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Local unitary equivalence of arbitrary-dimensional multipartite quantum states
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Local unitary equivalence is an important ingredient for quantifying and classifying entanglement. Verifying
whether or not two quantum states are local unitary equivalent is a crucial problem, where only the case of
multipartite pure states is solved. For mixed states, however, the verification of local unitary equivalence is still
a challenging problem. In this paper, based on the coefficient matrices of generalized Bloch representations
of quantum states, we find a variety of local unitary invariants for arbitrary-dimensional bipartite quantum
states. These invariants are operational and can be used as necessary conditions for verifying the local unitary
equivalence of two quantum states. Furthermore, we extend the construction to the arbitrary-dimensional
multipartite case. We finally apply these invariants to estimate concurrence, a vital entanglement measure,
showing the practicability of local unitary invariants in characterizing entanglement.
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I. INTRODUCTION

Entanglement as an important quantum resource plays a
crucial role in quantum information technologies [1], such as
quantum teleportation [2,3], quantum secret sharing [4], quan-
tum cryptography [5], and quantum repeaters [6]. However,
the quantification and classification of entanglement remain a
challenging problem. The local unitary (LU) equivalence of
the quantum state is an effective ingredient to characterize
entanglement, the amount of which is invariant under LU
transformations [7]. The LU invariants of a quantum state
can thus be adopted to detect entanglement or entanglement
classes and to derive, e.g., entanglement measures [8,9] and
separability criteria [10–13]. If one can completely solve the
problem of the LU equivalence class, there will be a major
breakthrough in understanding and making good use of en-
tanglement resources.

In recent years, much effort has been devoted to charac-
terizing and understanding the LU equivalence of quantum
states [14–29]. If two quantum states are LU equivalent, there
must be some invariants under LU transformation. Thus, the
basic method to determine whether or not two quantum states
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are LU equivalent is by checking the LU invariants. Up to
now, many novel methods for computing the LU invariants
have been developed [30,31]. For pure states, an elegant re-
sult of the LU equivalence problem for multipartite qubit
states has been obtained by Kraus [32,33]. The problem for
arbitrary-dimensional pure states case has also been solved
in Ref. [34]. However, for mixed cases, only two-qubit states
and some special cases have been solved. For instance, a set of
18 polynomial invariants is proposed to completely determine
whether a two-qubit mixed quantum state is LU equivalent
to another state [35]. As for arbitrary-dimensional bipartite
quantum states, only a set of LU invariants for nondegenerate
density matrices is known [36]. In general, it is extremely
difficult to present a sufficient and necessary condition for
certifying the LU equivalence of two arbitrary quantum states.

In this paper, we focus on building LU invariants, which are
the necessary condition for the LU equivalence for arbitrary-
dimensional multipartite mixed quantum states. The previous
results for LU problems are to calculate LU invariants from
the density matrices directly, which are inconvenient to deal
with the degeneracy problem. Here, we derive LU invariants
based on the singular value decomposition (SVD) of coef-
ficient matrices under the generalized Bloch representations
of quantum states. In this manner, the difficulty due to de-
generation of the density matrix can be avoided. Moreover,
our method for deriving LU invariants of bipartite states can
be conveniently extended to arbitrary-dimensional multipar-
tite cases. As an example, we show its application in the
case of three-qudit states. Furthermore, the concurrence as
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an entanglement measure [37–42] can be derived from our
LU invariants. A quadratic relation is presented here between
the LU invariants and the concurrence, which reveals the
significance and practicability of LU invariants in exploring
entanglement.

The paper is organized as follows. In Sec. II, we derive nec-
essary conditions for the LU equivalence of any two bipartite
mixed quantum states, from generalized Bloch representations
of the density matrices. In Sec. III, we extend our methods
to the multipartite case and study the LU equivalence for
three-qudit states. In Sec. IV, by analytical calculations, the
relation between the LU invariants and the concurrence is
explored here for pure bipartite states. Finally, we conclude
with our results in Sec. V.

II. TWO-QUDIT CASE

In this section, based on the generalized Bloch represen-
tations of density matrices of arbitrary-dimensional bipartite
quantum states [43,44], we present the necessary conditions
for LU equivalence in matrix form and then try to find the
operational invariants under LU transformations.

