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First-quantized adiabatic time evolution for the ground state of a many-electron system
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We propose an adiabatic time evolution (ATE) method for obtaining the ground state of a quantum many-
electron system on a quantum circuit based on first quantization. As a striking feature of the ATE method,
it consists of only unitary operations representing real-time evolution, which means that it does not require
any ancillary qubits, nor controlled real-time evolution operators. Especially, we explored the first-quantized
formalism of ATE method in this study since the implementation of first-quantized real-time evolution on
quantum circuits is known to be efficient. However, when realizing the ATE quantum circuit in first-quantization
formalism, obstacles are how to set the adiabatic Hamiltonian and how to prepare the corresponding initial
ground state. We provide a way to prepare an antisymmetrized and nondegenerate initial ground state that is
suitable as an input to an ATE circuit, which allows our ATE method to be applied to systems with any number
of electrons. In addition, by considering a first-quantized Hamiltonian for quantum-mechanical electron system
and classical nuclear system, we design a quantum circuit for optimal structure search based on ATE. Numerical
simulations are demonstrated for simple systems, and it is confirmed that the ground state of the electronic
system and optimal structure can be obtained by our method.
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I. INTRODUCTION

Efficient calculation for the ground state of a given Hamil-
tonian is of crucial importance in a wide range of fields. This is
because solving practically interesting problems can often be
paraphrased as finding the ground state of a properly defined
Hamiltonian. In quantum physics and quantum chemistry, to
prepare a ground state and low-energy states is also important
because a lot of fundamental properties can be extracted from
these states of the electron system. Research into quantum
algorithms for ground-state preparation has been actively pur-
sued [1–15].

Several schemes have been proposed to obtain the ground
state by realizing nonunitary operations to the system of in-
terest on quantum circuits, such as imaginary-time evolution
(ITE) [9–11,14,15], cosine functions [8,12], or shifted step
functions [6,7]. What these methods have in common is that
they introduce ancillary qubits to widen the Hilbert space,
exploit the probabilistic nature in the observations of ancillary
qubits, and utilize forward and backward controlled real-time
evolution (CRTE) operators.

On the other hand, there are widely known methods for
ground-state calculation called adiabatic quantum computa-
tion (AQC) or quantum annealing (QA) [1,16,17], and these
have attracted attention in the field of combinatorial op-
timization [18,19] as well as quantum chemistry [20–24].

*nishiya.y.aa@m.titech.ac.jp

Recently, QA has also been gaining attention in the field of
materials science, particularly in terms of predicting crystal
structures [25,26] and adsorption sites of molecules [27].
In these methods, energy minimization problems for atoms
and molecules interacting under some modeled potential are
translated into quadratic unconstrained binary optimization
(QUBO) or higher-order unconstrained binary optimization
(HUBO) form, which is compatible with the various Ising
machines currently available. As examples of the appli-
cation of AQC to quantum chemistry, some schemes for
ground-state preparation have been proposed [3,28–31], all
of which are based on second quantization. By QA based
on the first-quantized Hamiltonian and using the kinetic term
as a quantum fluctuation, Koh and Nishimori [32] discuss
the optimization problem of Shinomoto-Kabashima–type po-
tential, which has multiple local minima in a continuous
one-dimensional space. However, there is no mention of how
to construct a quantum circuit representing the real-time evo-
lution (RTE) by the first-quantized Hamiltonian.

The RTE of a quantum system based on the first-
quantized Hamiltonian on a quantum computer was proposed
in Refs. [33,34], and Kassal et al. [35] demonstrated that
quantum computers can simulate the RTE in polynomial
time while the computational cost using classical comput-
ers increases exponentially with system size. Moreover, the
advantage of employing first quantization over second quan-
tization is discussed in Refs. [10,11,36]. The scaling of the
operation number per RTE step with respect to the number of
electrons ne is estimated to be better when considering the
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first-quantized Hamiltonian than the second-quantized one.
Specifically, it is evaluated as O[n2

epoly(logne)] for the first
quantization while it is O(n4

e ) for the second quantization due
to the two-electron integrals in the Hamiltonian [37]. In this
paper, we describe a method to obtain the ground state of
a many-electron system using first-quantized adiabatic time
evolutioin (ATE) on a quantum circuit and give an example
of the construction of an appropriate initial Hamiltonian and
its ground state. ATE does not require ancillary qubits, ob-
servations in the middle of calculation, nor CRTE operations
because of its unitarity.

In addition, by considering a first-quantized Hamiltonian
for quantum-mechanical electron system and classical nuclear
system, we construct a quantum circuit for optimal structure
search on the Born-Oppenheimer surface, using ATE in a
similar way as in Ref. [11]. Hirai et al. [38] presented a molec-
ular structure optimization method where nuclei are treated as
quantum-mechanical particles, but in general more qubits are
required to represent the nuclear wave function. In contrast to
the method of structural optimization by calculating energy
gradients proposed in Ref. [39], our structural optimization
scheme does not require multiple observations of the gradients
and furthermore is a global search in the possible coordination
space. We have applied these schemes to simple systems and
performed numerical simulations.

