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Sharing Bell nonlocality of bipartite high-dimensional pure states
using only projective measurements

Tinggui Zhang ,1,* Hong Yang,2 and Shao-Ming Fei3
1School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China

2College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
3School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

(Received 6 September 2023; revised 8 December 2023; accepted 24 January 2024; published 13 February 2024)

Bell nonlocality is the key quantum resource in some device-independent quantum information processing. It
is of great importance to study the efficient sharing of this resource. Unsharp measurements are widely used in
sharing the nonlocality of an entangled state shared among several sequential observers. Recently, the authors
in [Phys. Rev. Lett. 129, 230402 (2022)] showed that the Bell nonlocality of two-qubit pure states can be
shared even when one only uses projective measurements and local randomness. We demonstrate that projective
measurements are also sufficient for sharing the Bell nonlocality of arbitrary high-dimensional pure bipartite
states. Our results promote further understanding of the nonlocality sharing of high-dimensional quantum states
under projective measurements.
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I. INTRODUCTION

Bell nonlocality, revealed by violating the Bell inequali-
ties of quantum entangled states, is one of the most startling
predictions of quantum mechanics [1]. It plays an important
role in device-independent quantum information processing,
such as quantum key distribution [2,3], quantum secure di-
rect communication [4,5], and communication complexity
reduction [6,7].

In recent years an interesting question about the shareabil-
ity of Bell nonlocality has been extensively studied [8–35].
The question is whether the postmeasurement state in a Bell
experiment can be reused for showcasing nonlocality between
several observers who perform sequential quantum measure-
ments; see Fig. 1(a) for the schematic diagram. In 2015 Silva
et al. showed that the Bell nonlocality from an entangled pair
can be utilized for multiple parties with sequential unsharp
measurements of intermediate strength [8]. Since then most
of the studies on nonlocality sharing adopt weak measure-
ments or unsharp measurements. In 2020 Brown and Colbeck
used average probability positive operator-valued measure
(POVM) [19] and showed that arbitrarily many independent
Bobs can share the nonlocality of the maximally entangled
pure two-qubit state |φ〉 = 1√

2
(|00〉 + |11〉) with the single

Alice.
Various measurements have been used in demonstrating

the Bell nonlocality. Among them the projective measurement
is the simplest one. Nevertheless, the projective measurement
is also the most destructive one to the quantum states. Gen-
erally, an entangled state would become separable after such
measurements. Recently, in [30] the authors showed that if
the Bobs apply standard projective measurements [a random
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combination of three projective measurement strategies with
different probabilities, see Fig. 1(b)], then two and three Bobs
can share the nonlocality of the two-qubit state |φ〉 with the
single Alice.

The high-dimensional quantum systems can carry more in-
formation and are more resistant to noises. High-dimensional
quantum systems are important in improving the performance
of quantum networks, quantum key distribution, quantum
teleportation, and quantum internet [36–39]. Therefore in this
article we study the nonlocal correlation sharing scenario
for arbitrary high-dimensional bipartite entangled pure states
along the line of [30] (Fig. 1). We show that projective mea-
surement is also a sufficient condition for two observers to
share the Bell nonlocality of any arbitrary dimensional bipar-
tite entangled pure states.

II. NONLOCAL SHARING OF BIPARTITE
HIGH-DIMENSIONAL PURE STATES

Let HA and HB be Hilbert spaces with dimensions
dim(HA) = s and dim(HB) = t , respectively (without loss
of generality, we assume s � t ). A bipartite pure state
|ψ〉 ∈ HA ⊗ HB has the Schmidt decomposition form |ψ〉 =∑s

i=1 ci|iA〉|iB〉, where ci ∈ [0, 1],
∑s

i=1 c2
i = 1, and {iA}s

1 and
{iB}t

1 are the orthonormal bases of HA and HB, respectively.
|ψ〉 is entangled if and only if at least two cis are nonzero.
Without loss of generality, below we assume that ci are ar-
ranged in descending order.

We focus on the sequential scenario shown in Fig. 1. To
begin with, Alice and Bob1 share an arbitrary entangled bi-
partite pure state ρ

(1)
AB = |ψ〉〈ψ |. Bobk (k = 1, 2, . . . , n) are

restricted to perform two different projective measurement
settings: PM(1) where both choose a projection measure-
ment (λ = 1), and PM(2) where one chooses a projection
measurement and the other chooses the identity operator
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FIG. 1. (a) A quantum state ρ
(1)
AB is initially shared by Alice and

Bob(1). Bob(1) performs some kind of quantum measurements on his
part and then passes it to Bob(2). The postmeasurement state is ρ

(2)
AB .

