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A set of orthogonal multipartite quantum states are called (distinguishability-based) genuinely nonlocal if they
are locally indistinguishable across any bipartition of the subsystems. In this work, we consider the problem of
constructing small genuinely nonlocal sets consisting of generalized Greenberger-Horne-Zeilinger (GHZ) states
in multipartite systems. For system (C2)⊗N where N is large, using the language of group theory, we show that
a tiny proportion �(1/

√
2N ) of the states among the N-qubit GHZ basis suffice to exhibit genuine nonlocality.

Similar arguments also hold for the canonical generalized GHZ bases in systems (Cd )⊗N , wherever d is even
and N is large. What is more, moving to the condition that any fixed N is given, we show that d + 1 genuinely
nonlocal generalized GHZ states exist in (Cd )⊗N , provided the local dimension d is sufficiently large. As an
additional merit, within and beyond an asymptotic sense, the latter result also indicates some evident limitations
of the “trivial othogonality-preserving local measurements” (TOPLM) technique that has been utilized frequently
for detecting genuine nonlocality.
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I. INTRODUCTION

Quantum nonlocality, as one of the most fascinating phe-
nomena in quantum mechanics, is most well known to the
public in the manifestation of Bell nonlocality [1,2]. To
exhibit this form of nonlocality, the existence of quantum
entanglement is always necessary. However, there are also
other forms of nonlocality, including one that is based on local
distinguishability of multipartite quantum states. It serves to
explore the fundamental properties about locally accessing
global information and, unlike Bell nonlocality, entangle-
ment is no longer necessarily required. Such nonlocality was
first revealed by Bennett and his co-workers [3], who con-
structed nine orthogonal product states in C3 ⊗ C3 that are
not perfectly distinguishable by the two separated parties,
provided only local operations and classical communication
(LOCC) are allowed. Since this seminal work, this form of
distinguishability-based nonlocality has been studied exten-
sively (see [4–30] for an incomplete list).

Probabilistically, a set of more quantum states might usu-
ally tend to be harder for distinguishing, while a set with less
states is often more likely to be distinguishable. Informally
speaking, the reason is that all supersets of an indistinguish-
able set must be indistinguishable, whereas all subsets of a
distinguishable one are also distinguishable. Therefore, to get
some nontrivial knowledge about this form of nonlocality, one
is either interested in the maximal number of states that retain
locality, or interested in the minimal number of states that
exhibit nonlocality. For two-partite systems, Hayashi et al.
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discovered that the maximal number of orthogonal pure states
that are locally distinguishable cannot exceed the total di-
mension over the average entanglement of the states [13].
This result, to some extent, indicates that quantum states with
more entanglement are generally (while not always) more
difficult to be distinguished. In spite of such a quantitative
upper bound in the direction of retaining locality, we have, on
the other hand, little idea about the minimal number of states
that can exhibit nonlocality. In the literature, lots of efforts
have been made in seeking small locally indistinguishable sets
consisting of maximally entangled states [14–23], which are
widely believed to have stronger nonlocality than any other
bipartite quantum states. Frustratingly, even a simple problem
whether there exist three locally indistinguishable maximally
entangled states in Cd ⊗ Cd for d > 3 remains unsolved to-
day. What is known is that any two orthogonal pure states
can always be locally distinguished, no matter whether the
states are entangled or not [5]. Apart from these, in the multi-
partite scenarios, there are also a series of works exploring
small locally indistinguishable sets of multipartite product
states [25–30]. In the most recent work [30] particularly, Cao
et al. showed the existence of d + 1 locally indistinguishable
product states in (Cd )⊗N , outperforming results of the others.
Nevertheless, in the context of multipartite (distinguishability-
based) nonlocality, there are other stronger paradigms that
have been proposed.

A set of orthogonal multipartite quantum states are called
genuinely nonlocal if they are locally indistinguishable across
any bipartition of the subsystems. Surely, genuine nonlocal-
ity derives local indistinguishability immediately and it is
by definition a much stronger form of nonlocality than lo-
cal indistinguishability. In [31–36], several techniques have
been applied for constructing genuinely nonlocal sets with
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different types of multipartite quantum states. Among them,
the so called “trivial orthogonality-preserving local measure-
ments” (TOPLM, whose definition is given in Sec. II), which
originated from Walgate and Hardy [6], is the most widely
applicable one. In [36], this technique was first utilized by
Halder et al. for deriving genuinely nonlocal sets of product
states in several small systems. In fact, the notion put forward
by Halder et al. is “strong nonlocality”, which refers to local
irreducibility of a set of multipartite quantum states through
any bipartition of the subsystems. A set of orthogonal mul-
tipartite quantum states are called locally irreducible if it is
impossible to eliminate one or more states from the whole set,
with the restriction that only orthogonality-preserving local
measurements (OPLM) are allowed. In practice however, it
is often difficult to determine whether a set of states are
locally irreducible, except those cases where only “trivial
orthogonality-preserving local measurements” can be per-
formed by the subsystems. By far, despite significant efforts
in seeking strongly nonlocal sets in the literature (see [37–45]
for an incomplete list), all existing examples were constructed
through the TOPLM technique [46]. Recently, it was proved
by Li and Wang that in system (Cd )⊗N , all strongly non-
local sets constructed in this way must have cardinality no
smaller than dN−1 + 1 [45]. Notice that, by definition, local
irreducibility is nothing other than a sufficient condition for
deriving local indistinguishability and, arguably, so is strong
nonlocality with respect to genuine nonlocality.

In this work, we study the problem of constructing
small genuinely nonlocal sets consisting of generalized
Greenberger-Horne-Zeilinger (GHZ) states in multipartite
systems. We first consider systems (Cd )⊗N under conditions
that d is fixed and N is large. For the N-qubit GHZ bases, we
show that a tiny proportion �(1/

√
2N ) of the states among

such bases suffice to exhibit genuine nonlocality. Similar ar-
guments also hold for the canonical generalized GHZ bases in
(Cd )⊗N , wherever the local dimension d is even. As for the
case where N is fixed and d is large, we show the existence of
d + 1 genuinely nonlocal generalized GHZ states in (Cd )⊗N .
We argue that, within and beyond an asymptotic sense, this
result also indicates some evident limitations of the TOPLM
technique for detecting small genuinely nonlocal sets.

The rest of this paper is organized as follows: Section II
provides some relevant definitions and notations. In Sec. III,
we investigate genuine nonlocality of the canonical gener-
alized GHZ bases in (Cd )⊗N , in the case where d is even.
In Sec. IV, we demonstrate how to construct d + 1 gen-
uinely nonlocal generalized GHZ states in N-partite systems
(Cd )⊗N . We draw our conclusion and discuss some related
problems in Sec. V.

II. PRELIMINARIES

In this section, we provide some relevant definitions and
notations that are necessary in this paper.

Local distinguishability (LOCC- distinguishability). A set
of orthogonal multipartite quantum states, which is priorly
known to several spatially separated parties, is said to be
locally distinguishable if the parties are able to tell exactly
which state they share through some protocols, provided only

local operations (measurements) and classical communica-
tions (LOCC) are allowed.

