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Variational approach to unique determinedness in pure-state tomography
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In pure-state tomography, the concept of unique determinedness (UD), the ability to uniquely determine
pure states from measurement results, is crucial. This study presents a variational approach to examining UD,
offering a robust solution to the challenges associated with the construction and certification of UD measurement
schemes. We put forward an effective algorithm that minimizes a specially defined loss function, enabling the
differentiation between UD and non-UD measurement schemes. This leads to the discovery of numerous optimal
pure-state Pauli measurement schemes across a variety of dimensions. Additionally, we discern an alignment
between uniquely determined among pure states and uniquely determined among all states in qubit systems
when utilizing Pauli measurements, underscoring its intrinsic robustness under pure-state recovery. We further
interpret the physical meaning of our loss function, bolstered by a theoretical framework. Our study not only
propels the understanding of UD in quantum state tomography forward, but also delivers valuable practical
insights for experimental applications, highlighting the need for a balanced approach between mathematical
optimality and experimental pragmatism.
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I. INTRODUCTION

Quantum state tomography (QST) is a pivotal technique
in quantum information science since it enables the accurate
reconstruction and characterization of quantum states [1–5].
As an essential tool in quantum devices and protocols, QST
has far-reaching implications in various domains, including
quantum computing [6–8], quantum communication [9–11],
and quantum cryptography [12–14].

General QST necessitates d2 measurement outcomes to
recover an arbitrary d-dimensional state. Several positive-
operator-valued measure (POVM) schemes, such as sym-
metric informationally complete POVMs [15] and mutually
unbiased basis POVMs [16], offer satisfactory state recovery.
As for many-body systems, it has been demonstrated that
a minimum of 3n separable projective measurement settings
is required for n-qubit systems [17]. This number can be
reduced to 2n + 1 by allowing nonseparable measurements
[18]. However, these measurement schemes for general QST
can be prohibitively costly for experimental implementation
due to the exponential complexity.

In quantum information science, the focus on pure states
is driven by both theoretical inquiries, such as Pauli’s foun-
dational question about the uniqueness of wave functions
determined by position and momentum distributions [19], and
practical experimental applications, as evidenced by a variety
of implementations [20–23]. This interplay has spurred the
development of pure-state tomography, a concept that not only
stands on its own but also extends to rank-r states [24–27] and
matrix product states [28].
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The significance of pure-state tomography is threefold.
First, it offers resource efficiency by reducing the measure-
ment requirements, owing to the known purity of the state.
Second, accurate preparation and measurement of pure states
are critical in many quantum information tasks like quantum
computing and communication, making pure-state tomogra-
phy indispensable for ensuring high fidelity in these processes.
Finally, as a theoretical challenge, pure-state tomography
deepens our understanding of many aspects of quantum me-
chanics such as the quantum marginal problem [29] and
quantum state discrimination [30].

In this study we primarily focus on the problem of
unique determinedness (UD) of pure states, given the spe-
cific measurement scheme A consists of observables {A0 =
I, A1, A2, . . . , Am}. A measurement scheme A is classified as
UD if any pure state |ψ〉 is uniquely determined among pure
states (UDP) or among all states (UDA) by measuring the
given observables, i.e., any other pure state or mixed state
cannot have the same measurement results as those of |ψ〉.
These definitions are consistent with the notion of (strictly)
informationally complete measurements [15,31,32].

Necessary and sufficient conditions for UD measurement
have been established through the examination of the eigen-
value structure of the orthogonal space with respect to A
[24,25,33]. Interestingly, a gap between UDA and UDP has
been identified in terms of the number of required observables
[24,33]. A similar gap is also present for projective measure-
ments [34,35]. In addition to the theoretical considerations,
experimental aspects have been examined, such as the stability
of state recovery. UDA has been proved to be more robust
against the noise [22,36].

However, constructing UD measurement schemes in a
given scenario proves to be quite challenging, primarily due
to the complexity of verifying UD’s conditions regarding
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the eigenvalue structure. For example, in the study by Ma
et al. [21], optimal UDA Pauli measurement schemes were
identified for two- and three-qubit systems. However, their
approach relied on an exhaustive search, ultimately verifying
the set by considering all possible linear combinations of the
Pauli operators in the orthogonal space. This process led to
lengthy and complex mathematical proofs, which are clearly
not scalable or extendable to more general cases. To address
this challenge, we propose an effective algorithm to determine
whether a given measurement scheme is UD by minimizing a
suitably defined loss function, which significantly streamlines
the certification process.