Let H1 and H2 be two complex Hilbert spaces with
dim(H1) = dim(H2) = N , and ρ be a density matrix of a
bipartite quantum mixed state acting on H1 ⊗ H2. Without
loss of generality, ρ can be expressed as

ρ = 1

N2
I ⊗ I +

∑
i

Riλ
1
i ⊗ I +

∑
j

S jI ⊗ λ2
j +

∑
i j

Ti jλ
1
i ⊗ λ2

j ,

(1)

where Ti j = 1
4 Tr(ρλ1

i ⊗ λ2
j ), S j = 1

2N Tr(ρI ⊗ λ2
j ), Ri = 1

2N

Tr(ρλ1
i ⊗ I ), i, j = 1, 2, . . . , N2 − 1. Here, λi are the gener-

ators of SU(N ) with Tr(λiλ j ) = 2δi j . The Ti j, S j, Ri are all
real coefficients, as the state ρ and SU(N )′s generators are all
Hermitian.

The two-qudit states ρ and another two-qudit state ρ ′ =
1

N2 I ⊗ I + ∑
i R′

iλ
1
i ⊗ I + ∑

j S′
j I ⊗ λ2

j + ∑
i j T ′

i jλ
1
i ⊗ λ2

j are
called LU equivalent, if there exist unitary operators U1,U2 ∈
SU(N ), such that

ρ ′ = (U1 ⊗ U2)ρ(U1 ⊗ U2)†. (2)

Since the coefficients {Ri, S j, Ti j}i, j capture complete infor-
mation of ρ, one can investigate the LU equivalence based on
the “feature matrix” M(ρ) defined as M(ρ) = [1 St

R T ]. Here,
S = (Sj ) and R = (Ri ) are N2 − 1 dimensional column vec-
tors and T = (Ti j ) is a (N2 − 1) × (N2 − 1) matrix. Similarly,

one can define M(ρ ′) = [ 1 S′t
R′ T ′].

It is shown in Ref. [25] that if two bipartite mixed states ρ

and ρ ′ are LU equivalent, then there are O1, O2 ∈ SO(N2 − 1)
such that R′ = Ot

1R, S′ = Ot
2S, T ′ = Ot

1T O2. Then the fol-
lowing Lemma can be presented.

Lemma 1. If two bipartite mixed states ρ and ρ ′ are
LU equivalent, there are O1, O2 ∈ SO(N2 − 1), such that
M(ρ ′) = diag{1, Ot

1}M(ρ)diag{1, O2}, where t stands for
transposition.

From Lemma 1 we obtain the transformation of the
quantum state’s feature matrix under LU transformations.
As the above Lemma is based on the generalized Bloch

representations, it will be restricted by the properties of Bloch-
vector space [45]. Hence, the special orthogonal matrices
O ∈ SO(N2 − 1) acting on the coefficient vectors of ρ may
transform ρ into an unphysical form that does not satisfy the
definition of a density matrix. Hence, Lemma 1 is a necessary
but not sufficient condition for the LU equivalence of quantum
states when N > 2.

To make the conditions for verifying LU equivalence
operational, we will find further the LU invariants based
on Lemma 1. First, let us focus on matrix T and make
a SVD of it. As T is a real matrix, one can obtain a
real orthogonal matrix P and Q with respect to the corre-
sponding singular values, such that T = P�Qt , where � =
diag{μ1, μ2, . . . , μd , 0, . . . , 0}. Here, the singular values are
in decreasing order, and d is the rank of matrix T . To deal
with the degenerate singular values, one can divide � into a
block matrix by putting the same singular values in a subma-
trix, such that � = diag{�1, �2, . . . , �n, �n+1}, where n + 1
means that there are n + 1 different singular values. The �m is
an am × am matrix with a1 + a2 + · · · + an+1 = N2 − 1. For
m ∈ {1, 2, . . . , n}, there is �m ∝ I . When it comes to the case
of m = n + 1, one should consider whether there exists a zero
singular value of matrix T . If T is a full rank matrix, the
�n+1 is also proportional to the identity matrix, otherwise
�n+1 is a zero matrix. Thus, the matrix M can be rewritten as

M(ρ) = [1
P][1 S̃t

R̃ �
][1

Qt ], where R̃ ≡ Pt R, (S̃)t ≡ St Q.
Let πm(R) denote the projection of the mth part of vector
R and and ‖ ∗ ‖ be the Euclid norm [46]. Here, each part
πm(R) is an am dimensional vector, m = 1, 2, . . . , n + 1. With
these notations, we present our main result as the following
theorem.