Local irreducibility. A set of multipartite orthogonal quan-
tum states is said to be locally irreducible if it is not possible
to locally eliminate one or more states from the set while pre-
serving orthogonality of the postmeasurement states. Typical
examples of locally irreducible sets include the two-qubit Bell
basis and the N-qubit GHZ basis [36].

Genuine nonlocality. A set of orthogonal multipartite
quantum states is called (distinguishability-based) genuinely
nonlocal if the states are locally indistinguishable across any
bipartition of the subsystems.

Strong nonlocality. A set of orthogonal multipartite quan-
tum states is called strongly nonlocal if the states are locally
irreducible across any bipartition of the subsystems.

Trivial orthogonality-preserving local measurements
(TOPLM). A measurement is called nontrivial if not
all the POVM elements are proportional to the identity.
Otherwise, we call the measurement trivial. In any local
discrimination protocol, one of the parties must go first and
whoever goes first must be able to perform some nontrivial
orthogonality-preserving local measurements. Therefore, for
a set of orthogonal multipartite quantum states, if only trivial
orthogonality-preserving local measurements (TOPLM)
can be performed by each of the parties, then the states
must be locally indistinguishable (irreducible). In recent
literature, TOPLM has been frequently utilized as a technique
for detecting genuinely nonlocal (strongly nonlocal) sets
[36–45].

PPT distinguishability. In the literature, since the mathe-
matical structure of LOCC measurements is rather compli-
cated, they are usually approximated by separable measure-
ments [48] or PPT (positive-partial-transpose) measurements
[49]. A positive semidefinite operator 0 � M ∈ Pos(HA ⊗
HB) is called “PPT” if its partial transpose about one sub-
system (say, A) is also positive semidefinite: MTA � 0. Since
LOCC measurement opeartors (LOCC-POVMs) are separa-
ble and separable operators are PPT, PPT indistinguishability
implies local indistinguishability immediately.

N-partite generalized GHZ states. In N-partite system
HA1 ⊗ HA2 ⊗ · · · ⊗ HAN where HA1 = HA2 = · · · = HAN =
Cd , quantum states like

1√
d

d−1∑
j=0

∣∣ζ (1)
j ζ

(2)
j · · · ζ (N )

j

〉
A1A2···AN

are called generalized GHZ states, where each {|ζ (n)
j 〉}d−1

j=0 is an
arbitrary set of orthogonal basis for the subsystem HAn (1 �
n � N ).

In fact, the discussion about genuine nonlocality of the
GHZ states can be dated back to the work of Hayashi
et al. [13]. Here we reproduce their result with the following
lemma:

Lemma 1. [13] In N-partite system (Cd )⊗N , any s �
dN−1 + 1 orthogonal generalized GHZ states are genuinely
nonlocal.

In other words, dN−1 is the maximal number of or-
thogonal generalized GHZ states that retain locality: locally
distinguishable in at least one bipartition. In particular, for
the multiqubit case (namely, when d = 2), Bandyopadhyay
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showed further that this upper bound is tight [50]. On the
other side, however, what is the minimal number of states that
can exhibit genuine nonlocality? In the simplest multiqubit
case, for either N = 2 or N = 3, such a minimal number
turns out to be 2N−1 + 1 (For the case N = 2, where genuine
nonlocality is just local indistinguishability by definition and
the “two-qubit GHZ basis” is nothing other than the Bell
basis in C2 ⊗ C2, such a statement is obvious; for N = 3,
it follows from Proposition 1 of [35]). That is, the upper
bound and lower bound “encounter” here. Is this still true for
cases N > 3? Besides, what is the situation when d > 2? Such
problems will be addressed in the following sections.

III. GENUINE NONLOCALITY FOR THE CANONICAL
GENERALIZED GHZ BASES

In this section, we investigate genuine nonlocality of a spe-
cial form of generalized GHZ states: the canonical generalized
GHZ bases, whose definition is shown below.

Canonical generalized GHZ basis. In N-partite system
(Cd )⊗N where {|0〉, . . . , |d − 1〉} is the standard orthogonal
basis for each subsystem, the dN orthogonal generalized GHZ
states

1√
d

d−1∑
j=0

ω
j(k−1)
d | j, j ⊕ i2, . . . , j ⊕ iN 〉A1A2···AN

, (1)

where k ∈ {1, . . . , d} and i2, . . . , iN ∈ {0, . . . , d − 1} consti-
tute a set of basis for the global system. Here, ωd = e

2π i
d and

“⊕” is the “mod d” addition. They are called the canonical
generalized GHZ basis and states in such form are called
generalized GHZ states in canonical form. Notice that for
d = 2, this definition coincides with the ordinary “N-qubit
GHZ basis.”

In what follows, we show that for such bases just a tiny
proportion �[1/( d√

2
)N ] of the whole set suffices to exhibit

genuine nonlocality, on condition that N grows large. Herein,
we write f (n) = �[g(n)] if there exist positive constants n0

and c1, c2 such that for n � n0 we have c1g(n) � f (n) �
c2g(n). For convenience of explanation, we divide our discus-
sion into three parts.

A. A straightforward construction

For the canonical generalized GHZ basis (1) in system
(Cd )⊗N (d � 2), there is a quite straightforward construction
of genuinely nonlocal subsets that is shown below.

Proposition 1. In N-partite system (Cd )⊗N , the following
subset of the canonical generalized GHZ basis (1):

|�(∗)
k 〉 = 1√

d

d−1∑
j=0

ω
j(k−1)
d | j j · · · j〉A1A2···AN

(ωd = e2π i/d , k = 1, . . . , d ),

|�S〉 = 1√
d

d−1∑
j=0

| j · · · j〉S| j ⊕ 1 · · · j ⊕ 1〉S(
S ⊂ {A1, . . . , AN }, 1 � |S| < N

2

)

and (when N is even)

|�R〉 = 1√
d

d−1∑
j=0

| j · · · j〉R| j ⊕ 1 · · · j ⊕ 1〉R(
A1 ∈ R ⊂ {A1, . . . , AN }, |R| = N

2

)
is genuinly nonlocal. The cardinality of this subset is d +
2N−1 − 1.