In n-qubit systems, the numerical results show a clear gap
in minimized loss between UD and non-UD measurement
schemes. The former exhibits a discernibly nonzero value,
while the latter approaches zero within the machine precision.
Consequently, we can set a threshold δ based on the non-
UD’s minimum loss to determine whether a minimized loss
is effectively zero or nonzero; if the value is above δ, we can
regard the scheme as UD.

Furthermore, with the assistance of random sampling tech-
niques, we successfully identify numerous locally or globally
optimal pure-state Pauli measurement schemes across var-
ious dimensions, including previous results for two- and
three-qubit UDA Pauli measurements [21]. Intriguingly, our
findings reveal that in qubit systems, UDP invariably aligns
with UDA when employing Pauli measurements, a phe-
nomenon not commonly observed in other contexts. This
insight implies that Pauli measurements inherently exhibit a
convex property within the context of pure-state recovery.

However, our numerical analyses reveal that not all UD
measurement schemes consistently exhibit distinct nonzero
minimum losses as the dimension increases. A similar pattern
is also noted in Pauli measurements, albeit not significantly.
In essence, the gap between non-UD and UD schemes in
terms of their minimum losses becomes increasingly less ap-
parent, which poses a challenge for finding optimal schemes
in higher dimension. For instance, when considering the UD
scheme built upon polynomial bases [34,35], our numerical
result shows such a scheme experiences a marked decrease
in minimum losses with increasing dimension. Through some
theoretical analysis and numerical experiments, we find the
relation between defined loss and the stability of state re-
covery. To elaborate, we observe that UD schemes with less
minimum loss tend to exhibit greater instability in noisy state
recovery and also pinpoint those vulnerable states. These find-
ings highlight a trade-off between the mathematical optimality
and experimental pragmatism, as real-world experiments of-
ten further require noise-resilient UD schemes.

The structure of this paper is as follows. In Sec. II we define
some necessary concepts and summarize the previous results
of UD schemes. In Sec. III we introduce our variational ap-
proach for determining whether a given measurement scheme
falls into the UD category. Furthermore, a search algorithm
is proposed to identify the locally or globally optimal pure-
state measurement scheme from discrete optional operators.
In Sec. IV we investigate Pauli measurements that adhere
to UD’s criteria, unveiling several intriguing and unantici-
pated findings. In Sec. V we explore the relationship between
our defined loss function and the stability of pure-state

tomography in the presence of noise, laying the groundwork
for devising practical pure-state measurement schemes for
real-world experiments. Section VI offers additional discus-
sion and insights.

II. PRELIMINARY

Quantum state tomography has two basic ingredients:
states and measurements. A quantum state in a d-dimensional
Hilbert space Hd is denoted by a density matrix ρ, which is
positive semidefinite and normalized to unit trace.

A measurement scheme corresponds to a set of observables
A = {A0 = I, A1, A2, . . . , Am}, where the identity ensures the
self-consistency of Tr(ρ) = 1. A measurement process maps
a quantum state ρ to a real vector

a = MA(ρ) = (Tr(A0ρ), Tr(A1ρ), . . . , Tr(Amρ)),

which we refer to as the measurement vector.
The kernel of a measurement scheme A is defined as the

set of Hermitian matrices with zero measurement vector

Ker(A) = {x ∈ Cd×d : MA(x) = 0, x = x†},
where we extend the domain of the mapping MA from quan-
tum states to Hermitian matrices. Since the measurement set
includes the identity, we immediately obtain that all elements
in Ker(A) are traceless, i.e., Tr(x) = 0 ∀ x ∈ Ker(A). From
the perspective of matrix space, Ker(A) is a Hermitian matrix
space orthogonal to A.

With the above concepts, we define UD measurement
schemes as follows.

Definition 1 (UDP scheme). A measurement scheme A is
UDP if any pure state |ψ〉 can be uniquely determined among
pure states by measuring A, i.e., there does not exist any other
pure state which has the same measurement vector a as those
of |ψ〉.

Definition 2 (UDA scheme). A measurement scheme A is
UDA if any pure state |ψ〉 can be uniquely determined among
all states by measuring A, i.e., there does not exist any other
state, pure or mixed, which has the same measurement vector
a as those of |ψ〉.

In a d-dimensional quantum space, it has been established
that a family of 4d − 5 observables suffices for a UDP scheme
[24], while for UDA the number is 5d − 7 [33] (not in-
cluding identity). Regarding d-dimensional POVMs (d > 2),
four orthonormal bases are deemed adequate for UDP [34].
Nonetheless, for d = 4, the sufficiency of three bases remains
an unresolved question. In contrast, UDA demands five bases
[35].

Regarding the many-body systems, we have few previous
results related to UD. One of them is the minimum number of
Pauli operators for UDA in two- and three-qubit systems [21].
In the context of quantum compressed sensing, it is estimated
that O(d log2 d ) random Pauli measurements are adequate for
UDA [36].