II. METHODS

A. Implementation of adiabatic time evolution

1. Adiabatic quantum computation

Let us consider the time-dependent Hamiltonian Ĥ(t )
which evolves from Ĥ(0) = Ĥini to Ĥ(tf ) = Ĥfin. Ĥini and
Ĥfin represent the initial and the final Hamiltonian, re-
spectively. |ψgs

t 〉 is the instantaneous ground state of Ĥ(t )
when considering the time-independent Schrödinger equa-
tion Ĥ(t )|ψ〉 = εt |ψ〉. By discretizing time into N steps with
the constant interval �t , the time-evolved state from t = 0 to
tf according to the time-dependent Schrödinger equation can
be approximated within the first-order Trotter splitting as

|ψ (tf )〉 ≈
1∏

m=N

[e−iĤ(tm )�t ]|ψ (0)〉, (1)

with �t ≡ tf/N and tm ≡ m�t . �t is assumed to be suffi-
ciently small. If |ψ (0)〉 = |ψgs

0 〉 is satisfied, tf is large, and
the change of Ĥ(t ) is very slow, |ψ (tf )〉 ≈ |ψgs

tf 〉 is derived
[40,41]. The ground state of Ĥfin results from an ATE starting
from the well-known Hamiltonian Ĥini and its ground state.
The following is conventionally used as the condition for the
time evolution to be adiabatic [42,43]:

max
j∈{1,2,3,... },t∈[0,tf ]

{∣∣〈ψ j
t

∣∣∂tĤ(t )
∣∣ψgs

t

〉∣∣
� j (t )2

}
� 1, (2)

where |ψ j
t 〉 is the jth excited state of the instantaneous

Ĥ(t ) and � j (t ) is the energy gap between the instantaneous
ground state and the jth excited state. The transitions from the
ground state at t are assumed to be dominant since |ψ (0)〉 is
initially |ψgs

0 〉.

2. First-quantized Hamiltonian

Here we target a first-quantized Hamiltonian for an elec-
tronic system, which is expressed as the sum of the kinetic
energy part T̂ and the position-dependent potential part Vfin or
Vini:

Ĥfin = T̂ + Vfin({r̂l}),

Ĥini = T̂ + Vini({r̂l}), (3)

where

T̂ ≡
∑

l

p̂2
l

2me
. (4)

p̂l and r̂l are the momentum and the position operators of the
lth electron, respectively. me is the electron mass. Both Vfin

and Vini consist of external potentials and electron-electron
interactions. All the quantities in this paper are in atomic
units unless otherwise stated. We define the time-dependent
Hamiltonian for ATE as

Ĥ(t ) = T̂ + V̂ (t ), (5)

where the boundary conditions of the potential part are
V̂ (0) = Vini and V̂ (tf ) = Vfin. It is natural to assume that V̂ (t )
for every t is symmetric with respect to the exchange of any
two electrons since they are identical particles. By employing
a first-order Suzuki-Trotter expansion in conjunction with the
adiabatic theorem, the ground state |ψgs

tf 〉 of the objective
Hamiltonian Ĥfin is given as

∣∣ψgs
tf

〉 ≈
1∏

m=N

[
e−iT̂ �t e−iV̂ (tm )�t

]∣∣ψgs
0

〉
. (6)

In this study, the initial Hamiltonian Ĥini is chosen so that
its ground state is not degenerate for simplicity although the
adiabatic condition in the case where the ground state is al-
lowed to be degenerate is discussed in Ref. [44]. Furthermore,
we have to keep in mind that the final state |ψ (tf )〉 must be
antisymmetric with respect to the exchange of any pair of elec-
trons [34]. Otherwise, the final state obtained has no physical
meaning. Now, since the time-dependent Hamiltonian Ĥ(t ) is
assumed to be symmetric with respect to the exchange of any
pair of electrons, it follows immediately from Eq. (1) that the
final state is antisymmetric if and only if the initial ground
state |ψ (0)〉 = |ψgs

0 〉 is antisymmetric. An example of how to
construct a nondegenerate and antisymmetrized initial ground
state for a many-electron system is described in Sec. II A 4.

3. Construction of the quantum circuit

We encode the ne-electron wave function confined in a
cubic cell of size L using nqe qubits for each spatial direc-
tion per electron, as usual in the first-quantized formalism
[10,35,36,45–47]. The spin degree of freedom for each elec-
tron can be encoded by introducing a single additional qubit
per electron. We ignore, however, the spin degrees of freedom
of spins in this study for simplicity. We refer to the 3nenqe

qubits collectively as the electronic register. We generate uni-
form grid points in the cell to encode the wave function ψ
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FIG. 1. Quantum circuit of Ckin which implements the RTE due to T̂ for the ne-electron system. In the left circuit, the top wire bundle
corresponds to the first electron and the bottom bundle corresponds to the neth electron.

as

|ψ〉 = �V ne/2
∑

k0,...,kne−1

ψ
(
r(k0 ), . . . , r(kne−1 ))

× |k0〉3nqe ⊗ · · · ⊗ |kne−1〉3nqe , (7)

where kl is the vector of the three integers specifying the po-
sition eigenvalue (klx ex + kly ey + klz ez )�x for the lth electron.
�x ≡ L/Nqe is the grid spacing of Nqe ≡ 2nqe grid points in
each spatial direction. �V ≡ �x3 is the volume element for
the normalization of |ψ〉.