Proof. It is not hard to verify the orthogonality of these
states. In the bipartition S|S where S is a nonempty subset of
{A1, . . . , AN } such that |S| < N/2, the states

|�S〉 and |�(∗)
k 〉 (k = 1, . . . , d )

constitute d + 1 maximally entangled states in the d ⊗ d
subspace HS

d ⊗ HS
d ⊂ (Cd )⊗|S| ⊗ (Cd )⊗|S|, where HS

d = span
{| j · · · j〉S}d−1

j=0 and HS
d = span {| j · · · j〉S}d−1

j=0 . Since any d + 1
maximally entangled states in Cd ⊗ Cd are locally indistin-
guishable, the states |�S〉, |�(∗)

k 〉 (1 � k � d ) and hence the
whole set of states are indistinguishable through S|S. When N
is an even number, the same holds for the bipartitions R|R,
where A1 ∈ R ⊂ {A1, . . . , AN } and |R| = N/2. As a result,
the whole set of

d + C1
N + · · · + C	N/2


N = d + 2N−1 − 1

states above are genuinely nonlocal. �
Nevertheless, such a result is by no means satisfactory

because when d = 2, it tells nothing more than Lemma 1. The
question still remains: does there exist any genuinely nonlocal
subset of the N-qubit GHZ basis with cardinality smaller than
2N−1 + 1? For N = 2 and N = 3, the answers turn out to be
negative, as mentioned in Sec. II. With no doubt, it is both
reasonable and interesting to consider the same question for
N > 3: do the negative answers still hold?

As shown in this section, the answer to the above question
is no: there do exist genuinely nonlocal subsets of the N-qubit
GHZ basis with size smaller than 2N−1 + 1, whenever N > 3.
In the next subsection, we will first provide some examples
for the few-qubit cases. The essence behind these examples
will be explained in the third subsection, using the language
of group theory. As we will show, when N grows large, only
�(

√
2N ) states among the N-qubit GHZ basis (namely, a pro-

portion �(1/
√

2N ) of the whole set) suffice to exhibit genuine
nonlocality. Also, for N-qudit cases where N is large and local
dimension d is even, the same argument holds: �(

√
2N ) states

(namely, a proportion �[1/( d√
2

)N ]) of the canonical GHZ

basis (1) suffice to exhibit genuine nonlocality in (Cd )⊗N .

B. Examples for N � 6

In this subsection, we are to show some examples of
genuinely nonlocal subsets for the N-qubit GHZ basis that
have cardinality smaller than 2N−1 + 1, for cases N = 4, 5, 6.
Here and after, without additional specification, we always use
“A” to signify the first subsystem, “B” to signify the second
subsystem, “C” to signify the third subsystem, and so on.
We also call a subset containing k states a “k-ary” subset for
abbreviation.
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TABLE I. Genuine nonlocality for subset N (4)
7 of the four-qubit

GHZ basis.

ψ0000,1111 ψ0010 ψ0100 ψ1000

ψ0000,1111 null ABD|C ACD|B BCD|A
ψ0001,1110 ABC|D AB|CD AC|BD BC|AD

Example 1. (i) In four-qubit system (C2)⊗4, the four-qubit
GHZ basis is defined as

|ψ0,15〉 = |0000〉 ± |1111〉√
2

, |ψ1,14〉 = |0001〉 ± |1110〉√
2

,

|ψ2,13〉 = |0010〉 ± |1101〉√
2

, |ψ3,12〉 = |0011〉 ± |1100〉√
2

,

|ψ4,11〉 = |0100〉 ± |1011〉√
2

, |ψ5,10〉 = |0101〉 ± |1010〉√
2

,

|ψ6,9〉 = |0110〉 ± |1001〉√
2

, |ψ7,8〉 = |0111〉 ± |1000〉√
2

,

where we assign the conjugate pairs with subscript indices
summing up to 24 − 1. For simplicity of comprehension, here
and after, we also write the subscript indexes of the multiqubit
GHZ bases in their binary form. In this notation, we have

|ψ0,15〉 = |ψ0000,1111〉, . . . , |ψ7,8〉 = |ψ0111,1000〉. (2)

In what follows, for simplicity of representation, we will
sometimes omit the “| · 〉” notation for some of the quantum
states, which won’t cause any ambiguity. Now we show that
the 7-ary subset

N (4)
7 = {ψ0000,1111, ψ0001,1110, ψ0010, ψ0100, ψ1000}

of the GHZ basis (2) is genuinely nonlocal:
(1) The two conjugate pairs {ψ0000,1111, ψ0001,1110} are

locally equivalent to the Bell basis in the 2 ⊗ 2 sub-
space span{|000〉, |111〉}ABC ⊗ span{|0〉, |1〉}D ⊂ (C2)⊗3 ⊗
C2 through bipartition ABC|D. Hence, N (4)

7 is locally in-
distinguishable in this bipartition, which is shown at the
[ψ0001,1110, ψ0000,1111] entry of Table I.

(2) The triples {ψ0000,1111, ψ0010} and {ψ0001,1110,

ψ0010} are locally equivalent to three Bell states in
subspace span{|000〉, |111〉}ABD ⊗ span{|0〉, |1〉}C ⊂ (C2)⊗3

⊗ C2 through bipartition ABD|C, and subspace
span{|00〉, |11〉}AB ⊗ span{|01〉, |10〉}CD ⊂ (C2)⊗2 ⊗ (C2)⊗2

through AB|CD respectively. Therefore, N (4)
7 is locally

indistinguishable through bipartitions ABD|C and AB|CD,
which is shown by the third column of Table I.

(3) Similarly, subsets {ψ0000,1111, ψ0001,1110, ψ0100} and
{ψ0000,1111, ψ0001,1110, ψ1000} are locally indistinguishable
through bipartitions ACD|B, AC|BD and bipartitions BCD|A,
BC|AD respectively, which is shown by the fourth and the
fifth columns in Table I. Notice that the 23 − 1 = 7 different
bipartitions just right fill into the 2 × 4 entries except the
“null” one. Therefore, N (4)

7 is genuinely nonlocal.

(ii) In five-qubit system (C2)⊗5, we also have the five-qubit
GHZ basis

|φ0,31〉, |φ1,30〉, . . . , |φ15,16〉
which is now reindexed as

|φ00000,11111〉 = |00000〉 ± |11111〉√
2

,

|φ00001,11110〉 = |00001〉 ± |11110〉√
2

,

...

|φ01111,10000〉 = |01111〉 ± |10000〉√
2

. (3)

Similarly to N (4)
7 , the 11-ary subset

N (5)
11 = {φ00000,11111, φ00001,11110, φ00010, φ00100,

φ01000, φ10000, φ00110, φ01010, φ10010}
of the GHZ basis (3) can also be checked to be genuinely
nonlocal, with the aid of Table II. For example, the subset
{φ00000,11111, φ00001,11110, φ00010} is locally indistinguishable
in the ABCE|D, ABC|DE bipartitions, as shown by the third
column of Table II. One can routinely go through Table II and
find that the 24 − 1 = 15 bipartitions just right fill into the
2 × 8 entries except the “null” one. Thus, N (5)

11 is genuinely
nonlocal.

It is easy to generalize Example 1 to the more-partite cases.
For example, in (C2)⊗6, one can construct

S (6)
19 = {ϕ000000,111111, ϕ000001,111110, ϕ000010, ϕ000100,

ϕ001000, ϕ010000, ϕ100000, ϕ000110, ϕ001010,

ϕ010010, ϕ100010, ϕ001100, ϕ010100, ϕ100100,

ϕ011000, ϕ101000, ϕ110000}
which also contains two conjugate pairs. However, the next
example shows that 19 is by no means the smallest cardinality.