The research interest in UDA is due to not only the fun-
damental distinction between UDP and UDA but also its
experimental advantages. Previous studies have shown that
a UDA measurement scheme is more resilient and efficient
under the recovery process [22], as it guarantees the convexity
of the state recovery. This property is also implied in quantum
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compressed sensing [36], where low-rank state recovery using
random Pauli measurements is stable against noise.

It has been shown that a necessary and sufficient condition
for a measurement scheme to be UDP is that every nonzero
� ∈ Ker(A) has max(n−, n+) � 2 [25], where n− and n+ are
the number of strictly negative and positive eigenvalues of a
matrix, respectively. Another equivalent statement is that all
nonzero elements � ∈ Ker(A) have rank(�) � 3 [24]. For
UDA, it is also proven that a necessary and sufficient con-
dition is that every nonzero � ∈ Ker(A) has min(n−, n+) � 2
[25,33]. Another special but common case is that Ker(A) =
{0}, i.e., measurement scheme A constructs a full tomography
process. However, verifying these conditions related to eigen-
values presents considerable mathematical challenges. While
there exist some elaborate mathematical proofs for specific
scenarios, these proofs generally cannot be extended to a
systematic approach.

III. METHOD

Instead of using unextendible mathematical techniques,
we introduce a variational approach to explore the specific
eigenvalue structure of a certain matrix space, which makes
the certification of a UD scheme much more efficient and
automatic. We can construct a variational matrix �(�λ, �ψ ) to
search for a counterexample for the propositions about UDP
and UDA. Starting with the simple one, UDP, we construct a
Hermitian matrix with n− = 1 and n+ = 1 as

�(�λ, �ψ ) = −λ1|ψ1〉〈ψ1| + λ2|ψ2〉〈ψ2|, (1)

where −λ1 and λ2 are one negative and one positive eigen-
value of � with the corresponding eigenvectors |ψ1〉 and |ψ2〉
satisfying the orthonormal condition. In order to ensure that
the matrix � is nonzero, we fix the matrix Frobenius norm as
‖�‖2

F = λ2
1 + λ2

2 = 1. In defining the loss function L as

LA(�λ, �ψ ) = ‖MA(�(�λ, �ψ ))‖2
2, (2)

we utilize the square of norm-2 for its computational simplic-
ity and smoother gradient properties, avoiding the potential
instability in optimization that norm-1’s nonzero gradient near
zero might cause. If the loss function cannot be minimized to
zero (up to machine precision), in principle, we can conclude
that all nonzero elements � ∈ Ker(A) have max(n−, n+) � 2,
i.e., A belongs to UDP.

Similarly, for UDA, we can construct a variational matrix
� with one negative eigenvalue and at most d − 1 positive
eigenvalues, i.e., n− = 1 and n+ � d − 1,

�(�λ, �ψ ) = −λ1|ψ1〉〈ψ1| +
d∑

i=2

λi|ψi〉〈ψi|. (3)

The orthogonal and normalized eigenvectors |ψi〉 are gener-
ated from a unitary matrix via a matrix exponential

f (θψ ) = exp(θψ − θT
ψ + iθψ + iθT

ψ ) : Rd×d → Cd×d ,

where the ith column of f (θψ ) corresponds to |ψi〉. Again, we
require the matrix � to be normalized ‖�‖2

F = ∑
i λ

2
i = 1. To

generate those non-negative valued λi, we use the Softplus
function

Softplus(θλ) = ln(1 + eθλ ) : R → R+,

which is quite common in machine learning [37]. The Softplus
function serves as a smooth approximation to the rectified
linear unit function [38] and is employed to ensure that the
output is invariably positive. Meanwhile, the output of Soft-
plus can approach zero up to machine precision; therefore, the
variational matrix � in (3) can effectively represent the matrix
with n+ � d − 1 from the numerical perspective. The same
loss function L in (2) can be used for the UDA case. Moreover,
since the matrix −� models the element with eigenvalues
n+ = 1 and n− � d − 1 and gives the same loss function,
there is no need to explicitly include −� in the discussion.
With the same argument, we can say a measurement scheme
A is UDA if we cannot optimize the loss function L to zero
within the limits of machine precision.

