

pi ∈ P and αi = d−1tr(piP̃D(Ut )). Thus, for a single
P̃D ∈ GD(Ut ), the probability Pr[tr(P̃D(Ut )P̃D(V )) = 0] = 1−
Pr[tr(P̃D(Ut )P̃D(V )) �= 0] and

Pr
V∈VD

Ut

[tr(P̃D(Ut )P̃D(V )) �= 0] = Pr
V∈VD

Ut

[
l⋃

i=1

tr(piP̃D(V )) �= 0

]
.

(C16)

The above is true because if tr(piPD(V )) �= 0 for some
i = 1, . . . , l , then tr(p jPD(V )) = 0 for any j �= i. By using
Fréchet inequality we can upper bound the above probability
by

Pr
V∈VD

Ut

[tr(P̃D(Ut )P̃D(V )) �= 0] �
l∑

i=1

Pr
V∈VUt

[tr(piP̃D(V )) �= 0].

(C17)

Looking at the above equation, for any given pi, there are
two occurring cases: either there is no V ∈ VD

Ut
such that

pl ∝ P̃D(V ) for every P̃D(V ), or there exists V ∈ VD
Ut

such
that pl ∝ P̃D(V ). We thus only consider the latter, being the
worst case scenario for tr(pl P̃D(V )) �= 0. Denote as ṼD

Ut
(P) :=
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{V †PV ∈ P |V ∈ VD
Ut
} the set of images of the Pauli operator

P through the action of random decoders belonging to VD
Ut

.
For example, if P ∈ GD(Ut ), then ṼD

Ut
(P) = {U †

t PUt }, i.e.,
ṼD

Ut
(P) is just the singleton of the image of P through Ut by

construction. Since the algorithm in Sec. VC is generating a
decoder V uniformly at random from the set VD

Ut
, we conclude

that a single pi with i = 1, . . . , l:

Pr
V∈VD

Ut

[tr(piP̃D(V )) �= 0] � 1

|ṼD
Ut

(P̃D)| , (C18)

where |ṼD
Ut

(P̃D)| is the cardinality of the set ṼD
Ut

(P̃D), i.e.,
the number of all possible Pauli operator [not belonging to
GD(Ut )] resulting from the adjoint action of V ∈ VD

Ut
. We have

the following lemma:
Lemma 6. Let Ut be a t-doped Clifford circuit, then

min
P̃D∈GD (Ut )

∣∣ṼD
Ut

(
P̃D

)∣∣ � 2t d2
C. (C19)

Proof. First of all note that

min
P̃D∈GD (Ut )

∣∣ṼD
Ut

(
P̃D

)∣∣ = min
σ̃∈gD (Ut )

∣∣ṼD
Ut

(σ̃ )
∣∣, (C20)

i.e., the minimum number of possible images of a generator
σ̃ ∈ gD(Ut ) of the group GD(Ut ) is exactly the minimum num-
ber of possible images of an element of the group GD(Ut ),
being σ̃ ∈ GD(Ut ). Therefore, we need to compute in how
many ways we can write a compatible row corresponding to
the map V : σ̃ ∈ gD(Ut ) 
→ σ̃ (V ) in the incomplete tableau
TV . To take into account this, we need to look at the Con-
strained random Clifford subroutine [in particular Eq. (B8)].
There are two types of rows to fill: the (unpaired) ones be-
longing to N and those belonging to 0. To fill a row belonging
to N , one needs to consider the anticommutation relation with
the already known row (e.g., the consecutive one). There are

2nN × 22(n−nP−nN ) = 22n−2nP−nN (C21)

ways to write the resulting Pauli string. Let us explain the
above counting: in the submatrix of unpaired rows N , there
are 2nN rows, and only nN of them are fixed. Thus, to fix
just one of the empty rows, one has 2nN possibilities to
write a 2n bit string corresponding to a valid Pauli operator.
Conversely, to fill rows in the empty part of the incomplete
tableau, i.e., 0, one has 22n−2nP−2nN degrees of freedom, which
correspond to the number of rows contained in 0. Using
the fact that 22nP+nN = |GD(Ut )| by construction, one has
that

min
σ̃∈gD (Ut )

∣∣ṼD
Ut

(σ̃ )
∣∣ = d2

|GD(Ut )| . (C22)

As an immediate corollary of the above lemma, from
Eq. (C18), we have

∀ pi ∈ {p1, . . . , pl}, Pr
V∈VUt

[tr(p jP̃D(V )) �= 0] � |GD(Ut )|
d2

.