Example 2. In six-qubit system (C2)⊗6, the 15-ary subset

N (6)
15 = {ϕ000000,111111, ϕ000001,111110, ϕ000010,111101,

ϕ000011,111100, ϕ000100, ϕ001000, ϕ010000,

ϕ100000, ϕ001100, ϕ010100, ϕ100100}
of the six-qubit GHZ basis is genuinely nonlocal. Again,
one can check this fact with Table III. Unlike S (6)

19 ,
N (6)

15 contains four conjugate pairs, and these conjugate
pairs are indistinguishable through bipartitions ABCDE|F,
ABCDF|E and ABCD|EF, as shown in the second column of
Table III. Here in this example, for convenience of description,
we place “ABCDEF|∅” into the [ϕ000000,111111, ϕ000000,111111]
entry, meaning nothing other than “the states are indistin-
guishable in none of the bipartitions”. Notice that from this
column one can generate the columns after by “moving” some
of the parties from the left partition to the right partition. For
example, for the “ϕ000100” (third) column, just move “D” from
the left side to the right side and for the “ϕ001100” (seventh)
column, move parties “CD” and so on. We will characterize
in the proof of Theorem 1 that this corresponds to a certain
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TABLE II. Genuine nonlocality for subset N (5)
11 of the five-qubit GHZ basis.

φ00000,11111 φ00010 φ00100 φ01000 φ10000 φ00110 φ01010 φ10010

φ00000,11111 null ABCE|D ABDE|C ACDE|B BCDE|A ABE|CD ACE|BD BCE|AD
φ00001,11110 ABCD|E ABC|DE ABD|CE ACD|BE BCD|AE AB|CDE AC|BDE BC|ADE

“cosets structure” about the group of all bipartitions. In fact,
the same pattern also appears in Tables I and II, once we place
“ABCD|∅” and “ABCDE|∅” to the “null” entries [51].

Example 3. Going back to the five-qubit case, one can
check that the subset

S (5)
11 = {φ00000,11111, φ00001,11110, φ00010,11101,

φ00011,11100, φ00100, φ01000, φ10000}
of the five-qubit GHZ basis, which contains four conjugate
pairs, is also genuinely nonlocal. But it has the same cardinal-
ity as N (5)

11 . For the six-qubit case, we can further construct
the genuinely nonlocal subset

N (6)
19 = {ϕ000000,111111, ϕ000001,111110, ϕ000010,111101,

ϕ000100,111011, ϕ000011,111100, ϕ000110,111001,

ϕ000101,111010, ϕ000111,111000, ϕ001000,

ϕ010000, ϕ100000}
that contains eight conjugate pairs. We see however that it
does not have smaller cardinality than N (6)

15 .
The essence behind all the above examples will be revealed

in the next subsection, using the language of group theory
[52].

C. The unified characterization

For each example in the last subsection, the 2N−1 bipar-
titions (including the “null” one [51]) for the N subsystems
actually form an Abelian group G′. Each group G′ can be di-
vided into bunches of cosets which correspond to columns of
Tables I–III, provided a certain subgroup H of G′ is specified.
The subgroup H defines the conjugate pairs in each genuinely
nonlocal set. To be more specific, we present the following
theorem for which the proof is constructive.

Theorem 1. In N-qubit system (C2)⊗N , genuinely nonlocal
subsets Nt of the N-qubit GHZ basis

{ξ0,2N −1, ξ1,2N −2, . . . , ξ2N−1−1, 2N−1}
that have cardinality |Nt | = 2t + 2N−t − 1 can be con-
structed, where 1 � t � N − 1.

Proof. Denote by G the finite Abelian group of all
N-tuples, whose elements are a = (a(1), a(2), . . . , a(N ) ) ∈
{0, 1}N and whose additive operation “+” is defined as

a + b = (a(1) ⊕ b(1), a(2) ⊕ b(2), . . . , a(N ) ⊕ b(N ) ), where “⊕”
is the “mod 2” addition. Obviously, I = {(00 · · · 0), (11 · · · 1)}
is a subgroup of G with order 2. Denote by G′ = G/I
its quotient group, and the elements of G′ are denoted
as a = [a] = [a(1), a(2), . . . , a(N )], signifying the coset a +
I with representative element a ∈ G. The additive opera-
tion of G′ is then induced as [a] + [b] = [a(1) ⊕ b(1), a(2) ⊕
b(2), . . . , a(N ) ⊕ b(N )], which is well defined. Notice that all
elements of G′ have order 2 and therefore G′ can also be re-
garded as an “F2-linear space”, where F2 = {0, 1} is regarded
as a field. Since |G′| = 2N−1, any proper subgroup H < G′
must have order |H | = 2t−1 (1 � t � N − 1). Moreover, H =
〈h1〉
⊕ · · · ⊕ 〈ht−1〉, where {h1, . . . , ht−1} ⊂ H is a set of ba-

sis that generates H (regarded as a linear subspace of G′) and
“
⊕

” is the direct sum [53]. That is to say, any element h ∈ H
can be uniquely written as h = m1h1 + · · · + mt−1ht−1, where
mi ∈ F2 (1 � i � t − 1). Now, denote all the distinct cosets of
H as g1 + H, . . . , gc + H , where gl + H � {gl + h : h ∈ H}
for 1 � l � c = 2N−t − 1. Since G′ = H ∪ (g1 + H ) ∪ · · · ∪
(gc + H ), any element g ∈ G′ must be located in H or in
certain gl + H . Namely, g = h or g = gl + h for some h ∈ H
and certain l ∈ {1, . . . c}.

Given the above proper subgroup H < G′, we now con-
struct the genuinely nonlocal subsets Nt of the N-qubit GHZ
basis. For any element h ∈ H , denote by h, h ∈ G the pair
of N-tuples such that [h] = [h] = h. Obviously, h = h +
(11 · · · 1). Also, for the aforementioned gl ∈ G′ (1 � l � c),
denote by gl = (g(1)

l , g(2)
l , . . . , g(N )

l ) ∈ G one of the N-tuples
such that [gl ] = gl . Let

Nt = {ξh,h | h ∈ H} ∪ {ξg1 , . . . , ξgc},

then |Nt | = 2t + 2N−t − 1 and we next prove that it is
genuinely nonlocal. For any bipartition S|S (∅ � S �

{1, 2, . . . , N}), denote pS = (p(1), p(2), . . . , p(N ) ), where

p(n) =
{

1, n ∈ S,

0, n /∈ S,

and pS = pS + (11 · · · 1) = pS . By discussions in the last
paragraph, for [pS] = [pS] � pS|S ∈ G′, there must exist some
hS|S ∈ H such that

pS|S = hS|S

TABLE III. Genuine nonlocality for subset N (6)
15 of the six-qubit GHZ basis.