To minimize the loss function L, we use gradient-based op-
timization, updating the parameters θψ and θλ via PYTORCH’s
gradient backpropagation [39]. Unlike typical neural net-
works, our loss function lacks inherent randomness, leading
us to choose the L-BFGS-B method from the SCIPY package
[40], which generally converges more rapidly than standard
neural network training algorithms like SGD or Adam. To
mitigate the risk of converging only to local minima, we
implement a probabilistic approach: performing N trials with
initially normally distributed θλ and θψ , followed by gradient-
descent updates. A higher number of trials N improves the
chances of reaching the global minimum, though at a cost
of increased computation time. The choice of N should be
adjusted based on the desired balance between computational
resources and the risk of settling at local minima.

However, the question arises: How can we ascertain
whether a minimized loss is effectively zero or nonzero?
To address this, we introduce another hyperparameter, the
threshold δ. This threshold is determined based on the min-
imum loss for non-UD cases, which is considered as zero.
By comparing the minimized loss with this threshold, we can
discern whether the obtained minimum loss is effectively zero
or nonzero.

For instance, one UDA Pauli measurement with the mini-
mum size for two qubits has the form [21]

A = {II, IX, IY, IZ, XI,Y X,YY,Y Z, ZX, ZY, ZZ},
which leads to a minimum loss of 1.0. Notably, if an operator
is removed, the corresponding minimized loss will immedi-
ately deteriorate to the level of 10−11. Thus, 10−11 can be a
reference for setting the threshold δ.

We then propose an algorithm based on random sampling
to search the locally or even globally optimal UDA measure-
ment schemes from discrete optional operators, as shown in
Algorithm 1, and the UDP one will be similar except the
matrix � from (3) is replaced with (1). Here the locally
(globally) optimal means the size of the operator set is a
local (global) minimum and removing any operator from the
algorithm output will lead to a non-UDA scheme.

The algorithm takes inputs: a set of optional observables A
and some hyperparameters (number of trials N and threshold
δ). The variable F is a set containing the operators that must
be included in the measurement scheme, which is initialized
with the identity I . At each step, the algorithm strategically
removes an element from the set A and checks if the result-
ing observable set still meets the UDA criteria. If the kernel
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Ker(A) consists solely of the zero matrix, we can bypass
the more time-intensive optimization steps, as this scenario
unequivocally confirms UDA. For the input set A of finite size
n, the algorithm’s for loop will iterate a maximum of n times.
In the end, such an algorithm will output a locally or globally
optimal measurement scheme.

Algorithm 1. For UDA, input a set of observables A, number
of trials N , and threshold δ. Return a measurement set A with the
minimum size.

1: procedure T (A) � criteria for UDA
2: if Ker(A) = {0} or min� LA(�) > δ for N trials then
3: return True
4: else
5: return False
6: end if
7: end procedure
8: procedure UDA (A, N, δ)
9: F ← {I} � init with identity matrix
10: while A 
= F do
11: randomly pick x from A\F
12: if T (A\{x}) then
13: A ← A\{x}
14: else
15: F ← F ∪ {x}
16: end if
17: end while
18: return A
19: end procedure

IV. RESULTS

In this section we focus on Pauli measurement, i.e., A ⊆
{I, X,Y, Z}⊗n. A natural inquiry emerges: What is the mini-
mum number of Pauli operators required to realize pure-state
tomography in qubit systems? This question gives rise to
a combinatorial optimization problem, which can be highly
intricate. While results for two- and three-qubit systems have
been derived using unextendible mathematical proofs [21], the
general case remains undetermined.

Nevertheless, our method enables the identification of lo-
cally and even globally optimal Pauli measurement schemes
for pure-state tomography. It is noteworthy that if a set of
Pauli operators is classified as UD, any set that is unitarily
equivalent to it is inherently UD. A particular class of unitary
operators which maps the set of Pauli operators to itself is
called a Clifford group. The order of that group increases
substantially with the number of qubits; for instance, one-,
two-, and three-qubit systems correspond to 24, 11 520, and
92 897 280 elements, respectively. This observation implies
the diversity of pure-state tomography schemes in Pauli mea-
surement, as suggested in quantum compressed sensing [36].
Furthermore, numerical experiments reveal that the minimum
loss values between UD and non-UD Pauli measurements
exhibit a clear gap across the variety of dimensions, implying
a relatively large threshold δ is sufficient.

We first revisit the properties for randomly sampled Pauli
operator subsets; the results are shown in Fig. 1. From
n = 3 qubits systems to n = 6 qubits systems, Pauli subsets

No. of Pauli operators (%)

FIG. 1. Graph depicting the transition between low-probability
and high-probability regions for varying percentages of operators in
the whole Pauli group. For each data point, we generate 190 random
subsets and employ the hyperparameters δ = 0.01 and N = 80 in
our algorithm to determine whether a subset qualifies as a UDA
measurement scheme. Subsequently, we calculate the corresponding
qualified probability.

with different sizes are randomly sampled and then the
probabilities of being UDA are computed. As the number
of Pauli operators increases, there is a quick shift between
low-probability and high-probability regions for UDA.
This result aligns with the compressed sensing framework
presented in [36], which demonstrates that randomly sampled
Pauli operators with a certain number can be utilized
effectively for low-rank state tomography in the presence
of noise.

