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Quantum tomography for arbitrary single-photon polarization-path states
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Quantum state tomography (QST), the process through which the density matrix of a quantum system is
characterized from measurements of specific observables, is a fundamental pillar in the fields of quantum
information and computation. In this work, we propose a simple QST method to reconstruct the density matrix
of two qubits encoded in the polarization and path degrees of freedom of a single photon, which can be realized
with a single linear-optical setup. We demonstrate that the density matrix can be fully described in terms of
the Stokes parameters related to the two possible paths of the photon, together with a quantum version of the
two-point Stokes parameters introduced here. Our findings put forward photonic circuits for the investigation of
the dynamics of open quantum systems.
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I. INTRODUCTION

With the advent of quantum information theory we
learned that entanglement is an essential resource for many
important tasks, such as quantum communication [1], quan-
tum computation [2], quantum cryptography [3], and telepor-
tation [4]. This fact has led to an intense search for ways to
create and characterize entanglement in many different physi-
cal architectures, among which photons occupy a special place
due to their capacity to carry information for long distances
[5]. Notably, different degrees of freedom (DOF) can be used
to entangle photons, including position, linear momentum, po-
larization, orbital angular momentum, frequency, and time-bin
[6–8]. Nevertheless, entanglement can also be created be-
tween the different DOF of a single photon, which provides an
alternative way to achieve high-dimensional entangled states
over the use of multiple photons entangled in a single DOF
[9].

In order to benefit from the valuable resources extractable
from quantum states, besides the physical implementation,
we also need to be able to control, measure, and characterize
them. The process of reconstruction of a quantum state from
measurements made on an ensemble of identical systems is
called quantum state tomography (QST) [10–12]. The idea
is to process the outcomes obtained from a complete set of
observables to identify all elements of the density matrix of
the system. To characterize an N-qubit state, measurements of
22N different observables are required [13]. Evidently, this ex-
ponential relation sets a limit on the feasibility of experimental
realizations of QST with correlated many-body systems. Al-
though this fact, an alternative platform, which has not been
much explored, is the application of QST to high-dimension
states encoded in different DOF of the same particle. Some
exceptions are the studies of single photons entangled in
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polarization and time and single neutrons entangled in spin
and path [9,14].

In this work, we propose an experimental setup to realize
QST for an arbitrary polarization-path state of a single pho-
ton, which encodes two qubits of information. The scheme
is fundamentally based on the composition of a two-path
interferometer and a set of four conveniently distributed
measurers of Stokes parameters. The tomographic protocol
demands only a single arrangement of linear optical de-
vices, in the sense that one does not need to modify the
experimental setup in order to measure all necessary ob-
servables. In what concerns our theoretical approach, besides
the well-known one-point Stokes parameters, we introduce a
quantum-mechanical version of the two-point Stokes param-
eters, a concept so far only established for classical optical
fields [15]. In fact, the polarization-path density matrix is fully
reconstructed on the basis of the quantum counterparts of the
one- and two-point Stokes parameters, which we call one-path
Stokes parameters (OPSPs) and two-path Stokes parameters
(TPSPs), respectively.

The paper is organized as follows. First, we outline the
quantum description of the OPSPs and propose a similar treat-
ment for the TPSPs. Then, we use the results to demonstrate a
QST method to reconstruct an arbitrary polarization-path state
of a single photon. Finally, we present our conclusions and
discuss how our QST method could be employed as a tool
in the study of the dynamics of open single- and two-qubit
systems with quantum optical experiments.

II. ONE- AND TWO-PATH STOKES PARAMETERS: A
QUANTUM-MECHANICAL VIEWPOINT

Suppose that photons from an ensemble propagate one at
a time through two possible paths 0 and 1 whose states are
defined as |0〉 and |1〉, and the polarization is described in
terms of the horizontal and vertical states, |H〉 and |V 〉. In this
case, the polarization and path properties of the photons can
be jointly described in terms of the polarization-path density
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FIG. 1. Experimental setup to measure the OPSPs. Photons with
arbitrary polarization propagate toward the polarizing beam splitter
(PBS). The parameter s0 is found through the sum of the signals
of the photodetectors D0 and D1. The other parameters are assessed
through the difference of the signals: s1 without the wave plates, s2

only with the half-wave plate (HWP), and s2 only with the quarter-
wave plate (QWP). This apparatus is identified as a Stokes parameter
measurer (SPM).