ϕ000000,111111 ϕ000100 ϕ001000 ϕ010000 ϕ100000 ϕ001100 ϕ010100 ϕ100100

ϕ000000,111111 ABCDEF|∅ ABCEF|D ABDEF|C ACDEF|B BCDEF|A ABEF|CD ACEF|BD BCEF|AD
ϕ000001,111110 ABCDE|F ABCE|DF ABDE|CF ACDE|BF BCDE|AF ABE|CDF ACE|BDF BCE|ADF
ϕ000010,111101 ABCDF|E ABCF|DE ABDF|CE ACDF|BE BCDF|AE ABF|CDE ACF|BDE BCF|ADE
ϕ000011,111100 ABCD|EF ABC|DEF ABD|CEF ACD|BEF BCD|AEF AB|CDEF AC|BDEF BC|ADEF
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or

pS|S = gl + hS|S

for certain l ∈ {1, . . . , c}. For the former case, obviously, the
two conjugate pairs ξ00···0, 11···1 and ξhS, hS

are locally equiv-
alent to the Bell basis in the S|S bipartition. For the latter
case, across the bipartition S|S, the triple {ξgl , ξhS,hS

} is lo-
cally equivalent to three Bell states in the 2 ⊗ 2 subspace
HS

2 ⊗ HS
2 ⊂ (C2)⊗|S| ⊗ (C2)⊗|S|, where

HS
2 = span

{⊗
n∈S

∣∣g(n)
l ⊕ j

〉∣∣∣∣∣ j = 0, 1

}
and

HS
2 = span

⎧⎨⎩⊗
n∈S

∣∣g(n)
l ⊕ j

〉∣∣∣∣∣∣ j = 0, 1

⎫⎬⎭.

As a result, Nt is indistinguishable in all bipartitions and so it
is genuinely nonlocal. �

Immediately, we achieve genuinely nonlocal subsets of the
N-qubit GHZ basis with cardinality �(

√
2N ), on condition

that N is large:
Corollary 1. In N-qubit system (C2)⊗N , m2(N ) states

among the N-qubit GHZ basis suffice to exhibit genuine non-
locality, where

m2(N ) =
{

2M+1 − 1, N = 2M,

2M+log2 3 − 1, N = 2M + 1.

Proof. In either case, |Nt | = 2t + 2N−t − 1 achieves its
minimum when t = M. �

Along the same vein, one can generalize the above result
to the N-qudit cases, wherever the local dimension d are even
integers. For cases where d is odd, we leave it open.

Theorem 2. In N-qudit system (Cd )⊗N where d is even,
md (N ) states among the canonical generalized GHZ basis (1)
suffice to exhibit genuine nonlocality, where

md (N ) =
{

2M
(
1 + d

2	log2 d

)− 1, N + ⌊ log2

d
2

⌋ = 2M

2M
(
2 + d

2	log2 d

)− 1, N + ⌊ log2

d
2

⌋ = 2M + 1.

The proof of Theorem 2 is given in the Appendix. Note
that when N approaches infinity, md (N ) = �(

√
2N ). That is,

a proportion �[1/( d√
2

)N ] of the canonical generalized GHZ
basis (1) suffices to exhibit genuine nonlocality, whenever d
is even and N is large.

IV. d + 1 GENUINELY NONLOCAL GENERALIZED GHZ
STATES IN (Cd )⊗N

The results of Sec. III indicate that when a fixed local
dimension d and a large number of parties N are considered,
a small proportion of the canonical generalized GHZ basis
suffices to exhibit genuine nonlocality in (Cd )⊗N . However,
if we instead consider a fixed number of parties N , and allow
d to grow arbitrarily, then a similar argument does not hold
anymore. We are handling these situations in this section. As
we will show, given any number of parties N , when the local
dimension d is sufficiently large and when the generalized

GHZ states considered are not confined to the canonical form,
d + 1 genuinely nonlocal generalized GHZ states can always
be constructed in system (Cd )⊗N .

Looking back to the genuinely nonlocal sets constructed
in the last section, for each bipartition, there are always (at
least) d + 1 states being locally equivalent to d + 1 maxi-
mally entangled states in a certain d ⊗ d product subspace
Hd⊗d � Cd ⊗ Cd . Here, a more cunning idea is to make
d + 1 states locally indistinguishable; the (d + 1)th state need
not be supported on the same d ⊗ d subspace. To be more
specific, consider the three orthogonal states

|α1〉 = |00〉 + |11〉√
2

, |α2〉 = |00〉 − |11〉√
2

,

|α3〉 = |01〉
(4)

in system C2 ⊗ C2, which have been shown to be locally
indistinguishable by Ghosh et al. [8]. Ghosh et al. proved this
fact by calculating an upper bound on the distillable entan-
glement of an ingeniously constructed four-party state, which
will then induce a contradiction provided local distinguisha-
bility assumption was made. Actually, there are more concise
ways to prove local indistinguishability of these states: for
example, it is routine to prove that they are locally irre-
ducible, using the TOPLM technique as in [6]. Intuitively but
informally, the local indistinguishability of these states can
be understood in such a way: To distinguish |α1〉 and |α2〉,
we have to measure both subsystems along the {|+〉, |−〉}
basis, by which we get “++” or “−−” if we have |α0〉,
and get “+−” or “−+” if we have |α1〉. Simultaneously,
we must also distinguish |α3〉, but unfortunately |α3〉 = |01〉
has nonzero overlap with each one of | + +〉, | + −〉, | − +〉,
| − −〉. Therefore, the states are locally indistinguishable.
In fact, the assumption that |α3〉 has nonzero overlap with
just one among | + +〉, | + −〉, | − +〉, | − −〉 (equivalently,
nonzero overlap with span {| + +〉, | + −〉, | − +〉, | − −〉})
suffices to induce indistinguishability of the set.

Inspired by this, naturally one might further consider local
distinguishability of the three states

|β1〉 = |00〉 + |11〉√
2

, |β2〉 = |00〉 − |11〉√
2

,

|β3〉 = |01〉 + |12〉√
2

(5)

in C2 ⊗ C3, or alternatively states

|γ1〉 = |00〉 + |11〉√
2

, |γ2〉 = |00〉 − |11〉√
2

,

|γ3〉 = |01〉 + |22〉√
2

(6)

in C3 ⊗ C3. Similarly to {|α1〉, |α2〉, |α3〉}, the last states in
both sets have nonzero overlap with span{| + +〉, | + −〉,
| − +〉, | − −〉} = span {|0〉, |1〉} ⊗ span{|0〉, |1〉} (see Fig. 1).
Beyond questions, it’s reasonable to speculate that they are
also locally indistinguishable. Unlike {|α1〉, |α2〉, |α3〉} how-
ever, we failed to prove this rigorously with the methods
from both [6] and [8]. Fortunately, we instead find that all
such sets are PPT-indistinguishable indeed. For convenience
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FIG. 1. (a) States {|α1〉, |α2〉, |α3〉} in C2 ⊗ C2; (b) States
{|β1〉, |β2〉, |β3〉} in C2 ⊗ C3; (c) States {|γ1〉, |γ2〉, |γ3〉} in C3 ⊗ C3.
The dark tiles signify the conjugate pairs and the grey ones signify
the third states.