We then apply Algorithm I to search locally or even glob-
ally optimal Pauli operator sets satisfying the UD criteria.
First, an interesting result found by the algorithm is that
all UDP schemes are also UDA. This phenomenon is not
commonly observed in other contexts, implying the Pauli
measurement inherently exhibits a convex property within
the realm of pure-state tomography. Making use of this phe-

TABLE I. The UD scheme with Pauli measurement. The col-
umn heading m × n denotes we find m UD Pauli measurement
schemes with n Pauli operators (including the identity), which could
be Clifford equivalent. The minimized loss L for UDA and UDP
is evaluated for the scheme with minimum size. The computation
time (in seconds) is also listed, wherein t1 and t2 represent the time
required for a single certification and the total time needed to search
for a locally optimal scheme respectively. Here N denotes the number
of trials in a single certification.

No. of qubits (UDA,UDP) L m × n t1/t2 N

2 (1,2) 6 × 11, 19 × 13 0.05/0.4 10
3 (0.519,2) 176 × 31, 258 × 32 0.06/2.5 10
4 (0.280,1.788) 3 × 106, 14 × 107 2.4/81 80
5 (0.202,1.951) 1 × 393, 1 × 395 25/8400 640
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nomenon, we can run the algorithm to search for optimal UDP
Pauli schemes and then verify whether the found one is a UDA
scheme since the UDA searching algorithm is much more
time consuming than the UDP one. Due to that alignment,
we will uniformly designate them as UD. Second, deduced
from our random sampling experiment (see Fig. 1), let kn

indicate a threshold for the initial random subset size of Pauli
operators. For a system of n qubits with 4n Pauli operators, a
subset of more than kn operators typically constitutes a UD
measurement with high probability. This approach enables
us to start with a smaller subset rather than the entire Pauli
group, enhancing computational efficiency. If this subset fails
the UD criteria, we repeat the sampling process. For three-
, four-, and five-qubit systems, we select initial subsets of
approximately 0.85/0.7/0.55 × 4n ≈ 54/176/554 operators,
respectively, as observed to be effective in our numerical
experiments.

The outcomes of the search algorithm are presented in
Table I. Through the application of this algorithm, a multi-
tude of locally or globally optimal UD schemes have been
discovered, with several of them listed in the table. For two-
and three-qubit systems, we have successfully identified the
optimal UD schemes with minimal size, aligning with previ-
ous findings reported in [21]. For the four-qubit and five-qubit
Pauli measurements, the minimal sizes of the UD schemes
found are 106 and 393, respectively. Upon a thorough investi-
gation of all Clifford elements [41], we have ascertained that
within the two-qubit system, all 6 discovered subsets, each
comprising 11 Pauli operators, are equivalent. Additionally,
there are 20 equivalent subsets, each containing 13 operators,
of which we have successfully identified 19. In the context of
a three-qubit system, our findings show that there are precisely
30 240 equivalent subsets, each with 31 Pauli operators; our
research has uncovered 176 of these subsets. As we extend
our analysis to the four-qubit scenario, the number of equiv-
alent subsets, each encompassing 106 operators, surpasses at
least 100 × 106.

Consideration is also given to the factor of time scaling.
As observed in the table, the computation time, denoted by
t2, required for locating a locally optimal scheme escalates
significantly with an increase in the number of qubits. This
escalation imposes constraints on feasibility in higher dimen-
sions. However, in practical applications, a randomly sampled
subset of Pauli operators can already dramatically mitigate
the number of required operators. The time needed to identify
such a subset equates to a relatively small integer multiple of
t1, rendering it acceptable in most circumstances.

V. ANALYSIS

The numerical results demonstrate the feasibility of our
method for identifying optimal pure-state Pauli measure-
ment schemes. However, we observe that as the dimension
increases, not all types of UD measurement schemes consis-
tently exhibit a distinct nonzero minimum loss. This presents a
challenge for the discovery in higher dimensions. Indeed, the
case for Pauli measurements also decays, albeit marginally.
One might speculate that increasing the fixed norm along with
the dimension could improve the situation, but this would
affect not only the minimum loss for UD but also that of

non-UD, which remains the difficulty of determining the
threshold δ. The above observation prompts us to consider the
physical meaning of our previously defined loss function (2)
and finally reveals a connection to the stability against noise.
This connection implies a trade-off between the mathematical
optimality and experimental pragmatism.