matrix [16],

ρ̂ =

⎛
⎜⎜⎝

ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44,

⎞
⎟⎟⎠, (1)

which is written in the basis {|H, 0〉 ; |H, 1〉 ; |V, 0〉 ; |V, 1〉}. In
this framework, we can use the OPSPs to characterize the
polarization of the photons in each path. From a quantum-
mechanical viewpoint, these parameters are given by the
ensemble average of the Pauli operators [13,16,17]. As such,
the OPSPs for the photons that propagate through path 0 are
given by

s(0)
0 = Tr[(|H, 0〉 〈H, 0| + |V, 0〉 〈V, 0|)ρ̂] = ρ11 + ρ33, (2a)

s(0)
1 = Tr[(|H, 0〉 〈H, 0| − |V, 0〉 〈V, 0|)ρ̂] = ρ11 − ρ33, (2b)

s(0)
2 = Tr[(|H, 0〉 〈V, 0| + |V, 0〉 〈H, 0|)ρ̂] = ρ13 + ρ31, (2c)

s(0)
3 = i{Tr[(|V, 0〉 〈H, 0| − |H, 0〉 〈V, 0|)ρ̂]} = i(ρ13 − ρ31),

(2d)

where Tr[.] denotes the trace operation. Similarly, the po-
larization of the photons that propagate through path 1 is
described by the corresponding OPSPs:

s(1)
0 = Tr[(|H, 1〉 〈H, 1| + |V, 1〉 〈V, 1|)ρ̂] = ρ22 + ρ44, (3a)

s(1)
1 = Tr[(|H, 1〉 〈H, 1| − |V, 1〉 〈V, 1|)ρ̂] = ρ22 − ρ44, (3b)

s(1)
2 = Tr[(|H, 1〉 〈V, 1| + |V, 1〉 〈H, 1|)ρ̂] = ρ24 + ρ42, (3c)

s(1)
3 = i{Tr[(|V, 1〉 〈H, 1| − |H, 1〉 〈V, 1|)ρ̂]} = i(ρ24 − ρ42).

(3d)

From Eqs. (2a) to (3d) we observe that 8 out of the 16
entries of the polarization-path density matrix of Eq. (1) are
sufficient to fully characterize the polarization of the photons
propagating in each path.

The experimental setup to measure the OPSPs is shown
in Fig. 1 (see also Refs. [18,19]). It consists of a polarizing
beam-splitter (PBS), which transmits |H〉 and reflects |V 〉
states; a half-wave plate (HWP); a quarter-wave plate (QWP);
and two photodetectors D0 and D1. The parameter s0 is simply

given by the sum of the number of photons registered in
the photodetectors, independent of whether the wave plates
are introduced along the optical path or not, divided by the
number of input photons, s0 = (N0 + N1)/Nin. The parameters
s1, s2, and s3 are given by the difference between the signals
registered by D0 and D1 divided by the number of input pho-
tons, sk = (N0 − N1)/Nin, with k = 1, 2, and 3. Nevertheless,
s1 is measured without the wave plates, s2 when only the HWP
is inserted with the fast axis at angle π/8 with respect to the
horizontal, and s3 when only the QWP is inserted with the fast
axis at angle π/4 with respect to the horizontal. The 2 × 2
transformation matrices of the QWP and the HWP are given
by [13]

ÛQWP(θ ) = 1√
2

(
i + cos(2θ ) sin(2θ )

sin(2θ ) i − cos(2θ )

)
, (4)

ÛHWP(θ ) =
(

cos(2θ ) sin(2θ )
sin(2θ ) − cos(2θ )

)
, (5)

where θ is the angle between the fast axis and the hori-
zontal. The effect of ÛHWP(π/8) is to convert |D〉 (|A〉) to
|H〉 (|V 〉), whereas for ÛQWP(π/4) the effect is to convert
|R〉 (|L〉) to |H〉 (|V 〉). Here, we define |D〉 = 1/

√
2(|H〉 +

|V 〉), |A〉 = 1/
√

2(|H〉 − |V 〉), |R〉 = 1/
√

2(|H〉 + i |V 〉), and
|L〉 = 1/

√
2(|H〉 − i |V 〉).