As the canonical counterpart of the discretized posi-
tions, we define the Nqe discrete momenta of a particle
for each spatial direction p(̃s) ≡ s̃�p(̃s = −Nqe/2,−Nqe/2 +
1, . . . , Nqe/2 − 1) with the momentum step �p ≡ 2π/L in
reciprocal space. The tilde symbol for an integer j means
j̃ ≡ j − Nqe/2 in what follows. We define the momentum
eigenstate specified by three integers sx, sy, and sz as the
Fourier transform of the position eigenstates:

∣∣p(s̃)〉 ≡ 1

N3/2
qe

Nqe−1∑
kx=0

Nqe−1∑
ky=0

Nqe−1∑
kz=0

exp
(
ip(s̃) · r(k))|k〉3nqe . (8)

|p(s̃)〉 is also the eigenstate of the kinetic energy operator
T̂ν ≡ p̂2

ν/(2m) (ν = x, y, z) for each direction belonging to
the discrete kinetic energy Ekins ≡ s̃2(�p)2/(2m). By defin-
ing the kinetic-phase gate Ukin(�t ) for nqe qubits such that
it acts on a computational basis | j〉nqe as Ukin(�t )| j〉nqe =
exp(−iEkin j�t )| j〉nqe , the nqe-qubit real-time evolution (RTE)
operator generated by T̂ν can be implemented by using the
centered quantum Fourier transform (CQFT) [48,49] as

CQFTUkin(�t )CQFT† = e−iT̂ν�t . (9)

Therefore, the circuit Ckin, which represents e−iT̂ �t , the real-
time evolution by the kinetic energy part of the ne-electron
system, can be constructed as shown in Fig. 1.

U (m)
pot is the real-time evolution by the potential part

at t = tm:

U (m)
pot ≡ e−iV̂ (tm )�t . (10)

The entire circuit is shown in Fig. 2.

Uinit is an initialization gate to make the antisymmetrized
ground-state wave function of the initial Hamiltonian.

If V̂ (t ) consists of the sum of the two-body interactions and
the one-body external potential terms for all t as

V̂ (t ) =
ne∑

l=1

vext (r̂l ; t ) +
∑
l<l ′

v(|r̂l − r̂l ′ |; t ), (11)

then the same method as in Ref. [11] can be employed
in order to implement U (m)

pot , and the circuit depth and the

operation number of one ATE step e−iĤ(tm )�t is estimated
as O[n2

epoly(log ne)], thanks to the employment of position
eigenstates in the basis of each electron’s register. vext (r̂l )
and v(|r̂l − r̂l ′ |) are assumed to be approximated by piecewise
polynomials.

On the other hand, in the second quantization the Hamilto-
nian becomes

Ĥ =
∑
i, j

hi ja
†
i a j + 1

2

∑
i, j,k,l

hi jkl a
†
i a†

j akal , (12)

where a†
i and ai are fermionic creation and annihilation op-

erators for the molecular orbitals, and the coefficients hi j and
hi jkl are the one- and two-electron integrals, respectively. The
number of terms in the Hamiltonian is dominated by the
second term in Eq. (12), the two-body interaction part, and
estimated to be O(n4

e ) under the assumption that the number
of molecular orbitals to be considered is proportional to the
number of electrons ne. Hence, the operation number per ATE
step scales as O(n4

e ) in general [50].

4. Preparation of the nondegenerate and antisymmetrized initial
ground state of many-electron system

In practice, it is quite difficult to know in advance how
many dimensions the eigenspace of the ground state of the
objective Hamiltonian has and how the instantaneous spec-
trum structure of Ĥ(t ) changes. One approach to obtaining
the ground state of the objective Hamiltonian as the output
of ATE in such cases is to construct an initial Hamiltonian
whose ground state is not degenerate. It should be further
noted that since we are encoding the wave function based on
the first quantization, if we consider a many-electron system,
the initial ground state must be antisymmetric with respect to
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FIG. 2. Quantum circuit to obtain the ground state of ne-electron system by ATE based on first-order Suzuki-Trotter expansion. After the
ground state of the initial Hamiltonian is created by Uinit , ATE operation discretized into N steps follows.

the exchange of any pair of electrons. However, the prepa-
ration of the initial ground state satisfying these conditions
is nontrivial. In this section, we describe an example of how
to create a nondegenerate and antisymmetrized initial ground
state of an ne-electron system.