of explanation, we first begin with {|β1〉, |β2〉, |β3〉}. There is
a same argument for its d-dimensional analog:

Lemma 2. In two-partite system Cd ⊗ C2d−1 (d � 2), the
following d + 1 orthogonal states:

∣∣χ (d )
k

〉 = 1√
d

d−1∑
j=0

ω
j(k−1)
d | j j〉, (1 � k � d, ωd = e

2π i
d
)

and

∣∣χ (d )
d+1

〉 = 1√
d

d−1∑
j=0

| j, j + d − 1〉 (7)

are PPT-indistinguishable.
Proof. For the last state |χ (d )

d+1〉, its component “|0, d − 1〉”
has nonzero overlap with the d ⊗ d product subspace

span{|0〉, . . . , |d − 1〉} ⊗ span{|0〉, . . . , |d − 1〉}.
Hence, the lemma is a special case of Lemma 3, for which a
more general proof will be given. �

With Lemma 2, we can now construct d + 1 genuinely
nonlocal generalized GHZ states in system Cd ⊗ Cd ⊗ Cd .

Theorem 3. In three-partite system Cd ⊗ Cd ⊗ Cd where
d � 4, there exist d + 1 orthogonal generalized GHZ states
which are genuinely nonlocal.

Proof. For d = 4, we present five orthogonal generalized
GHZ states in C4 ⊗ C4 ⊗ C4 as

|η1〉 = |000〉 + |111〉 + |222〉 + |333〉
2

,

|η2〉 = |000〉 + i|111〉 − |222〉 − i|333〉
2

,

|η3〉 = |000〉 − |111〉 + |222〉 − |333〉
2

,

|η4〉 = |000〉 − i|111〉 − |222〉 + i|333〉
2

,

|η5〉 = |011〉 + |202〉 + |330〉 + |123〉
2

.

(8)

To prove their genuine nonlocality, first consider the bi-
partition AB|C: In the subspace H′

AB ⊗ HC, where H′
AB =

span{|00〉, |11〉, |22〉, |33〉, |01〉, |20〉, |12〉}AB, the states are
locally equivalent to {|χ (4)

1 〉, . . . , |χ (4)
5 〉} (case d = 4 for

Lemma 2) in the bipartite system C4 ⊗ C7, so they are lo-
cally indistinguishable through AB|C. This fact is shown in
Fig. 2. For the other two bipartitions, the same argument can
also be easily verified (for example, A|BC is also shown in

FIG. 2. States {|η1〉, . . . , |η5〉} in bipartitions A|BC and AB|C.
The dark tiles signify the four states |η1〉, . . . , |η4〉 and the grey
ones signify |η5〉. In both bipartitions, they are locally equivalent to
{|χ (4)

1 〉, . . . , |χ (4)
5 〉} in system C4⊗ C7 (case d = 4 of Lemma 2).

Fig. 2). Thus, the generalized GHZ states {|η1〉, . . . , |η5〉} are
genuinely nonlocal.

Notice that the construction of the last state |η5〉 is cru-
cial for the above result: The first three components “|011〉”,
“|202〉” and “|330〉” of |η5〉 are intentionally arranged in such
a way that they have nonzero overlap with the 4 ⊗ 4 subspace

span{|0〉, |1〉, |2〉, |3〉} ⊗ span{|00〉, |11〉, |22〉, |33〉},

in bipartitions A|BC, B|CA and C|AB respectively; The last
component “|123〉” is just to ensure that |η5〉 is a generalized
GHZ state and is orthogonal to others. With these, Lemma
2 can then be applied for each bipartition. Notably, such
constructions are always possible for d � 4. Taking d = 5 for
example, the last state can be constructed as

|011〉 + |202〉 + |334〉 + |143〉 + |420〉√
5

,

which is locally equivalent to |χ (5)
6 〉 (the d = 5 case for

Lemma 2), in each of the three bipartitions. For d = 6, the
last state can be constructed as

|011〉 + |202〉 + |334〉 + |145〉 + |450〉 + |523〉√
6

and so forth for any larger d . �
To construct d + 1 genuinely nonlocal generalized GHZ

states in more-partite systems, we need a slightly more gener-
alized version of Lemma 2:

Lemma 3. In two-partite system C2d−1 ⊗ C2d−1 (d � 2),
the following d + 1 orthogonal states are PPT indistinguish-
able:

|λk〉 = 1√
d

d−1∑
j=0

ω
j(k−1)
d | j j〉 (1 � k � d, ωd = e

2π i
d
)

and

|λd+1〉 = 1√
d

d−1∑
j=0

|e j f j〉, (9)
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FIG. 3. States {|δ1〉, . . . , |δ12〉} in the AB|CD bipartition. The
dark tiles signify the eleven states |δ1〉, . . . , |δ11〉 and the grey ones
represent |δ12〉. Such states are supported on C19 ⊗ C19 and they are
locally equivalent to {|ν1〉, . . . , |ν12〉}.

where the distinct e′
js and the distinct f ′

js satisfy:
(i) 0 � e j, f j � 2d − 2.
(ii) There is at least one j0 ∈ {0, . . . , d − 1} such that

e j0 � d − 1 and f j0 � d − 1.
(iii) For those j such that e j, f j � d − 1, there must be

e j �= f j .
For readability, the proof of this lemma is placed in the

Appendix. Notice that we can always restrict our discussion to
a minimal subspace Cm ⊗ Cn (d � m, n � 2d − 1) on which
|λ1〉, . . . , |λd+1〉 are supported (just as in Lemma 2). This
obviously will not affect the correctness.

Now we take the four-partite case for example. In the four-
qudit system (C11)⊗4, where the standard orthogonal basis
for each subsystem is denoted as {|0〉, . . . , |9〉, |10〉 � |z〉}, the
following 12 orthogonal generalized GHZ states

|δk〉 = 1√
11

10∑
j=0

ω
j(k−1)
11 | j j j j〉

(
1 � k � 11, ω11 = e

2π i
11
)

and

|δ12〉 = 1√
11

(|0111〉 + |2022〉 + |3303〉 + |4440〉

+ |5566〉 + |7878〉 + |9zz9〉 + |1234〉
+ |678z〉 + |8695〉 + |z957〉) (10)

are locally equivalent to the 12 indistinguishable states
{|χ (11)

1 〉, . . . , |χ (11)
12 〉} indicated by Lemma 2, in each of the

“1-3” bipartitions. For the “2-2” bipartitions, take AB|CD
as an example: In Fig. 3, it is shown that {|δ1〉, . . . , |δ12〉}
are locally equivalent to the following orthogonal states in

bipartite system C19 ⊗ C19:

|νk〉 = 1√
11

10∑
j=0

ω
j(k−1)
11 | j j〉, (

1 � k � 11, ω11 = e
2π i
11
)

and

|ν12〉 = 1√
11

(|a1〉 + |b2〉 + |3a〉 + |4b〉 + |56〉 + |cc〉 + |dd〉

+ |ee〉 + | f f 〉 + |gg〉 + |hh〉), (11)

where {|0〉, . . . , |9〉, |10〉 � |z〉, |11〉 � |a〉, |12〉 � |b〉, . . . ,
|18〉 � |h〉} is the standard orthogonal basis for both
subsystems. One can check routinely that {|δ1〉, . . . , |δ12〉}
are also locally equivalent to {|ν1〉, . . . , |ν12〉} in bipartitions
AC|BD and AD|BC (under some permutation of the basis
{|0〉, . . . , |h〉}). By Lemma 3, however, {|ν1〉, . . . , |ν12〉} are
locally indistinguishable. Therefore, the above four-partite
generalized GHZ states in (C11)⊗4 are genuinely nonlocal.