Bob(2) measures ρ
(2)
AB on his part and passes it to Bob(3) and so on.

(b) Quantum measurement (QM) given by a random combination of
several projective measurements (PMs) with different probabilities p.
Before the experiment begins, all the parties agree to share correlated
strings of classical data p = {pi} satisfying

∑
i pi = 1.

(λ = 2). Denote the binary input and output of Alice (Bobk)
by X (Y k ) ∈ {0, 1} and A (B(k) ) ∈ {0, 1}, respectively. Be-
fore the experiment begins, all the parties agree to share the
correlated strings of classical data λ subjected to probability
distribution {pλ}λ=1,2. Suppose Bob1 performs the measure-
ment according to Y 1 = y with outcome B1 = b. Averaged
over the inputs and outputs of Bob1, the un-normalized state
shared between Alice and Bob2 is given by

ρ
(2,λ)
AB = 1

2
�b,y

(
Is ⊗

√
B(1,λ)

b|y
)
ρ

(1)
AB

(
Is ⊗

√
B(1,λ)

b|y
)
, (1)

where B(1,λ)
b|y (λ = 1, 2) is the projective measurement

[(B(1,λ)
b|y )2 = B(1,λ)

b|y ], corresponding to outcome b of Bob(1,λ)’s
measurement for input y, and Is is the s × s identity matrix.
Repeating this process, one gets the state ρ

(k,λ)
AB shared be-

tween Alice and Bob(k), k = 2, 3, . . . , n.
The Bell nonlocality is verified by the violation of the

Clauser-Horne-Shimony-Holt (CHSH) inequality [40]. Each
pair Alice-Bobk tests the CHSH inequality,

Sk ≡
2∑

λ=1

pλSλ
k � 2, (2)

where

Sλ
k ≡

∑
x,y

(−1)xyTr
(
Ax ⊗ B(k,λ)

y

)
ρ

(k,λ)
AB . (3)

Here, {Ax, B(k,λ)
y }k=1,2,... denotes the observables of respective

parties conditioned on λ. Only when k = 1, ρ
(1,λ)
AB = ρ

(1)
AB .

Let us consider the simplest scenario, namely, n = 2 and
s, t are even. We set Alice’s quantum measurements to be
given by the observables

A0 = I s
2
⊗ (cos θσ3 + sin θσ1) (4)

and

A1 = I s
2
⊗ (cos θσ3 − sin θσ1) (5)

for some θ ∈ [0, π
2 ].

Case (i): (λ = 1). We set Bob1’s projective measurements
to be given by the observables

B(1,1)
0|0 = 1

2 [It + (I t
2
⊗ σ3)] (6)

and

B(1,1)
0|1 = 1

2 [It + (I t
2
⊗ σ1)]. (7)

Denote B(1,1)
1|y = It − B(1,1)

0|y and B(1,1)
y = B(1,1)

0|y − B(1,1)
1|y for

y = 0, 1. Similar to the calculations in Ref. [20], it is not
difficult to obtain that S1

1 � 2(cos θ + K sin θ ) := Ŝ1
1, where

K = 2(c1c2 + c3c4 + · · · + cs−1cs), 0 < K � 1.
Using Eq. (1) we obtain

ρ
(2,1)
AB = 1

2ρ
(1)
AB + 1

4 [Is ⊗ (I t
2
⊗ σ3)]ρ (1)

AB [Is ⊗ (I t
2
⊗ σ3)]

+ 1
4 [Is ⊗ (I t

2
⊗ σ1)]ρ (1)

AB [Is ⊗ (I t
2
⊗ σ1)]. (8)

Then taking B(2,1)
y = B(1,1)

y for y = 0, 1, we get S1
2 � (cos θ +

K sin θ ) := Ŝ1
1. The tradeoff relationship between Ŝ1

1 and Ŝ1
2 is

given by

Ŝ1
2 = 1

2 Ŝ1
1 . (9)

When θ = arctan K , Ŝ1
1 attains the maximum value

2
√

1 + K2. At this moment Ŝ1
2 = √

1 + K2. Moreover,
when |ψ〉 = 1√

2
(|00〉 + |11〉), that is, K = 1, we obtain the

same maximum value of Ŝ1
1 as in Ref. [30].