A. Stability theory

A realistic measurement is always affected by noise, which
leads to the deviation of the measurement results. For that
reason, here we define the closeness of two measurement
schemes. Two measurement schemes MA and MA′ are ε-
close if

max
x=x†,‖x‖F=1

‖MA(x) − MA′ (x)‖2 < ε.

Then two theorems can be obtained directly from [35] with
different norms.

Theorem 1 (stability of unique determinedness). If a mea-
surement scheme A is UD, then there is an ε > 0 such that
every measurement scheme A′ which is ε-closed to A is also
UD.

Proof. Let

K1 := {x ∈ Cd×d : x = x†, ‖x‖F = 1, n−(x) = n+(x) = 1}
and

K2 := {x ∈ Cd×d : x = x†, ‖x‖F = 1, n−(x) = 1}.
As we have seen, a measurement scheme is UD if and only if

c := min
x∈Ks

‖MA(x)‖2 > 0,

with s = 1 for UDP and s = 2 for UDA. Since MA′ is ε-close
with respect to MA, we have

min
x∈Ks

‖MA′ (x)‖2

� min
x∈Ks

[‖MA(x)‖2 − ‖MA(x) − MA′ (x)‖2]

� c − ε.

Hence, for any ε < c, the measurement scheme A′ is
also UD. �

Clearly, we can find that the minimum value of the loss
function LA will reflect the stability of a UD measurement
scheme A. The allowed systematic error for pure-state mea-
surement is bounded by c, which is the square root of our loss
function’s minimum value. Furthermore, we can consider the
state recovery process

minimize ‖MA(Y ) − b‖2

s.t.

⎧⎪⎨
⎪⎩

Y � 0
Tr(Y ) = 1

rank(Y ) = 1 for UDP only,

(4)

where b := MA(σ ) + f is the perturbed measurement data
with a noisy term f . It should be emphasized that the UDP
version is not a convex optimization problem and does not
guarantee finding the global minimizer Y ∗ using gradient-
based methods while UDA does. For the noiseless case
‖ f ‖2 = 0, the minimizer Y ∗ will be exactly the same as the
original state σ . For some nonzero noise ‖ f ‖2 > 0, we define
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4PBs

(a) (b)

3PBs
5PBs
4PBs

FIG. 2. (a) The UDP loss function comparing 4PBs and 3PBs
(drop B4 from 4PBs). (b) The UDA loss function comparing 5PBs
and 4PBs. The blue lines with dots denote the UDP-UDA schemes,
while the orange lines with crosses denote the non-UDP and UDA
schemes. The observed fluctuations in the minimum losses below
10−8 can be attributed to limitations in convergence tolerance.

the stability coefficient α as the ratio of the state recovery error
over the summation of the optimization objective function and
the noise rate

α := ‖Y ∗ − σ‖F

‖MA(Y ∗) − b‖2 + ‖ f ‖2
.

The Frobenius norm is chosen for its convenience in nu-
merical calculations. In order to get an accurate restored state,
the stability coefficient α is expected to be as small as possi-
ble. Then the second theorem arises.

Theorem 2 (stability of recovery). Given a UD measurement
scheme A, for all pure states σ and error terms f , the stability
coefficient α is bounded

α �
[

inf
x∈Ks

‖MA(x)‖2
]−1

, (5)

with s = 1 for UDP and s = 2 for UDA.
Proof. We will prove the UDA case in the following since

UDP can be done in the same way. Let Y ∗ be the minimizer
of the optimization problem (4). From the definition of the
perturbed measurement b and the Cauchy-Schwarz inequality,
we have

‖MA(Y ∗) − b‖2

� ‖MA(Y ∗ − σ )‖2 − ‖ f ‖2

� ‖Y ∗ − σ‖F inf
X�0,X 
=σ
Tr[X ]=1

∥∥∥∥MA

(
X − σ

‖X − σ‖F

)∥∥∥∥
2

− ‖ f ‖2

� ‖Y ∗ − σ‖F inf
x∈K2

‖MA(x)‖2 − ‖ f ‖2.

The fourth line is derived from the following inclusion relation
derived from Weyl’s inequalities:{

X − σ

‖X − σ‖F
: X � 0, X 
= σ, Tr[X ] = 1

}
⊆ K2.

�
Consequently, the upper bound of the coefficient α exhibits

an inverse relationship with minx∈Ks ‖MA(x)‖2, which cor-
responds to the square root of the minimal value of the loss
function. This quantity can be regarded as a quality factor,
signifying the effect of noise in the state recovery.