Theorem 1. If two two-qudit states ρ and ρ ′ are LU equiv-
alent, one has the following invariants,

(1) �, det(T ), det[M(ρ)],

(2) ‖πm(R̃)‖, ‖πm(S̃)‖, m = 1, 2, . . . , n + 1,

(3) πm(S̃)tπm(R̃), m = 1, 2, . . . , n′,

(3)

where n′ is determined by matrix T . If T has no zero singular
values, one has n′ = n + 1, otherwise, n′ = n.

Proof. From Lemma 1, it is easy to get det(T ′) = det(T )
and det[M(ρ ′)] = det[M(ρ)], as det(Ot

1) = det(O2) =
det(diag{1, Ot

1}) = det(diag{1, O2}) = 1 with O1, O2 ∈
SO(N2 − 1). Similarly, one can perform a SVD of matrices
T ′ with T ′ = P′�′Q′t . If ρ and ρ ′ are LU equivalent, from
Lemma 1 one has T ′ = Ot

1P�Qt O2. As Ot
1P and Qt O2

are orthogonal matrices, one has �′ = �. To prove other
invariants, the degeneracy of matrix T should be considered.
If matrix T is degenerate, P and Q are not unique. First, from
Lemma 1, one can fix P′, Q′ as P′ = Ot

1P, Q′ = Ot
2Q. By

these relations, one has

R̃′ = P′t R′ = Pt O1Ot
1R = R̃, S̃′t = S′t Q′ = S̃t . (4)

Next, let us discuss the general case when T has zero singular
values. For m = 1, 2, . . . , n, as �m ∝ I , the �m-preserving
operations are orthogonal matrices Gm with Gm�mGt

m = �m.
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For m = n + 1, the orthogonal matrices Gn+1,Gn+1 are
�m-preserving operations due to Gn+1�n+1Gt

n+1 = �n+1.
Here, there is no need for the orthogonal matrices Gn+1

and Gn+1 to be the same, as �n+1 is the zero matrix. Thus,
one can construct Õ = diag{G1, G2, . . . , Gn, Gn+1} and
Õ = diag{G1, G2, . . . , Gn,Gn+1}, such that Õ�Õt = �,
where Õ, Õ are orthogonal matrices. For a general SVD of
matrix T , the feature matrix can be written as

M(ρ) =
[

1
PÕ

][
1 S̃§t

R̃§ �

][
1

Õt Qt

]
, (5)

where R̃§ ≡ Õt R̃, S̃§t ≡ S̃tÕ. Similarly, for state
ρ ′, one has R̃′§ ≡ Õ′t R̃′, S̃′§t ≡ S̃′tÕ′, with orthog-
onal matrices Õ′ = diag{G′

1, G′
2, . . . , G′

n, G′
n+1} and

Õ′ = diag{G′
1, G′

2, . . . , G′
n,G ′

n+1}. From Eq. (4), one
has πm(R̃′) = πm(R̃), πm(S̃′) = πm(S̃). Then, from
the definition of R̃§, S̃§, it is easy to check that
‖πm(R̃§)‖ = ‖πm(R̃′§)‖, ‖πm(S̃§)‖ = ‖πm(S̃′§)‖, where
m = 1, 2, . . . , n + 1. Furthermore, for m = 1, 2, . . . , n, one
can also obtain πm(S̃§)tπm(R̃§) = πm(S̃′§)tπm(R̃′§) by direct
calculation. Moreover, if T has no zero singular values, the
�n+1 is not a zero matrix. In this case, one has Gn+1 = Gn+1

and then πn+1(S̃§)tπn+1(R̃§) = πn+1(S̃′§)tπn+1(R̃′§). Without
loss of generality, we can erase the notation § and summarize
the results in Theorem 1. �

From Theorem 1, one can verify that two two-qudit states
are not LU equivalent, if the invariants shown in Eq. (3) are
not equal for two states. Compared with the existing results,
the invariants in Theorem 1 cover the one of Ref. [25] and
have advantages in verifying the LU equivalence of high-
dimensional mixed states.