(C23)

For a single P̃D ∈ GD(Ut ) from Eq. (C17) we can write

Pr[tr(P̃D(Ut )P̃D(V )) = 0] � 1− l|GD(Ut )|
d2

. (C24)

To have the probability for every Pauli P̃D ∈ GD(Ut ),
we use the Fréchet bound on intersection of
events:

Pr

⎡⎣ ⋂
∀P̃D∈GD (Ut )

(Ut )tr(P̃D(Ut )P̃D(V )) = 0

⎤⎦
� 1−

|GD (Ut )|∑
α=1

lα|GD(Ut )|
d2

. (C25)

Using the fact that 2 � lα � 2t for any α and that
|GD(Ut )||GD(Ut )| = d2

D − |GD(Ut )| � d2
D, we finally proved

the statement:

Pr [tr(PD(Ut )PD(V )) = 0, ∀ PD ∈ P (D) \ GD(Ut )]

� 1− 2t d2
D

d2
= 1− 2t

d2
C

. (C26)

�
Proof of Lemma 5. Recall Eq. (17) for P (D) = P :

FV(Ut ) = 〈tr(P(Ut )P(V ))〉P∈P
d2

A 〈tr(PAP(Ut )PAP(V ))〉PA,P∈P
. (C27)

Computing both average over P and using
∑

P PAP = dtr(A),
we have

FV(Ut ) = d−2|tr(UtV †)|2
d2

Ad−2
∑

PA
tr(PA)2

= |tr(UtV †)|2
d2

. (C28)

Let V ∈ VUt , i.e., V †PV = U †
t PUt for every P ∈ P . Then, the

unitary fidelity can be written as

|tr(UtV †)|2
d2

= 1

d2
|G(Ut )| + 1

d3

∑
P �∈G(Ut )

tr(P(Ut )P(V )).

(C29)

Now P(Ut ) is at least a summation over two Pauli strings and
therefore d−1tr(P(Ut )P(V )) < 1. We thus obtain the follow-
ing bound:

|tr(UtV †)|2
d2

<
1

d2
[|G(Ut )| + |P \ G(Ut )|] = 1. (C30)

�

APPENDIX D: FINITE-RESOLUTION LEMMA

In this section, we present the proof of the finite resolution
of the expectation values of Pauli operators for the Choi state
of a t-doped Clifford circuit Ut . Let us state it formally. Let us
define the following set:

SUt = {P ∈ P | 〈Ut |P|Ut 〉 �= 0}, (D1)

as the set of Pauli operators having nonzero expectation value
on the Choi state |Ut 〉 associated with the t-doped Clifford
circuit Ut . Define

δt = min
P,Q∈SUt
〈P〉�=〈P′〉

| 〈Ut |
(
P − P′

)|Ut 〉 |. (D2)

Then, the following lemma holds:
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Lemma 7 (Finite-resolution lemma). Let Ut be a t-doped
Clifford circuit. Let |Ut 〉 be the Choi state associated with Ut .
Then, the following bounds hold:

min
P∈SUt

| 〈Ut |P|Ut 〉 | � 1

3
√

2
t−1

(
1− 1√

2

)t

, (D3)

while

δt �
1

6
√

2
t−1

(
1− 1√

2

)t

. (D4)

We proceed as follows: we first bound
minP∈SUt

|tr(P|Ut 〉〈Ut |)| and then we bound the gap δt , as
the second will be just a trivial generalization of the first one.
Before proving the statement, let us recall that the action of
a T gate, defined as T = diag(1, e−iπ/4) applied on the ith
qubit on a Pauli operator P results in

TiPT †
i =

{
P, [P, Z] = 0

1√
2
(P − iZiP), {P, Zi} = 0.