Here, we consider an initial Hamiltonian with no interac-
tions between electrons:

Ĥini =
ne∑

l=1

[
p̂l

2me
+ vini(r̂l )

]
. (13)

The one-electron Hamiltonian Ĥ1 is then defined as

Ĥ1 ≡ p̂
2me

+ vini(r̂). (14)

Let the eigenvalues of Ĥ1 be denoted by ε1, ε2, . . . in
ascending order, and the corresponding eigenfunctions be
φ1(r), φ2(r), . . . . These eigenfunctions are referred to as one-
electron orbitals. The antisymmetrized many-electron wave
function of the ground state of Ĥini is represented by the Slater
determinant formed by ne one-electron orbitals from φ1 to φne :

	i(r1, r2, . . . , rne ) = 1√
ne!

∣∣∣∣∣∣∣∣
φ1(r1) · · · φ1(rne )

...
. . .

...

φne (r1) · · · φne (rne )

∣∣∣∣∣∣∣∣. (15)

Berry et al. [51] proposed an efficient technique to make a
many-electron wave function represented by a single Slater
determinant on a quantum circuit. The ground-state energy
Egs

i of the ne-electron system is

Egs
i =

ne∑
l=1

εl , (16)

where Egs
i is not degenerate when the highest occupied orbital

and the lowest unoccupied orbital in the one-electron orbitals
are not degenerate. Therefore, whether the initial ground state
is degenerate or not depends on vini, the number of electrons
ne, and the dimension of space. However, if vini is chosen such
that the one-electron orbitals are not degenerate, then for any
ne, the ground state of the many-electron system constructed
above is not degenerate. This can be achieved, for example,
by making vini an anisotropic harmonic potential:

Ĥ1 =
∑

μ=x,y,z

[
p̂2

μ

2me
+ 1

2
meω

2
μr̂2

μ

]
. (17)

As is well known, an eigenvalue of the above one-electron
Hamiltonian is specified by a set of three integers (nx, ny, nz )
which are greater than or equal to zero:

ε(nx, ny, nz ) =
∑

μ=x,y,z

ωμ

(
nμ + 1

2

)
. (18)

If the angular frequencies are set as ωx = 1, ωy = √
2, and

ωz = √
3, we have the following statement that is proved in

Appendix A and implies that one-electron orbitals have no
degeneracy:

(nx, ny, nz ) 
= (mx, my, mz )

⇒ ε(nx, ny, nz ) 
= ε(mx, my, mz ). (19)

For some prepared initial Hamiltonians, you can utilize the
variational quantum circuit in Ref. [52] to generate the super-
position of many Slater determinants.

B. Search for the optimal structure of molecule

1. Setup

Here we consider ne quantum-mechanical electrons and
nnucl classical nuclei system as in the case of structural opti-
mization of molecular systems using probabilistic imaginary-
time evolution (PITE) [11]. Thus, the objective Hamiltonian
is

Ĥfin =
ne∑

l=1

p̂2
l

2me︸ ︷︷ ︸
≡T̂el

+
ne∑

l=1

vext (r̂l )︸ ︷︷ ︸
≡V̂ext

+ 1

2

∑
l 
=l ′

v
(ee)
ll ′ (|r̂l − r̂l ′ |)︸ ︷︷ ︸

≡V̂ee

+
ne∑

l=1

nnucl∑
λ=1

v
(en)
lλ (|r̂l − Rλ|)︸ ︷︷ ︸
≡V̂en

+ 1

2

∑
λ 
=λ′

v
(nn)
λλ′ (|Rλ − Rλ′ |)

︸ ︷︷ ︸
≡V̂nn

,

(20)

where vext, v(ee), v(en), and v(nn) represent the exter-
nal potential for an electron, electron-electron interaction,
electron-nucleus interaction, and nucleus-nucleus interaction,
respectively. Note that the kinetic term of nuclei is ignored
and the nuclear position Rλ appears as a classical parameter.
To find the ground state of this Hamiltonian, we consider a
quantum register using a total of 3nenqe + nqn qubits as

|	〉 =
∑

J

√
wJ |ψ[J]〉3nenqe ⊗ |J〉nqn , (21)

where nqn is the number of qubits allocated to a register
|J〉nqn representing a possible nuclear configuration specified
by the vector J. Due to the quantum superposition, up to
2nqn different structures can be entered at once. |ψ[J]〉3nenqe is
an 3nenqe-qubit register representing the many-electron wave
function for each configuration J in three-dimensional space.
The overall quantum register |	〉 can be written as a superpo-
sition of |ψ[J]〉3nenqe ⊗ |J〉nqn , and when |	gs

f 〉 is obtained as
the ground state of Ĥfin, the most stable nuclear configuration
can be determined by measuring the nqn qubits assigned to the
nuclear configuration part.
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The aim is to find the ground state of Ĥfin in Eq. (20) by
ATE. We consider the time-dependent Hamiltonian