In summary, UDA schemes offer enhanced reliability
in recovery due to their convexity, while UDP schemes
may encounter local minima, resulting in the inability
to obtain the optimal minimizer Y ∗. On the other hand,
measurement schemes with lower minimum loss demand
greater experimental precision and yield suboptimal recovery
outcomes.

We demonstrate the above theorems in the following
example: a projective measurement scheme constructed by
polynomial bases, which highlights the significance of min-
imum loss in pure-state tomography against noise.

B. Measurement with polynomial bases

The four polynomial bases (4PB) [34] for one qudit Hd

consists of the orthonormal sets

B1 =
{

|φk〉〈φk| : |φk〉 =
d−1∑
j=0

p j (xd,k )| j〉
}d

k=1

,

B2 =
{

|φk〉〈φk| : |φk〉 =
d−2∑
j=0

p j (xd−1,k )| j〉
}d−1

k=1

∪ {Pd−1},

B3 =
{

|φk〉〈φk| : |φk〉 =
d−1∑
j=0

ei jα p j (xd,k )| j〉
}d

k=1

,

B4 =
{

|φk〉〈φk| : |φk〉 =
d−2∑
j=0

ei jα p j (xd−1,k )| j〉
}d−1

k=1

∪ {Pd−1},

where p j (x) can be any normalized orthogonal polynomials,
xd,1, xd,2, . . . , xd,d are roots of the dth-order polynomials
pd (x), and Pi = |i〉〈i| is the projector to the ith basis. Also, the
condition ei jα /∈ R, j = 1, 2, . . . , d − 1, is required. Combin-
ing B5 = {Pi}d−1

i=0 with the 4PBs, we can obtain 5PBs. Below
we choose pn(x) as Chebyshev polynomials and α = π

d for
simplicity.

These projectors compose our measurement scheme A,
where we omit the identity operator for convenience. It has
been proven that 4PBs are UDP [34], while 5PBs are UDA
[35] for any d-dimensional quantum space. The absence of
any base will result in non-UD. We calculate the minimum
losses for different dimensions between UDP and UDA and
between non-UDP and UDA in Fig. 2. Notably, the mini-
mum losses for non-UD consistently remain below 10−10,
while UD’s minimum losses tend to approach zero as the
dimension increases, thereby introducing the potential for
instability.

We then investigate the stability of state recovery of the
5PBs; the results are shown in Fig. 3. Given the measure-
ment scheme of 5PBs, we can find the optimal �∗ in (3)
with 1 negative eigenvalue and d − 1 positive eigenvalues to
give the minimum of the loss function in (2). We conjecture
that the eigenvector |ψ−〉 with the negative eigenvalue will
produce the worst performance of state recovery, according to
the upper bound proposed in (5). To verify this conjecture, we
generate two random pure states σ0 and σ1 according to the
Haar measure [42] for comparison.

In Fig. 3(a) we set the qudit dimension d = 7 and randomly
generate measurement results b = MA(σ ) + f with different
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FIG. 3. Stability of state recovery using 5PBs (UDA) for one d-
dimensional qudit. Here |ψ−〉 denotes the pure state with the negative
eigenvalue found in minimizing the loss function (2) and σ1 and σ2

are two random pure states. (a) Recovered error ‖MA(Y ∗) − b‖2

versus noise rate ‖ f ‖2 for d = 7, (b) stability coefficient α versus
noise rate ‖ f ‖2, (c) stability coefficient α versus dimension d , and
(d) fidelity between the original and the restored states for different
dimensions d . Shaded region denotes the (minimum or maximum)
range over randomly sampled noise for all panels.

noise rate ‖ f ‖2. For every noise rate, 500 random noise vec-
tors f are generated and then the convex optimization package
CVXPY [43] is used to solve this semidefinite programming
in (4) and the minimizer Y ∗ is always found. The average
recovery errors ‖MA(Y ∗) − b‖2 over 500 samples are plotted
with solid lines with the shaded region denoting the minimum-
maximum range. From the figure we can see that the recovery
error in measurement space is almost linear with respect to the
noise rate for all three pure states.

However, the recovery errors ‖Y ∗ − σ‖F in density matrix
space present a significant difference for the |ψ−〉 state, as
shown in Fig. 3(b). When the noise rate is relatively low
(e.g., ‖ f ‖2 ≈ 10−6), the stability coefficient α are all below
10, which is acceptable. In other words, the restored state
Y ∗ is pretty close to the original state σ . For a not-too-large
noise rate (e.g., ‖ f ‖2 ≈ 2 × 10−5), the stability coefficients
for two random states remain below 10, while the coeffi-
cient for |ψ−〉 explodes to around 1000. As a reference,
we also plot the predicted upper bound (5) with the red
dashed line L−1/2 = 8260. A clear transition can be observed
around ‖ f ‖2 = 10−5.