(D5)

Note that, to bound minP∈SUt
| 〈Ut |P|Ut 〉 |, we can alternatively

bound minP |tr(Ut PU †
t σ )| for σ being an arbitrary stabilizer

state. Let us look at the action of Ut on a Pauli operator. First
decompose Ut =

∏t
i=1 U (i)

1 , where U (i)
1 is a (t = 1)-doped

Clifford circuit. Let us set up the following notation:

U (1)
1 PU (1)†

1 = x(0)P(0) + x(1)√
2

P(1) + x(2)√
2

P(2), (D6)

where x(0), x(1), x(2) ∈ {−1, 0,+1}. Equation (D6) must be
understood as there is a choice of x(0), x(1), x(2) and the respec-
tive Pauli operators P(0), P(1), P(2) such that the left-hand side
(l.h.s.) is equal to the r.h.s. of Eq. (D6). Before generalizing to
the generic t , it is useful to act again on U (1)

1 PU (1)†
1 with U (2)

1 :

U (2)
1 U (1)

1 PU (1)†
1 U (2)†

1

= x(00)P(00) + 1√
2

(x(10)P(10)

+ x(01)P(01) + x(20)P(20) + x(02)P(02))

+ 1

2
(x(11)P(11) + x(12)P(12) + x(21)P(21) + x(22)P(22)),

where each variable x(i j) for i = 0, 1, 2 can take values in
x(i j) ∈ {−1, 0,+1}. As one can see, the subscript string (i j)
attached to each variable x(i j) reveals how many times a T -
gate splits the Pauli operator P in 2 Pauli operator with the
corresponding 1/

√
2 factor. Again, Eq. (D7) must be under-

stood as there exists a choice of the variables x(i j) and the
respective Pauli operators P(i j) for which the l.h.s. and the
r.h.s. of Eq. (D7) agrees. Now, that we set up the above general
and powerful notation, we can easily generalize the action to
Ut . We have the following:

Ut PU †
t =

t∑
k=0

∑
π∈Sk

xπ (yk )√
2

k
Pπ (yk ). (D7)

In Eq. (D7) above, we have defined a few elements. First of
all, we defined the t-bit string yk with Hamming weight k as

yk =
⎛⎝1, 1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0

⎞⎠. (D8)

Next, we defined a set Sk of operations π that act on yk . Sk

is the set containing all the permutations of the k1 in yk into
t spots, combined with the operation that transforms 1↔ 2,
in accordance with Eq. (D7). Let us illustrate this with an
example. Set t = 2 and k = 1, so y1 = (10). All the possible
permutations of (10), combined with the operation 1↔ 2,
result in the strings (10),(01),(20),(02). Similarly, for t = 2
and k = 2, y2 = (11) and the set of operations in S2 returns
(11),(22),(21),(12).

It is useful to count the number of operations within Sk

for fixed k. The set Sk is the combination of
(t

k

)
many ways

to permute yk = (1, 1, . . . , 1, 0, . . . , 0) times the 2k different
choices of either 1 or 2 at any site. The above simple counting
thus returns ∑

π∈Sk

= 2k

(
t

k

)
. (D9)

From Eq. (D7), we can formally compute the expectation
value of Ut PU †

t with a generic stabilizer state σ and get

tr(Ut PU †
t σ ) =

t∑
k=0

∑
π∈Sk

x̃π (yk )√
2

k
, (D10)

where we defined the variables x̃π (yk ) := xπ (yk )tr(Pπ (yk )σ ) ∈
{−1, 0,+1} because tr(Pπ (yk )σ ) ∈ {−1, 0,+1}. Now, we set
up all the necessary notation to finally prove Eq. (D3).

We are interested in computing the minimum achievable
value for tr(Ut PU †

t σ ). Let us first multiply both sides for
√

2
t
.

We thus get

√
2

t
tr(Ut PU †

t σ ) =
t∑

k=0

∑
π∈Sk

√
2

t−k
x̃π (yk )

=
t∑

l=0

∑
π∈St−l

√
2

l
x̃π (yt−l ),

where in the second equality, we defined l = t − k. Let us set
t to be even and split odd and even terms in the sum

t∑
l=0

∑
π∈St−l

√
2

l
x̃π (yt−l ) =

t/2∑
l=0

2l
∑

π∈St−2l

x̃π (yt−2l )

+
√

2
t/2−1∑

l=0

2l
∑

π∈St−(2l+1)

x̃π (yt−(2l+1) ).