Ĥ(t ) = T̂el ⊗ Înucl + A1(t )V̂ext ⊗ Înucl

+ A2(t )V̂ee ⊗ Înucl + A3(t )V̂en

+ A4(t )Îel ⊗ V̂nn

+ [1 − A5(t )]V̂0 ⊗ Înucl

− [1 − A6(t )]Îel ⊗ Jx

nqn∑
l=1

X̂l , (22)

where the boundary conditions for functions Ai (i ∈
{1, 2, 3, . . . }) are Ai(0) = 0 and Ai(tf ) = 1. The initial and
final Hamiltonians are thus given by

Ĥ(0) = (T̂el + V̂0) ⊗ Înucl − Îel ⊗ Jx

nqn∑
l=1

X̂l , (23)

Ĥ(tf ) = Ĥfin. (24)

T̂el, V̂ext, V̂ee, V̂0, and Îel act on the electronic wave-function
part denoted by |ψ[J]〉3nenqe in Eq. (21) and Îel is the identity
operator for the electron-part of the quantum register. V̂nn, X̂l ,
and Înucl act on the nuclear configuration part denoted by |J〉nqn

and Înucl is the identity operator for the nuclear part. V̂0 is the
initial potential of the electronic system and depends on the
position operators of the electrons. It is arbitrary as long as
it is symmetric for the exchange of any pair of electrons and
the ground state of T̂el + V̂0 is available as the input for the
quantum circuit described in Sec. II B 2. X̂l is defined as

X̂l ≡ Î2 ⊗ · · · ⊗ Î2︸ ︷︷ ︸
l−1 qubits

⊗ σ̂x︸︷︷︸
lth

⊗ Î2 ⊗ · · · ⊗ Î2︸ ︷︷ ︸
nqn−l qubits

, (25)

where Î2 and σ̂x are the identity operator and the Pauli-X gate
for a single qubit, respectively.

The second term of Eq. (23) is introduced inspired by the
transverse-field term in conventional AQC or QA, which al-
lows the nuclear part of the initial ground state to be a uniform
superposition of all nuclear configurations. Since there is no
interaction between the electronic part and the nuclear part
in Eq. (23), the ground state |	gs

0 〉 of the initial Hamiltonian
Ĥ(0) can be straightforwardly constructed as the tensor prod-
uct of the ground states of each part as∣∣	gs

0

〉 = ∣∣ψgs
0

〉
3nenqe

⊗ |+〉⊗nqn , (26)

where |ψgs
0 〉3nenqe and |+〉 ≡ (|0〉 + |1〉)/

√
2 are the ground

states of T̂el + V̂0 and −σ̂x, respectively.

2. Quantum circuit for structural optimization by ATE

We define the time-evolution operators at t = tm as

U (m)
ext ≡ exp[−iA1(tm)V̂ext�t],

U (m)
ee ≡ exp[−iA2(tm)V̂ee�t],

U (m)
en ≡ exp[−iA3(tm)V̂en�t],

U (m)
nn ≡ exp[−iA4(tm)V̂nn�t],

U (m)
0 ≡ exp[−i[1 − A5(tm)]V̂0�t]. (27)

The time evolution by the transverse-field-like term can be
rewritten using x-axis rotation gates Rx(θ ) ≡ e−i θ

2 σ̂x as

[Rx(θm)]⊗nqn = exp

[
i�t[1 − A6(tm)]Jx

nqn∑
l=1

X̂l

]
, (28)

where the rotation angles are defined as θm ≡ −2�t[1 −
A6(tm)]Jx.

As in the case of the electronic system only, we use time
discretization and the first-order Suzuki-Trotter expansion to
construct a quantum circuit for ATE. The ground state |	gs

f 〉
of Ĥ(tf ) can be approximated as a result of ATE as

∣∣	gs
f

〉 ≈
1∏

m=N

[(
e−iT̂ �tU (m)

0 U (m)
ee

⊗ [Rx(θm)]⊗nqnU (m)
nn

)
U (m)

en

]∣∣	gs
0

〉
. (29)

The schematic of the quantum circuit for the optimal structure
search is depicted in Fig. 3, using Ckin described in Sec. II A 3.
The transverse-field-derived part of Eq. (28) is the x-axis
rotation for each qubit, hence the circuit depth is O(1). If V̂0

consists of a two-body interaction term between electrons and
a one-body external potential term, the circuit depth per ATE
step is typically estimated as O[n2

epoly(log ne)] according to
the implementation of RTE in Ref. [11].