Example 1. By introducing certain noise into a nonmax-
imally entangled two-qutrit state |ψ〉 =

√
2

4 |00〉 +
√

2
4 |11〉 +√

3
2 |22〉, one has ρ = q|ψ〉〈ψ | + 1−q

6 (|01〉〈01| + |10〉〈10| +
|02〉〈02| + |20〉〈20| + |12〉〈12| + |21〉〈21|). Assuming q =
4
17 , the coefficients of Bloch representation can be obtained
as R = S = (0, 0, 0, 0, 0, 0, 0,−5

√
3/306) and

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
68 0 0 0 0 0 0 0

0
√

6
68 0 0 0 0 0 0

0 0 − 1
68 0 0 0 0 0

0 0 0 − 5
102 0 0 0 0

0 0 0 0
√

6
68 0 0 0

0 0 0 0 0 −
√

6
68 0 0

0 0 0 0 0 0 −
√

6
68 0

0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now, one can construct another state ρ ′ with coefficients
R′ = R, S′ = S, T ′ = −T .

In this case, as the LU invariants in Ref. [25] for the
above two states are all the same, one cannot verify whether
or not the two states ρ and ρ ′ are LU equivalent. However,
by our method, one can check that det[M(ρ)] �= det[M(ρ ′)],
which means ρ and ρ ′ have different invariants. Hence, ρ

and ρ ′ are not LU equivalent. Our results cover the invariants
in Ref. [25] and we have an extra invariant det[M(ρ)]. The
invariants derived in Ref. [25] are based on the orbit of group,
where it cannot naturally lead to the discovery of an invariant
such as det[M(ρ)]. However, our construction of invariants is
based on a feature matrix, which binds together the coefficient
vectors R, S and coefficient matrix T . Moreover, by perform-
ing a SVD of matrix T , we explore the fine-grained relation
between vectors R and S according to singular values of T . In
most of the existing works, they study the coefficient vectors
and coefficient matrix in isolation or bind them by the orbit
of the group. The construction of the feature matrix brings
different points of view to explore the LU invariants, which
can give a more refined characterization of LU equivalence.

By the above discussion, our criteria for verifying the LU
equivalence of arbitrary-dimensional mixed states are supe-
rior, as they can be applied to more scenarios.

III. THREE-QUDIT CASE

To show that the method can be applied to a multipartite
case, we first consider the three-qudit system. Then, with a
simple extension, the generalization to the general multipartite
case is immediate. The generalized Bloch representation of a
density matrix for a three-qudit state can be written as

ρ = 1

N3
I1I2I3 +

∑
i

T 1
i λ1

i I2I3 +
∑

j

T 2
j I1λ2

j I
3

+
∑

k

T 3
k I1I2λ3

k +
∑

i j

T 12
i j λ1

i λ
2
j I

3 +
∑

ik

T 13
ik λ1

i I2λ3
k

+
∑

jk

T 23
jk I1λ2

jλ
3
k +

∑
i jk

T 123
i jk λ1

i λ
2
jλ

3
k, (6)

where λ1
i , λ

2
j , λ

3
k are the generators of SU(N ) with i, j, k =

1, 2, . . . , N2 − 1. Here, T1 = {T 1
i }, T2, T3 are three N2 − 1 di-

mensional coefficient vectors, T12 = {T 12
i j }, T13, T23 are three

(N2 − 1) × (N2 − 1) dimensional coefficient matrices, and
T123 = {T 123

i jk } is a coefficient tensor. Here, one can write
I ⊗ I ⊗ I as I1I2I3 by omitting the notation ⊗. Some results
in the three-qudit system are similar to the two-qudit case. If
two mixed states ρ and ρ ′ are LU equivalent, there are some
O1, O2, O3 ∈ SO(N2 − 1), such that

T ′
1 = Ot

1T1, T ′
2 = Ot

2T2, T ′
3 = Ot

3T3,

T ′
12 = Ot

1T12O2, T ′
13 = Ot

1T13O3, T ′
23 = Ot

2T23O3,

T ′
123 = (

Ot
1 ⊗ Ot

2 ⊗ Ot
3

)
T123.