Similar to the derivation of the OPSPs in Eqs. (2a) to (3d),
and based on the mathematical structure of the classical two-
point Stokes parameters introduced in Ref. [15], the quantum
generalization of these parameters can be defined under the
present framework as

S0 = Tr[(|H, 0〉 〈H, 1| + |V, 0〉 〈V, 1|)ρ̂] = ρ21 + ρ43, (6a)

S1 = Tr[(|H, 0〉 〈H, 1| − |V, 0〉 〈V, 1|)ρ̂] = ρ21 − ρ43, (6b)

S2 = Tr[(|H, 0〉 〈V, 1| + |V, 0〉 〈H, 1|)ρ̂] = ρ23 + ρ41, (6c)

S3 = i{Tr[(|V, 0〉 〈H, 1| − |H, 0〉 〈V, 1|)ρ̂]} = i(ρ23 − ρ41),

(6d)

which we call the TPSPs. While the OPSPs are real numbers,
as a consequence of the hermiticity of the polarization-path
density matrix, the TPSPs are generally complex and are
obtained from correlations that involve photons propagating
through both paths. In what follows we shall see how the
TPSPs can be measured and their usefulness in realizing
polarization-path state tomography.

III. POLARIZATION-PATH STATE TOMOGRAPHY

The results of Eqs. (2a) to (3d), together with Eqs. (6a) to
(6d), allow us to rewrite the polarization-path matrix of Eq. (1)
completely in terms of the OPSPs and TPSPs as follows:

ρ̂ = 1

2

⎛
⎜⎜⎜⎜⎝

s(0)
0 + s(0)

1 S∗
0 + S∗

1 s(0)
2 − is(0)

3 S∗
2 − iS∗

3

S0 + S1 s(1)
0 + s(1)

1 S2 − iS3 s(1)
2 − is(1)

3

s(0)
2 + is(0)

3 S∗
2 + iS∗

3 s(0)
0 − s(0)

1 S∗
0 − S∗

1

S2 + iS3 s(1)
2 + is(1)

3 S0 − S1 s(1)
0 − s(1)

1

⎞
⎟⎟⎟⎟⎠.

(7)

This equation tells us that, given an ensemble of photons
described by an unknown polarization-path density matrix, if
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FIG. 2. Experimental setup to realize a complete polarization-
path state tomography. Photons enter the setup in an arbitrary state
of polarization and path. The 1:1 beam splitters BS0 and BS1 reflect
part of the photons toward the SPM0 and SPM1 apparatuses to per-
form OPSP measurements, as depicted in Fig. 1. For the transmitted
photons, an adjustable phase shift φ is applied in the lower path, after
which the two paths are set as the input ports of the 1:1 beam splitter
BS2. Photons from the output ports are then collected by SPM2 and
SPM3, which are used to obtain the TPSPs. The four M’s represent
perfectly reflecting mirrors.

we are able to measure the OPSPs and the TPSPs we can fully
reconstruct the state. Therefore, the knowledge about these
parameters allows us to realize polarization-path QST. To this
end, we are left with the task of designing a way to assess the
TPSPs.

In order to interpret the physical meaning of the four
TPSPs, we first consider the experimental setup sketched in
Fig. 2. It consists of single photons with arbitrary polarization
entering the apparatus through the input paths |0〉 and |1〉, so
that we can consider the general input state as described by
the polarization-path density matrix as in Eq. (1). Initially,
one half of the photons are reflected by two lossless 1:1 beam
splitters, BS0 and BS1, on which measurements of the OPSPs
can be made with SPM0 and SPM1, according to the scheme
shown in Fig. 1. Since one half of all input photons are used
to this end, in this case the OPSPs are identified according the
relations s0 = 2(N0 + N1)/Nin and sk = 2(N0 − N1)/Nin with
k = 1, 2, and 3. Here, Nin represents the total number of input
photons in the experimental setup.

For the photons transmitted by BS0 and BS1, we have that
those propagating along path 1 are subjected a controllable
phase shift φ. Next, photons from both paths are superposed
by a 1:1 lossless beam splitter BS2, after which they follow
toward SPM2 and SPM3. The effect of the phase shift is de-
scribed by the operator Â = |0〉 〈0| + eiφ |1〉 〈1| and the beam
splitter is described by B̂ = 1/

√
2(|0〉 〈0| − |0〉 〈1| + |1〉 〈0| +

|1〉 〈1|) [20]. Together they cause the unitary transformation
Û = Îp ⊗ B̂Â, where Îp = |H〉 〈H | + |V 〉 〈V | is the identity
operator in the polarization Hilbert space. The corresponding
transformation matrix is then given as