III. APPLICATIONS

A. Definitions of scheduling functions and infidelity

In this section, we consider a one-electron system in
one-dimensional space of length L as simple applications of
our approach. We examine the following slightly simplified
Hamiltonian:

Ĥ(t ) = T̂ + A(t )V (x̂). (30)

The ground state of the initial Hamiltonian Ĥ(0) = T̂ is a
uniform superposition if T̂ is implemented using CQFT. This
can be easily prepared by initializing every qubit to the |0〉
state and then applying a Hadamard gate H to every qubit:

|ψ (0)〉 = ∣∣ψgs
0

〉 = |+〉⊗nqe , (31)

Uinit = H⊗nqe . (32)

From the adiabatic condition (2) with Ĥ(t ) in Eq. (30), tf
should be set to satisfy the condition

tf � max
j∈{1,2,3,... },s∈[0,1]

{∣∣〈ψ j
stf

∣∣V ∣∣ψgs
stf

〉∣∣
� j (stf )2

dA

ds
(stf )

}
, (33)

where s ≡ t/tf is normalized time. Here we consider
monotonous schedules A and define the function f (A) with
the dimension of time as

f (A(stf )) ≡ max
j∈{1,2,3,... }

{∣∣〈ψ j
stf

∣∣V ∣∣ψgs
stf

〉∣∣
� j (stf )2

}
. (34)

The right-hand side of Eq. (34) can be calculated from the
eigenvectors and eigenvalues of T̂ + AV . Inserting this into
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FIG. 3. Quantum circuit to find the most stable nuclear configuration among up to 2nqn candidates. ne-electron system in three-dimensional
space is modeled and 3nqe qubits per electron are used to represent the wave function of the electron system. After the ground state of the
initial Hamiltonian is created by Uinit , ATE operation discretized into N steps follows.

Eq. (33) gives

tf � max
s∈[0,1]

{
f (A)

dA

ds

}
. (35)

Regarding the scheduling function A, which controls the
strength of the potential at each time, we consider two types
of functions, denoted as Alin and Aopt. They are constructed to
satisfy the following equations:

Alin(t ) = t

tf
,

dAopt

ds
(stf ) = c

f (Aopt (stf ))
. (36)

The constant c with the same dimension as time is determined
by the boundary conditions Aopt (0) = 0 and Aopt (tf ) = 1. Aopt

is designed so that dAopt/ds is small when f (Aopt ) is large,
with the aim of making the right-hand side of Eq. (35) small.
Note that Aopt is ideal rather than practical since the spectral
structure and the eigenvectors of the Hamiltonian at each
time must be known in advance to solve Eq. (36). For these
scheduling functions, the adiabatic condition (35) becomes as

tf � max
A∈[0,1]

f (A) for Alin,

tf � c for Aopt. (37)

We define the infidelity δN after ATE to tf over N steps as

δN = 1 − |〈φ0|ψ (tf ; N )〉|2, (38)

where |φ0〉 = |ψgs
tf 〉 is the ground state of the final Hamil-

tonian Ĥfin obtained by numerical diagonalization, and
|ψ (tf ; N )〉 denotes the right-hand side of Eq. (1) with N ex-
plicitly written as a parameter. In the following numerical
simulations, the ATE circuits are configured as shown in Fig. 2
or Fig. 3, and are based on the first-order Suzuki-Trotter
expansion. All simulations are carried out using QISKIT, an
open-source library for quantum circuit simulation [53].

B. One electron in a parabolic potential

As the first example, we calculated the ground state of a
single electron in a parabolic potential

V (x̂) = 1

2
meω

2

(
x̂ − L

2

)2

, (39)

where the parameters are set as ω = 1 and L = 10. In the
simulation, we set �t = 0.1 and nqe = 6, i.e., we discretize
the space into 26 = 64 grid points.

Under these conditions, f (A) in Eq. (34) and scheduling
functions in Eq. (36) are numerically calculated and shown
in Figs. 4(a) and 4(b), respectively. Since f (A) is larger in

FIG. 4. The simulation results of ATE for one-electron system
under the parabolic potential. (a) The indicator of adiabatic condition
f (A) defined in Eq. (34). The maximum value is 92.01. (b) The two
scheduling functions, Alin and Aopt, used in the simulation. They are
plotted as a function of normalized time s. (c) Plots of the infidelity
δN when Alin or Aopt is adopted. (d) The squared wave function of
an electron after ATE over N steps with Alin. The black dashed
line represents the exact ground state obtained from the numerical
diagonalization of the final Hamiltonian. The blue circles represent
the ground state of initial Hamiltonian. The orange, green, and red
circles represent the output states of ATE over 1000, 5000, and
10 000 steps, respectively.
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regions where A is smaller, Aopt is designed to change slowly
at first. The adiabatic conditions estimated from Eq. (37) are
tf � 92.01 for Alin and tf � 2.84 for Aopt [the schedules can
be seen in Fig. 4(b)]. In other words, it is estimated that about
30 times more time is required with Alin than with Aopt. Fig-
ure 4(c) shows the dependence of δN on the number of steps
N after performing ATE with these two scheduling functions.
N required for δN to fall below 10−2 is about 9000 for Alin and
300 for Aopt, which is roughly consistent with the estimate of
tf based on the adiabatic condition of Eq. (37). Figure 4(d)
shows the change in output state |ψ (tf ; N )〉 as N is increased.
Since the value of �t is fixed, a larger N means a larger tf , i.e.,
the Hamiltonian Ĥ(t ) changes more slowly. Starting from an
initial state where the probability of existence of an electron is
uniform, we can see that the output state approaches the exact
ground state of Ĥ(tf ) as N increases.