(7)

Now, let the elements in T123 be arranged as (N2 − 1) ×
(N2 − 1)2 matrices T1|23, T2|13, and T3|12, whose details are
presented in the Appendix. For example,

T1|23 =

⎡
⎢⎢⎣

T111 T112 · · · T1(N2−1)(N2−1)
T211 T212 · · · T2(N2−1)(N2−1)
...

...
. . .

...

T(N2−1)11 T(N2−1)12 · · · T(N2−1)(N2−1)(N2−1)

⎤
⎥⎥⎦,

(8)
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where we let the first subscript be the row index. From Eq. (7),
one has

T ′
α|βγ = Ot

αTα|βγ Oβ ⊗ Oγ , T ′
βγ = Ot

βTβγ Oγ , (9)

where (α, β, γ ) = (1, 2, 3), (2, 1, 3), (3, 1, 2). For the tripar-
tite case, the coefficient vectors and matrices cannot be put
into a single matrix in a meaningful way. Nevertheless, one
can still define some feature matrices as the Mβγ = [ 1 T t

γ

Tβ Tβγ
]

and Mα|βγ = [ 1 T t
β ⊗ T t

γ

Tα Tα|βγ
]. Moreover, letting Tβγ be a column

vector vec(Tβγ ), which is arranged by all columns of the ma-

trix Tβγ , one can construct M̂α|βγ = [ 1 vec(Tβγ )t

Tα Tα|βγ
] which has

the relation vec(T ′
βγ ) = Ot

β ⊗ Ot
γ vec(Tβγ ) from Eq. (9). By

performing a SVD of matrices Tβγ , Tα|βγ , there are orthogonal
matrices Pβγ , Qβγ , Pα|βγ , and Qα|βγ such that

Tβγ = Pβγ �βγ Qt
βγ , Tα|βγ = Pα|βγ �α|βγ Qt

α|βγ , (10)

where the singular values in �βγ and �α|βγ are all in decreas-
ing order. Similar to the two-qudit case, one can divide the
singular-value matrix �βγ (�α|βγ ) into a block matrix with
nβγ (nα|βγ ) submatrices, by putting the same singular value
into a single submatrix. Define vectors u1 = Pt

βγ Tβ , v1 =
Qt

βγ Tγ , u2 = Pt
α|βγ Tα , v2 = Qt

α|βγ (Tβ ⊗ Tγ ), u3 = u2, v3 =
Qt

α|βγ vec(Tβγ ), and n1 = nβγ , n2 = n3 = nα|βγ . From Eqs. (9)
and (10), one has the following theorem.

Theorem 2. If two three-qudit states ρ and ρ ′ are LU
equivalent, one has the following invariants,

(1) �βγ ,�α|βγ , det(Tβγ ), det(Mβγ ),

(2) ‖πm(us)‖, ‖πm(vs)‖, m = 1, 2, . . . , ns,

(3) [πm(us)]t [πm(vs)], m = 1, 2, . . . , n′
s,

where s ∈ {1, 2, 3}, (α, β, γ ) = (1, 2, 3), (2, 1, 3), (3, 1, 2).
In addition, n′

1 is determined by Tβγ and n′
2 = n′

3 are de-
termined by Tα|βγ . If Tβγ has no zero singular values, one
has n′

1 = n1, otherwise, n′
1 = n1 − 1. Similar definitions are

applied to n′
2 and n′

3.
Proof. The proof of Theorem 2 is similar to the one of

Theorem 1, as the LU invariants are obtained from the feature
matrices. �

Theorem 2 leads to more invariants than existing results,
e.g., Ref. [25]. Therefore, it can be adopted to verify the LU
equivalence of the states that cannot have been verified before.
Moreover, the result presents a general approach to derive
the necessary criteria of LU equivalence for the multipartite
qudit case, based on the coefficient vectors and feature ma-
trices constructed from the generalized Bloch representation.
Although, for simplicity, we discussed the qudit case with
the same dimensions, cases with different dimensions can be
studied similarly. Therefore, this method can always be used
to derive the necessary conditions for the LU equivalence of
arbitrary-dimensional multipartite mixed quantum states.