Û = 1√
2

⎛
⎜⎜⎝

1 −eiφ 0 0
1 eiφ 0 0
0 0 1 −eiφ

0 0 1 eiφ

⎞
⎟⎟⎠. (8)

After BS2 the input state ρ̂ is transformed into the final state
ρ̂ f = Û ρ̂Û †. The calculation of ρ̂ f is straightforward, and
the result is another polarization-path state represented in the
basis {|H, 0〉 ; |H, 1〉 ; |V, 0〉 ; |V, 1〉}, but it is too lengthy to be
written out explicitly. For ρ̂ f we have, for example, that the
basis state |H, 0〉 (|V, 1〉) represents a horizontally (vertically)
polarized photon in the optical mode which is collected by
SPM3 (SPM2), and so on.

Next, with the procedure described in Fig. 1, the OPSPs for
the state ρ̂ f in the paths |0〉 and |1〉 can be found. Given that
one half of the input photons are transmitted by BS0 and BS1,
these OPSPs must also be identified according to the relations
s0 = 2(N0 + N1)/Nin and sk = 2(N0 − N1)/Nin, with k = 1, 2,
and 3. After some calculations, we can find that the OPSPs for
the photons in path |0〉 (i.e., those collected by SPM3) vary as
a function of φ according to the relations:

s(0)
0 f (φ) = 1

2

[
s(0)

0 + s(1)
0 − 2Re(S0eiφ )

]
, (9a)

s(0)
1 f (φ) = 1

2

[
s(0)

1 + s(1)
1 − 2Re(S1eiφ )

]
, (9b)

s(0)
2 f (φ) = 1

2

[
s(0)

2 + s(1)
2 − 2Re(S2eiφ )

]
, (9c)

s(0)
3 f (φ) = 1

2

[
s(0)

3 + s(1)
3 − 2Re(S3eiφ )

]
, (9d)

where Re(.) denotes the real part. Similarly, we can write the
OPSPs as a function of φ for the photons in path |1〉 (i.e., those
collected by SPM2) as follows:

s(1)
0 f (φ) = 1

2

[
s(0)

0 + s(1)
0 + 2Re(S0eiφ )

]
, (10a)

s(1)
1 f (φ) = 1

2

[
s(0)

1 + s(1)
1 + 2Re(S1eiφ )

]
, (10b)

s(1)
2 f (φ) = 1

2

[
s(0)

2 + s(1)
2 + 2Re(S2eiφ )

]
, (10c)

s(1)
3 f (φ) = 1

2

[
s(0)

3 + s(1)
3 + 2Re(S3eiφ )

]
. (10d)

We observe that, due to the unitarity of the interferometer
transformation, the OPSPs obey a complementary relation:

s(0)
n + s(1)

n = s(0)
n f + s(1)

n f , (11)

with n = 0, 1, 2, and 3. This relation, which holds for all
values of φ, reflects the fact that there are no losses in the
interferometer, and the degree of polarization of the photons
is conserved.

At this point, we call attention to an important result
obtained from Eqs. (9a) to (10d). The TPSPs quantify the
contrast in the interference behavior of the OPSPs for the
state ρ̂ f when φ is varied. A similar interpretation was also
obtained in the classical context of Young’s double-slit ex-
periment [21]. This shows that by measuring the interference
patterns of the OPSPs with the interferometer of Fig. 2, we can
assess the TPSPs in a simple form. As we shall see, this will
be useful to complete the characterization of the state ρ̂. Let
us first demonstrate in more detail how to obtain the TPSPs.
We have that Re(Sneiφ ) = Re(Sn) cos φ − Im(Sn) sin φ, where
Im(.) denotes the imaginary part, with n = 0, 1, 2, and 3.
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Therefore, to obtain the real and imaginary parts of the TPSPs,
we only need to obtain the OPSPs along one of the path states
of ρ̂ f for φ = 0 and φ = π/2. In considering path |0〉, from
Eqs. (9a) to (9d) we find that

Re(Sn) = 1
2

[
s(0)

n + s(1)
n

] − s(0)
n f (0), (12)

Im(Sn) = − 1
2

[
s(0)

n + s(1)
n

] + s(0)
n f (π/2). (13)

From these two relations we can directly determine the TP-
SPs, Sn = Re(Sn) + iIm(Sn), which means that they can be
determined through simple OPSP measurements. Addition-
ally, in order to realize the state tomography with the least
number of input photons, it is also important to get informa-
tion about the TPSPs with the photons that propagate along
path |1〉. From Eqs. (10a) to (10d), we find that

Re(Sn) = − 1
2

[
s(0)

n + s(1)
n

] + s(1)
n f (0), (14)

Im(Sn) = 1
2

[
s(0)

n + s(1)
n

] − s(1)
n f (π/2). (15)

This concludes our analysis of the QST applied to the two-
qubit state encoded in the polarization and path DOF of a
single photon.