In Fig. 3(c), for a fixed noise rate ‖ f ‖2 = 10−4, the stability
behavior versus different qudit dimension d is investigated.
We find that such instability is getting worse as the dimension
d increases. Still, the upper bound proposed in (5) is shown
by a red dashed line for reference. It should be emphasized
that the upper bound L−1/2 will be larger than 104 for d � 8,
and the deceptive saturation in the figure is due to the limited
precision in the numerical calculations. Subsequently,
we compute the corresponding fidelities as illustrated
in Fig. 3(d). It becomes evident that the fidelity for the
worst-case scenario diminishes considerably as the dimension

No. of qubits No. of qubits

FIG. 4. Stability of state recovery using Pauli measurements for
four qubits. Here |ψ−〉 denotes the pure state with the negative
eigenvalue found in minimizing the loss function (2) and σ1 and
σ2 are two random pure states. (a) Recovered error ‖MA(Y ∗) − b‖2

versus noise rate ‖ f ‖2 with n = 4, (b) stability coefficient α versus
noise rate ‖ f ‖2 with n = 4, (c) stability coefficient α versus number
of qubits n, and (d) fidelity versus the number of qubits n. The shaded
region denotes the (minimum or maximum) range over randomly
sampled noise for all panels.

d increases. For comparison, we also explore the stability of
pure-state tomography employing Pauli measurement (see the
Appendix), which gives almost perfect state recovery.

In conclusion, generally, for random states (like σ0 and σ1

in Fig. 3), the restored states will be close to the original ones.
However, there are some special states (like |ψ−〉 found in
optimization) where, once the noise rate is greater than some
threshold, a not-too-large noise can lead to a significantly
different restored state, which implies that pursuing strictly
optimal pure-state tomography with minimal loss might
not be a practical approach when considering the stability
against noise.

VI. DISCUSSION

In this study we tackled the challenge of verifying UD
measurement schemes by proposing an efficient algorithm
that minimizes a suitably defined loss function. This method
allows us to determine if a given measurement scheme is qual-
ified for pure-state tomography, which can also be applicable
for measurement settings [44].

Using random sampling techniques, we identified numer-
ous optimal pure-state Pauli measurement schemes across
various dimensions and discovered that in qubit systems, UDP
always coincides with UDA for Pauli measurements, suggest-
ing a convex property in pure-state tomography. However, the
mathematical proof of this property needs to be investigated
further.

Our findings also indicate that not all types of UD schemes
exhibit an obviously nonzero value as the dimension in-
creases, making the distinction between non-UD and UD
schemes less evident. By exploring the connection between
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our loss function and the stability of measurement schemes,
we revealed that a pure-state measurement scheme with a
lower minimum loss will result in suboptimal state recov-
ery. We investigated and demonstrated this phenomenon in
the projective measurement constructed by polynomial bases.
These findings suggest a trade-off between the mathemat-
ical optimality of measurement schemes and their stability
against noise.

The utility of our proposed methodology extends beyond
the realm of pure-state tomography, encompassing additional
tasks in the domain of quantum information, such as entangle-
ment detection [45] and superactivation [46]. Our approach
has the potential to evolve into a comprehensive framework
for scrutinizing the unique structure of a given space, which
could comprise desired elements such as operators, matrices,
and states. For instance, with slight modifications, our method
can be used to detect entanglement or even higher Schmidt
ranks within a given subspace. This approach could prove
to be more efficient and universal compared to recent work
[47]. Detailed elaboration and exploration of these potential
applications are left for future work.

Both the code and data for our project have been made
publicly available. Our open-source repository can be
accessed in [48].
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APPENDIX: STABILITY OF PAULI MEASUREMENT
FOR PURE-STATE TOMOGRAPHY

Similar calculations are performed on n-qubit optimal
Pauli measurement schemes found by the search algorithm
(see Table I), as shown in Fig. 4. Three pure states are consid-
ered: |ψ−〉, the pure state with the negative eigenvalue found
in minimizing the loss function (2), and σ1 and σ2, two random
pure states. Different from the 5PB case in Sec. V B, the
recovered error ‖MA(Y ∗) − b‖2 and the stability coefficient
for n = 4 qubits, plotted in Figs. 4(a) and 4(b), show no
difference among these three pure states. For a fixed noise rate
‖ f ‖2 = 10−4 and various numbers of qubits, no significant
difference can be observed among them. More importantly,
for such a parameter setting ‖ f ‖2 = 10−4, the recovered fi-
delities for all three pure states are almost 1, which implies
perfect state recovery.
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