IV. INVARIANTS AND ENTANGLEMENT

Entanglement is one of the most important quantum
resources, which is generally applied in various quantum
information processing tasks. However, the complete char-
acterization of entanglement is extremely challenging. It is

known that a complete set of invariants under LU transforma-
tion can be adopted to depict the properties of entanglement.
For pure states, the constructed invariants can be used to
derive the concurrence. Here, we show how our invariants lead
to the estimation of concurrence.

For simplicity, let us consider a two-qudit pure state ρ. It
is known that the concurrence of a pure bipartite state is given
by CN (ρ) =

√
[N/(N − 1)][1 − Tr(ρ2

1 )] [42,47], where ρ1 is
the partial trace of state ρ by tracing out the subsystem H2.
By combining Eq. (1), one has 1 − C2

N (ρ) = 2N3

N−1‖R‖2. From
the proof of Theorem 1, one can obtain that ‖R‖ = ‖R̃‖ =√∑

m ‖πm(R̃)‖2. As ρ is a pure state, we have ‖R‖ = ‖S‖ =
‖S̃‖ =

√∑
m ‖πm(S̃)‖2. Therefore, one has∑

m

‖πm(R̃)‖2 =
∑

m

‖πm(S̃)‖2 = N − 1

2N3

[
1 − C2

N (ρ)
]
.

By adopting the invariants ‖πm(R̃)‖, ‖πm(S̃)‖, one can mea-
sure the entanglement of any pure two-qudit states. Therefore,
the result simply reveals that the concurrence can be expressed
by our LU invariants in the scenario of bipartite pure states.
The close relation between LU invariants and entanglement
is naturally constructed. Such an intimately deep connection
will promote the research of entanglement measure for mixed
states based on LU invariants.

V. CONCLUSION

In this paper, we have presented the necessary criteria
for the local unitary equivalence of arbitrary-dimensional
multipartite mixed quantum states. By using the criteria,
one can verify the local unitary equivalence of states with
density matrices even having degenerate eigenvalues. It
can be easily extended to the multipartite case, which
gives rise to the necessary criteria for the local unitary
equivalence of multipartite states based on feature matrices.
In addition, the relation between the local unitary invariants
and entanglement is shown with one example of pure bipartite
states. In a similar way, one can find other relations between
local unitary invariants and entanglement measure for any
pure multipartite states. We hope that a full characterization of
the entanglement properties for mixed states can be motivated
from the constructed invariants.

In the future, constructing more local unitary invariants
to obtain sufficient and necessary conditions for verifying
the local unitary equivalence of arbitrary-dimensional multi-
partite mixed quantum states is interesting and challenging.
Meanwhile, more local unitary invariants can promote the
exploration for characterizing entanglement properties.
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APPENDIX: DETAILS FOR MATRICES T2|13, T3|12

Here, the detailed forms of matrices T2|13, T3|12 are pre-
sented as follows,

T2|13 =

⎡
⎢⎢⎣

T111 T112 · · · T(N2−1)1(N2−1)
T121 T122 · · · T(N2−1)2(N2−1)
...

...
. . .

...

T1(N2−1)1 T1(N2−1)2 · · · T(N2−1)(N2−1)(N2−1)

⎤
⎥⎥⎦,

(A1)

T3|12 =

⎡
⎢⎢⎣

T111 T121 · · · T(N2−1)(N2−1)1
T112 T122 · · · T(N2−1)(N2−1)2
...

...
. . .

...

T11(N2−1) T12(N2−1) · · · T(N2−1)(N2−1)(N2−1)

⎤
⎥⎥⎦.

(A2)

For any multipartite case, the coefficient matrix Tα|βγ ... can be
arranged in a similar way, where the αth subscript is used as
the row index.
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