δN is expected to decrease as N and t f increase, but seems
to reach a plateau and converges to around 3 × 10−4 in the
region of N > 104 with Aopt in Fig. 4(c). This might be the
result of errors caused by the fact that �t is now fixed to a
finite value, that the right-hand side of Eq. (1) is approximated
by a finite product, and that the first-order Suzuki-Trotter
expansion is used to implement the simulation circuit (see
Appendix B).

C. Search for the optimal structure of an H+
2 molecule

As an example of a simulation to find the most stable
structure among many atomic configurations, we consider
the optimization of the bond length of an H+

2 molecule in
one-dimensional space. The interactions between particles are
modeled by the soft-Coulomb interaction

Vsoft = Z1Z2√
|r1 − r2|2 + λ2

12

, (40)

where ri and Zi are the position and the charge of the ith
particle, respectively. λi j is the softness of the interaction and
set as λi j = 1 for all interactions in this simulation. Thus,
the potential V̂en,J received by an electron confined in a one-
dimensional space of length L is expressed by the following
equation where 0 � x < L and hydrogen nuclei are located at
(L + dJ )/2 and (L − dJ )/2:

V̂en,J ≡ −1√
(x̂ − L/2 − dJ/2)2 + 1

+ −1√
(x̂ − L/2 + dJ/2)2 + 1

, (41)

where dJ denotes the bond length of the H+
2 molecule. The

following ĤJ represents the Hamiltonian for a quantum-
mechanical single electron and classical two-hydrogen nuclei
system when the bond length is dJ :

ĤJ = T̂el + V̂en,J + 1√
d2

J + 1
. (42)

In this simulation, we set L = 15 and nqe = 6. Now,
considering four candidate bond lengths (d0, d1, d2, d3) =
(2.0, 4.0, 6.0, 8.0), and numerically diagonalizing ĤJ for
each of them to get the ground-state energy Egs

J , we obtain

(Egs
0 , Egs

1 , Egs
2 , Egs

3 ) = (−0.811,−0.750,−0.693,−0.679),
which means J = 0 is corresponding to the optimal structure
among them.

This structure search problem is solved by ATE based
on the method described in Sec. II B. The number of qubits
in the register to represent the nuclear configuration is set
to nqn = 2, and the four configurations (d0, d1, d2, d3) =
(2.0, 4.0, 6.0, 8.0) are assigned to the |0〉, |1〉, |2〉, and
|3〉 states of the nuclear register, respectively. The opera-
tor V̂nn representing the interaction between nuclei can be
expressed as

V̂nn =
3∑

J=0

1√
d2

J + 1
|J〉〈J|. (43)

The interaction V̂en between the nuclei and the electron can be
written as

V̂en =
3∑

J=0

V̂en,J ⊗ |J〉〈J|. (44)

With the operators defined above, the time-dependent Hamil-
tonian considered here is given by

Ĥ(t ) = T̂el ⊗ Înucl + A(t )[V̂en + Îel ⊗ V̂nn]

− [1 − A(t )]Îel ⊗ Jx

nqn∑
l=1

X̂l . (45)

Thus, the initial Hamiltonian Ĥ(0) and its ground state |ψ (0)〉
are given by

Ĥ(0) = T̂el ⊗ Înucl − Îel ⊗ Jx

nqn∑
l=1

X̂l , (46)

|ψ (0)〉 = ∣∣ψgs
0

〉 = |+〉⊗nqe ⊗ |+〉⊗nqn . (47)

The initial ground state can be prepared using Hadamard
gates:

Uinit = H⊗(nqe+nqn ). (48)

Under these conditions, the simulation is run with �t =
0.1 and Jx = 0.1. As in the case of Sec. III B, we consider
f (A) defined in Eq. (34) and the two scheduling functions
in Eq. (36). For this purpose, |ψgs

stf 〉, |ψ j
stf 〉, and � j (stf ) are

obtained by numerical diagonalization of Ĥ(stf ), and V is
defined as

V = ∂

∂A
Ĥ(t ) = V̂en + Îel ⊗

[
V̂nn + Jx

nqn∑
l=1

X̂l

]
. (49)

f (A) in Eq. (34) and scheduling functions in Eq. (36) are
numerically calculated and shown in Figs. 5(a) and 5(b), re-
spectively. The adiabatic conditions estimated from Eq. (37)
are tf � 40.23 for Alin and tf � 20.40 for Aopt, which means
Alin and Aopt require the similar order of magnitude for tf . Fig-
ure 5(c) shows the dependence of δN on the number of steps N
after the ATE performed with these two scheduling functions.
Actually, for the same N , δN is slightly smaller when Aopt is
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FIG. 5. The simulation results of ATE for the search for the
optimal bond length of an H+

2 molecule. (a) The indicator of adi-
abatic condition f (A) defined in Eq. (34). The maximum value is
40.23. (b) The two scheduling functions, Alin and Aopt, used in the
simulation. They are plotted as a function of normalized time s.
(c) Plots of the infidelity δN when Alin or Aopt is adopted. (d) Plots
of the probability wJ of obtaining the Jth structure when the nuclear
register is observed with scheduling Alin.

used. For a more quantitative discussion, it may be necessary
to consider the errors caused by first-order Suzuki-Trotter
expansion and the approximation by finite product on the
right-hand side of Eq. (1). It may also be useful to perform
the analysis under more rigorous adiabatic conditions such as
those found in Refs. [44,54], or to consider the sum of the ef-
fects of all transitions both from the ground state and between
excited states, rather than just one dominant transition from
the ground state like Eq. (2).