Define the following function of t :

A(t ) :=
t/2∑
l=0

2l
∑

π∈St−2l

x̃π (yt−2l ),

B(t ) :=
t/2−1∑

l=0

2l
∑

π∈St−(2l+1)

x̃π (yt−(2l+1) ). (D11)

Note that A(t ), B(t ) ∈ Z, i.e., they are positive and negative
natural numbers, for any t = 2t ′ for t ∈ N. We can thus write

√
2

t |tr(Ut PU †
t σ )| = |A(t )+

√
2B(t )| = |B(t )|

∣∣∣∣√2+ A(t )

B(t )

∣∣∣∣.
(D12)

022429-26



LEARNING EFFICIENT DECODERS FOR QUASICHAOTIC … PHYSICAL REVIEW A 109, 022429 (2024)

Therefore, the lower bound deals with the approximation of
the algebraic number

√
2 by a rational number A(t )/B(t ). To

make it explicit we can lower bound the r.h.s. of Eq. (D12) as

√
2

t |tr(Ut PU †
t σ )| � |B(t )|

∣∣∣∣√2− |A(t )|
|B(t )|

∣∣∣∣, (D13)

and we can invoke the Liouville Theorem (see Ref. [106])
of approximating a algebraic number α with two rational
numbers p, q ∈ Q that reads as follows: There exist a constant
c(α) independent from p, q such that∣∣∣∣√2− p

q

∣∣∣∣ � c(α)

qD
, (D14)

where D is the degree of the algebraic number α. In the
case of α = √2 we have D = 2 because

√
2 corresponds to

the solution to the irreducible polynomial z2 − 2 = 0 which
has degree 2, and c(

√
2) = 1

6 [106]. Applying Eq. (D14) to
Eq. (D13), we thus get

|tr(Ut PU †
t σ )| � 1

6|B(t )|√2
t . (D15)

We now are just left to find an upper bound to B(t ). We
proceed with the following equality:

|B(t )| =
∣∣∣∣∣∣
t/2−1∑

l=0

2l
∑

π∈St−(2l+1)

x̃π (yt−(2l+1) )

∣∣∣∣∣∣
�

t/2−1∑
l=0

2l
∑

π∈St−(2l+1)

|x̃π (yt−(2l+1) )|

=
t/2−1∑

l=0

2l
∑

π∈St−(2l+1)

=
t/2−1∑

l=0

2l2t−(2l+1)

(
t

2l + 1

)

= 1√
8

2t

[(
1+ 1√

2

)t

−
(

1− 1√
2

)t
]

� 1√
8

(
1− 1√

2

)−t

,

where in the second equality, we used the fact that x̃π (yt−(2l+1) ) ∈{−1, 0,+1} and in the last inequality, we used the fact

that

1√
8

2t

[(
1+ 1√

2

)t

−
(

1− 1√
2

)t
]

� 1√
8

2t

(
1+ 1√

2

)t

= 1√
8

(
1− 1√

2

)−t

. (D16)

An analogous procedure with t = 2t ′ + 1 with t ′ leads to the
same exact bound. Therefore for any t ∈ N, we find

|tr(Ct PC†
t σ )| �

√
8

6

(
1√
2
− 1

2

)t

. (D17)

Now, let us turn to analyze the gap δt ≡ tr[(P − P′)ψt ]. Using
the same notation as before, we can write the adjoint action of
Ct on P − P′ as follows:

Ut (P − P′)U †
t =

t∑
k=0

∑
π∈Sk

(
xπ (yk )√

2
k

Pπ (yk ) +
x′π (yk )√

2
k

P′π (yk )

)
,

(D18)

and, therefore, by repeating the same procedure, we can define

A′(t ) :=
t/2∑
l=0

2l
∑

π∈St−2l

x̃π (yt−2l ) + x̃′π (yt−2l ),

B′(t ) :=
t/2−1∑

l=0

2l
∑

π∈St−(2l+1)

x̃π (yt−(2l+1) ) + x̃′π (yt−(2l+1) )
, (D19)

and write the gap as

δt = 1√
2

t |A′(t )+
√

2B′(t )|

� |B
′(t )|√
2

t

∣∣∣∣√2− |A
′(t )|
|B′(t )|

∣∣∣∣ � 1

6
√

2
t |B′(t )|

. (D20)

Following the inequalities in Eq. (D16), one can find

|B′(t )| � 1√
2

(
1− 1√

2

)−t

, (D21)

which recovers the desired result in Eq. (D4):

δt �
√

2

6

(
1√
2
− 1

2

)t

. (D22)
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