Now, some important remarks are in order. First, we call
attention to the fact that creating polarization-path entan-
gled states in a single photon is straightforward [6,22]. For
example, by passing a photon with diagonal polarization
|D〉 through a PBS one generates the transformation |D〉 →

1√
2
(|H, 0〉 + |V, 1〉), which results in a single-photon maxi-

mally entangled state. On the other hand, the implementation
of entangling gates for two qubits encoded in different pho-
tons is difficult because they do not interact directly, that is
to say that it requires nonlinear couplings between photon
paths [23]. Yet, we should note that to date entanglement
involving different particles has found more significance in
quantum technologies when compared to entanglement in-
volving different DOF of a single particle [24]. Second,
QST implementations typically require reconfigurations of
the measurement apparatus in order to account for the many
observables to be measured. Here, our QST proposal is realiz-
able only with a single experimental setup. Indeed, we observe
that the SPM scheme described in Fig. 1 can be rearranged to
work without the need to insert or remove the wave plates
when measuring different observables. In doing so, one must
add a 2:1 beam splitter and a 1:1 beam splitter, together with
two other PBS and two extra pairs of photodetectors, in the
SPM apparatus (see Ref. [19]).

It is also important to mention here that sources of error
have to be considered in the experimental setup of Fig. 2,
e.g., the uncertainties in the angles of the wave plates used
in the SPM. Errors in the experimental data provide a density
matrix which may not correspond to a physical quantum state;
i.e., the properties of unit trace or non-negativity may not be
fulfilled. For this reason, methods of statistical inference to
fix the obtained unphysical states have been employed, such
as maximum likelihood estimation (MLE) [11] and Bayesian

inference [25]. The application of the MLE method for the
reconstruction of a two-qubit state, which is the present case,
is explored in Ref. [13]. This technique aims to find a physi-
cally plausible density matrix that maximizes the probability
of obtaining the collected experimental data.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have presented a QST method to read out
the quantum state of two qubits encoded in the polarization
and path DOF of a single photon. It consists of a single linear-
optical setup in which all observables in the protocol can be
assessed without the need of modifications in the apparatus.
From the practical side, since the generation and control of
polarization-path states are common tasks in quantum optical
experiments [26], the tomographic reconstructions proposed
here can represent an important step toward the application
of such states in quantum technologies. From the theoretical
side, we observed that the polarization-path density matrix can
be completely characterized in terms of the OPSPs related to
each of the two possible paths taken by the photon, which are
real numbers, and the TPSPs, which are complex numbers that
contain information about both the polarization and the coher-
ence of the photon. This result, to a certain extent, reveals the
role played by the two-point Stokes parameters in quantum
optics.

As an outlook, given the increasing relevance of quan-
tum optical experiments in simulating the behavior of open
quantum systems [27–29], and the simplicity with which in-
formation can be encoded on the polarization and the path
DOF of single photons, the QST protocol introduced here
provides an accessible testbed for the study of the dynamics of
open two-qubit systems [30–32]. Indeed, practical experimen-
tal studies of decoherence or entanglement loss can be realized
by preparing an ensemble of photons in a well-defined
polarization-path state, passing them through the environment
in question, and then reading out the output state with the
setup described in Fig. 2. In addition, with optical simulations
of quantum thermodynamic processes, it is also possible to
describe a qubit system interacting with decohering and ther-
malizing environments by manipulation of the polarization
and the path DOF of the photons [33,34]. Such simulations
have significantly broadened our understanding about how co-
herence and system-environment quantum correlations affect
the behavior of nonequilibrium quantum dynamics [35–37].
In this perspective, our QST technique for the reconstruc-
tion of single-photon polarization-path states can provide an
extra tool for an even more detailed understanding of such
processes.
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