Importantly, this scheme based on ATE allows us to suc-
cessfully search for the most stable structure. Figure 5(d)
shows the weights wJ = 〈ψ (tf ; N )|P̂J |ψ (tf ; N )〉 of the Jth
structure in the output state when Alin is adopted, where P̂J

is a projection operator to the Jth structure and defined as
P̂J ≡ Îel ⊗ |J〉〈J|. This wJ is equal to the probability of ob-
taining the Jth structure when the nuclear register is observed.
It is clear that when N is sufficiently large, the most stable
structure J = 0 has the highest probability.

IV. CONCLUSIONS

This paper describes a construction of quantum circuit
for the ground state of an electronic system using ATE
based on the first quantization. A method to create an initial
ground state that is antisymmetric and nondegenerate is also
proposed. Furthermore, by considering the problem of total
energy minimization for quantum-mechanical electrons and
classical nuclei, we also construct a circuit to find the optimal
configuration of nuclei. In the simulations of simple systems,
we successfully obtained the wave function of the ground
state in the calculation of an electronic system, and demon-
strated that the optimal structure can be obtained with high
probability after a sufficiently long ATE in the calculation for
the optimization of molecular bond length. Although previous
studies using PITE exist for similar problems [10,11,55–57],
ATE can be another alternative of nonvariational ground-state
calculation algorithms. Since our scheme based on ATE does
not require ancillary qubits due to its unitarity, unlike PITE,
it has the advantage that it is only necessary to implement a
simple RTE operator rather than CRTE operators. If we apply
the same method used to implement RTE in PITE based on
first quantization [10,11], to our ATE circuit, the number of
operations in one ATE step and one PITE step has the same
scaling with respect to the system size and the number of
electrons ne. It is typically estimated as O[n2

epoly(logne)]. As
a further study, it would be valuable to compare ground-state
computation algorithms in terms of the overall circuit depth to
obtain the output state, rather than focusing solely on one step
of the computation.
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APPENDIX A: PROOF OF PROPOSITION (19)

Proof.

ε(nx, ny, nz ) = ε(mx, my, mz )

⇔ (nx − mx ) +
√

2(ny − my)

+
√

3(nz − mz ) = 0

⇔ kx +
√

2ky +
√

3kz = 0, (A1)

where kμ ≡ nμ − mμ ∈ Z. It is proved below that the only
(kx, ky, kz ) satisfying Eq. (A1) is (0,0,0) proving our claim:

kx +
√

2ky +
√

3kz = 0 ⇒ (
√

2ky +
√

3kz )2 = k2
x

⇒
√

6kykz = k2
x − 2k2

y − 3k2
z

2
. (A2)
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FIG. 6. Plots of the infidelity δN with Aopt and different values
of �t .

If kykz 
= 0, by Eq. (A2),

√
6 = k2

x − 2k2
y − 3k2

z

2kykz
. (A3)

Since the left-hand side is irrational and the right-hand side is
rational, no (kx, ky, kz ) satisfies Eq. (A3). If ky = 0 and kz 
= 0,
by Eq. (A1)

√
3 = −kx/kz. (A4)

Since the left-hand side is irrational and the right-hand side is
rational, no (kx, ky, kz ) satisfies Eq. (A4). If ky 
= 0 and kz = 0,

by Eq. (A1)

√
2 = −kx/ky. (A5)

Since the left-hand side is irrational and the right-hand side is
rational, no (kx, ky, kz ) satisfies Eq. (A5). If ky = 0 and kz = 0,
kx = 0 by Eq. (A1).

The above proves

kx +
√

2ky +
√

3kz = 0 ⇒ (kx, ky, kz ) = (0, 0, 0), (A6)

and thus our claim. �

APPENDIX B: EFFECT OF FINITE �t ON INFIDELITY

We examine the behavior of the infidelity δN with the
scheduling function Aopt at different values of �t for one
electron model in a parabolic potential described in Sec. III B.
In this simulation, the unitary time evolution has O(�t2) error
because it is approximated in the form of a finite product as in
Eq. (1) and the first-order Suzuki-Trotter expansion is used
in the circuit implementation of exp[−iĤ(tm)�t]. Figure 6
shows that the smaller �t is, the smaller δN can be realized in
the region of tf > 103. This result suggests that the saturation
of δN is due to O(�t2) terms. Of course, ideally �t should be
as small as possible, but it has to be noted that the total circuit
depth required to achieve the same tf is proportional to �t−1

as the number of ATE steps N is equal to �tf/�t�.
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