Similarly to the three-partite case, the components
“|0111〉”, “|2022〉”, “|3303〉”, “|4440〉” and “|5566〉”,
“|7878〉”, “|9zz9〉” of the last state |δ12〉 here are intentionally
arranged in such a way that they have nonzero overlap with
the 11 ⊗ 11 subspaces

span{|0〉, . . . , |z〉} ⊗ span{|000〉, . . . , |zzz〉}
and

span{|00〉, . . . , |zz〉} ⊗ span{|00〉, . . . , |zz〉},
in the four “1-3” bipartitions and the three “2-2” bipartitions
respectively. The remaining components are just to ensure that
|δ12〉 is a generalized GHZ state and is orthogonal to others.
Also, such constructions can always be done when d � 11,
and therefore we get a four-partite version of Theorem 3. Go-
ing a step further, for more general N-partite systems (Cd )⊗N ,
similar constructions for the (d + 1)th generalized GHZ states
are always possible as we showed above, provided the local
dimension d is large enough. Therefore, by Lemma 3, we have
the following argument:

Theorem 4. Given any number of parties N , there always
exist d + 1 orthogonal generalized GHZ states in (Cd )⊗N

which are genuinely nonlocal, in the case where the local
dimension d is sufficiently large.

Normally, although a large local dimension d is required
here to achieve the cardinality “d + 1”, for systems with
smaller d , by taking advantage of Lemma 3, genuinely
nonlocal sets with modest cardinality can still be similarly
constructed. Taking N = 4 for example, although d � 11 is
required for cardinality “d + 1” as we mentioned, for the
sightly more compromised “d + 2” (or “d + 3”, “d + 4”),
one can easily observe that only local dimension d � 6 (resp.
d � 4, d � 3) suffices.

The results above are of exceptional interest when con-
sidering the so-called trivial orthogonality-preserving local
measurements (TOPLM) technique. In recent literature,
TOPLM has been frequently utilized as a technique for de-
tecting genuinely nonlocal sets [36–45]. In fact, genuinely
nonlocal sets detected (constructed) this way are referred
to as “strongestly nonlocal sets” by some researchers [46].
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Also, whatever called “strongly nonlocal sets” are all con-
structed this way so far. Not long ago, it was proved in [45]
that for any system (Cd )⊗N , genuinely nonlocal sets con-
structed through TOPLM must have cardinality no smaller
than dN−1 + 1. Here, however, Theorem 4 show the existence
of d + 1 genuinely nonlocal states in (Cd )⊗N , provided d
is sufficiently large. Needless to say, in such an asymptotic
situation, the separation between dN−1 + 1 and d + 1 is huge.
On the other hand, even beyond the asymptotic sense, for
those smallest systems, the separations are already conspicu-
ous: For (C4)⊗3, genuinely nonlocal sets of five states exist by
Theorem 3, while only sets of 17 can be detected with TOPLM
at best; for (C3)⊗4, genuinely nonlocal sets of 7 exist (as
indicated by discussions in the last paragraph) while only
sets of 28 can be detected with TOPLM at best. Undoubt-
edly, such comparisons do illustrate an evident limitation
of the TOPLM technique for detecting genuine nonlocality.
With just TOPLM, we could possibly miss out quite a lot
of interesting genuinely nonlocal sets, especially the small
ones. In addition, here we also point out that the genuinely
nonlocal sets constructed through TOPLM may be redundant.
For example, in [40], the following set of strongly nonlocal
basis consisting of generalized GHZ states in (C4)⊗3 was
constructed through TOPLM: S =⋃16

i=1 Si where

S1 = {|000〉+ ik|121〉+ (−1)k|212〉+ (−i)k|333〉|k ∈ Z3},
S2 = {|003〉+ ik|111〉+ (−1)k|222〉+ (−i)k|330〉|k ∈ Z3},
S3 = {|030〉+ ik|112〉+ (−1)k|221〉+ (−i)k|303〉|k ∈ Z3},

...

S16 = {|032〉+ ik|120〉+ (−1)k|213〉+ (−i)k|301〉|k ∈ Z3}.
(12)

Whereas by Lemma 3, one can easily observe that only six
states among them suffice to exhibit genuine nonlocality. That
is, in the sense of nontriviality, the other 58 states among this
set are redundant.

V. CONCLUSIONS

In this work, we study the problem of constructing small
genuinely nonlocal sets consisting of generalized GHZ states
in multipartite systems. Specifically, we consider systems
(Cd )⊗N in two asymptotic situations: (i) d is fixed and N is
large; (ii) N is fixed and d is large. In the former case, consid-
ering the canonical generalized GHZ bases, we find that only a
proportion �[1/( d√

2
)N ] of the states among such bases suffice

to exhibit genuine nonlocality, whenever the local dimension
d is even. It is noteworthy that �[1/( d√

2
)N ] approaches zero

rapidly as N grows. As for the latter case, we show the exis-
tence of d + 1 genuinely nonlocal generalized GHZ states in
(Cd )⊗N . Moreover, within and beyond the asymptotic sense,
the latter result also indicates some evident limitations of
the TOPLM technique for detecting small genuinely nonlocal
sets.

Recently, the notion “strong nonlocality” has been dis-
cussed a lot by many researchers. However, all existing
examples of strongly nonlocal sets so far are constructed

through TOPLM indeed. Here, we conjecture that the d + 1
genuinely nonlocal GHZ states in Theorem 4 are strongly
nonlocal. Or, to put it another way, we conjecture the d + 1
locally indistinguishable states in Lemma 3 to be locally ir-
reducible. Notably, since any three locally indistinguishable
states are always locally irreducible [36], the conjecture is true
for d = 2 at least. It is reasonable to speculate that the same
holds for d > 2, as the structures of the states are similar: the
first d “conjugate states” (up to Fourier transformation) at-
tached with the last “stopper” state, which has nonzero overlap
with the d ⊗ d subspace on which the “conjugate states” are
supported.

There are also other questions left to be considered.
For example, for the canonical generalized GHZ bases, do
genuinely nonlocal subsets constructed in Corollary 1 and
Theorem 2 have the minimal cardinality? For the multiqubit
case in particular, though we cannot provide a rigorous proof
so far, we conjecture the cardinality m2(N ) to be minimal. Be-
sides, what is the situation for cases when d is odd? Moreover,
it is also interesting to consider other types of multipartite
quantum states. With them, can other interesting small gen-
uinely nonlocal sets be further constructed?
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APPENDIX

1. Proof of Theorem 2

Proof. Suppose that a proper subgroup H < G′ is given,
with |H | = 2t−1 (1 � t � N ) and g1, . . . , gc ∈ G′ (c =
2N−t − 1) the representative elements of its cosets, as dis-
cussed in the proof of Lemma 1. For any h ∈ H , denote
by h = (h(1), h(2), . . . , h(N ) ) (one of) the N-tuple such that
[h] = h and gl = (g(1)

l , g(2)
l , . . . , g(N )

l ) such that [gl ] = gl (1 �
l � c). Let

Nt = {�(h)
k | h ∈ H, 1 � k � d

} ∪ {�gl | 1 � l � c},
where∣∣�(h)

k

〉 = 1√
d

d−1∑
j=0

ω
j(k−1)
d

∣∣∣∣ j ⊕ h(1)d

2

〉
⊗ · · · ⊗

∣∣∣∣ j ⊕ h(N )d

2

〉
(ωd = e2π i/d )

and

|�gl 〉 = 1√
d

d−1∑
j=0

∣∣∣∣∣ j ⊕ g(1)
l d

2

〉
⊗ · · · ⊗

∣∣∣∣∣ j ⊕ g(N )
l d

2

〉
.

For any bipartition S|S where ∅ � S � {1, 2, . . . , N}, which
is indicated by pS|S ∈ G′ (as described in the proof of Lemma
1), there must exist some hS|S ∈ H such that pS|S = hS|S or
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pS|S = hS|S + gl for certain 1 � l � c. For the former case,
the subset {

�
(00···0)
k , �

(hS|S )
k : 1 � k � d

}
is locally equivalent to 2d maximally entangled states in
the d ⊗ d subspace HS

d ⊗ HS
d ⊂ (Cd )⊗|S| ⊗ (Cd )⊗|S| through

S|S, where HS
d = span {| j · · · j〉S}d−1

j=0 and HS
d = span

{| j · · · j〉S}d−1
j=0 . For the latter case, also in bipartition S|S, the

subset {
�gl , �

(hS|S )
k : 1 � k � d

}
is locally equivalent to d + 1 maximally entangled states in
d ⊗ d subspace HS

d ⊗ HS
d ⊂ (Cd )⊗|S| ⊗ (Cd )⊗|S|, where

HS
d = span

{⊗
n∈S

∣∣∣∣ j ⊕ h(n)d

2

〉∣∣∣∣∣0 � j � d − 1

}
and

HS
d = span

⎧⎨⎩⊗
n∈S

∣∣∣∣ j ⊕ h(n)d

2

〉∣∣∣∣∣∣0 � j � d − 1

⎫⎬⎭.

Therefore, Nt is indistinguishable through bipartition S|S and
so for the other bipartitions. Hence, Nt is genuinely nonlocal.
Notice that |Nt | = 2t−1d + 2N−t − 1 = λ2t+	log2

d
2 
 + 2N−t −

1, where 1 � λ = d/2	log2 d
 < 2. |Nt | achieves its minimum

with tm = 	N−	log2
d
2 


2 
 and |Ntm | is just the cardinality md (N )
shown above. �

Notice that tm > 1 whenever N � 	log2 d
 + 3, in which
case |Ntm | is smaller than |N1| = d + 2N−1 − 1, the cardinal-
ity given by Proposition 1.

2. Proof of Lemma 3

Proof. Assume contrarily that |λ1〉, . . . , |λd+1〉 are PPT-
distinguishable. Then by definition, there must exist PPT-
POVMs {M1, . . . , Md+1} (which means Mk, MTA

k � 0 for all
1 � k � d + 1) such that

M1 + · · · + Md+1 = I (A1)

and

Tr(Mk�k ) = 1 (1 � k � d + 1), (A2)

where �k = |λk〉〈λk|′s are the corresponding density opera-
tors and I is the identity on the whole space C2d−1 ⊗ C2d−1.
Denote by

P =
d−1∑
i=0

|i〉〈i| ⊗
d−1∑
j=0

| j〉〈 j|

the projection onto product subspace Hd⊗d =
span{|0〉, . . . , |d − 1〉} ⊗ span{|0〉, . . . , |d − 1〉}. Denote
further that P⊥ = I − P and M̃k = PMkP. Since the states
|λ1〉, . . . , |λd〉 are supported on Hd⊗d , we have P�kP = �k

and thus

Tr(M̃k�k ) = Tr(PMkP�k )

= Tr(MkP�kP) = Tr(Mk�k ) = 1

for 1 � k � d . Also note that |λ1〉, . . . , |λd〉 are of the form

|λk〉 = (Id ⊗ Uk )
1√
d

d−1∑
j

| j j〉 (1 � k � d ),

where Id and U ′
ks are respectively the identity and certain

unitaries on span {|0〉, . . . , |d − 1〉}. Then

�
TA
k = (Id ⊗ Uk )

⎛⎝ 1

d

d−1∑
i, j=0

|i j〉〈 ji|
⎞⎠(Id ⊗ U †

k ) (A3)

and hence there is

− 1

d
Id⊗d � �

TA
k � 1

d
Id⊗d , (A4)

where Id⊗d is just the same thing as P. Here, the operators
in (A3) and (A4) are all supported on subspace Hd⊗d , and∑d−1

i, j=0 |i j〉〈 ji| has only eigenvalues ±1 on it. Therefore, by

1 = Tr(M̃k�k ) = Tr
(
M̃TA

k �
TA
k

)
� Tr

(
M̃TA

k

)
d

(A5)

we get Tr(M̃k ) = Tr(M̃TA
k ) � d for k ∈ {1, . . . , d}. The in-

equality in (A5) holds due to the fact that M̃TA
k = PMTA

k P � 0.
Now multiplying P on both sides of (A1), we get

M̃1 + · · · + M̃d+1 = Id⊗d

and therefore

Tr(M̃1) + · · · + Tr(M̃d+1) = d2.

Since we have Tr(M̃k ) � d for k ∈ {1, . . . , d}, we get
Tr(M̃d+1) = 0 and thus PMd+1P = M̃d+1 = 0. Writing Md+1

in its spectral decomposition form, one can further de-
duce Md+1P = PMd+1 = 0 and therefore Md+1 = (P +
P⊥)Md+1(P + P⊥) = P⊥Md+1P⊥. However, now we get

1 = Tr(Md+1�d+1)

= Tr(P⊥Md+1P⊥�d+1)

= Tr(Md+1P⊥�d+1P⊥)

� Tr(P⊥�d+1P⊥)

� 1 − 〈e j0 f j0 |�d+1|e j0 f j0〉 = 1 − 1

d
,

which is an obvious contradiction. As a result, the states
|λ1〉, . . . , |λd+1〉 are PPT indistinguishable. �
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