Case (ii): (λ = 2). We take Bob1’s projective measure-
ments to be

B(1,2)
0|0 = It (10)

and

B(1,2)
0|1 = 1

2 [It + (I t
2
⊗ σ1)]. (11)

Denote B(1,2)
1|y = It − B(1,2)

0|y and B(1,2)
y = B(1,2)

0|y − B(1,2)
1|y for y =

0, 1. Similarly, we can obtain S2
1 � 2K sin θ := Ŝ2

1 . By calcu-
lation, we have

ρ
(2,2)
AB = 3

4ρ
(1)
AB + 1

4 [Is ⊗ (I t
2
⊗ σ1)]ρ (1)

AB [Is ⊗ (I t
2
⊗ σ1)]. (12)

Then take B(2,2)
0 = I t

2
⊗ σ3, B(2,2)

1 = I t
2
⊗ σ1, and we ob-

tain S2
2 � 2K sin θ + cos θ := Ŝ2

2 . The tradeoff relationship
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FIG. 2. p and K as parameters of S1 (blue), contour surface
S1 = 2 (green).

between Ŝ2
1 and Ŝ2

2 becomes

Ŝ2
2 = Ŝ2

1 + 1

2K

√
4K2 − (

Ŝ2
1

)2
. (13)

When θ = arctan 2K , Ŝ2
2 achieves the maximum value√

4K2 + 1. Meanwhile, Ŝ2
1 = 4K2√

4K2+1
. In particular, for |ψ〉 =

1√
2
(|00〉 + |11〉) (K = 1), our the tradeoff relation Eq. (13)

gives rise to Eq. (6) of Ref. [30].
Concerning the Bell nonlocality, we assume that the

probability of choosing the first (second) measurement
is p (1 − p). According to the definition (2), it can be
seen that S1 = pS1

1 + (1 − p)S2
1 � pŜ1

1 + (1 − p)Ŝ2
1 =

2p
√

1 + K2 + (1 − p) 4K2√
4K2+1

and S2 = pS1
2 + (1 − p)S2

2 �
pŜ1

2 + (1 − p)Ŝ2
2 = p

√
1 + K2 + (1 − p)

√
4K2 + 1. The

nonlocality sharing problem is then transformed to find
parameters p and K such that S1 and S2 are both greater
than 2, as long as the right-hand formulas of the two
inequalities above are both greater than 2 is sufficient.
From Figs. 2 and 3 we see that they can both be greater
than 2 for some p and K . For example, when K = 1,
p ∈ [ 2

√
5−4

2
√

10−4
,

√
5−2√

5−√
2
] ≈ [0.203, 0.286], where S1 and S2 are

simultaneously greater than 2. Because S1 and S2 are both
continuous functions of p and K , there is still a finite domain
in which S1 and S2 are both greater than 2. This also fully
demonstrates that projective measurements are sufficient for
sharing Bell nonlocality for bipartite high-dimension pure
states.

When s and t are odd numbers, we only need to take the
following measurement operators and follow the calculation
method in Ref. [20] to obtain the same conclusion as when
s is even, except that the expression of K is changed to be
2(c1c2 + c3c4 + · · · + cs−2cs−1). The measurement operators
can be selected as

A0 =
(

I[ s
2 ] ⊗ (cos θσ3 + sin θσ1) 0

0 1

)
(14)

FIG. 3. p and K as parameters of S2 (red), contour surface S2 = 2
(green).

and

A1 =
(

I[ s
2 ] ⊗ (cos θσ3 − sin θσ1) 0

0 1

)
(15)

for some θ ∈ [0, π
2 ], where [m] represents the integer less than

or equal to m.
Similarly, in case (i) the corresponding projective measure-

ments of Bob1 are taken as

B(1,1)
0|0 = 1

2

[
It +

(
(I[ t

2 ] ⊗ σ3) 0
0 1

)]
;

B(1,1)
0|1 = 1

2

[
It +

(
(I[ t

2 ] ⊗ σ1) 0
0 1

)]
.

In case (ii) the corresponding projective measurements of
Bob1 are taken as

B(1,2)
0|0 = It ;

B(1,2)
0|1 = 1

2

[
It +

(
(I[ t

2 ] ⊗ σ1) 0
0 1

)]
.

The corresponding projective measurements of Bob2 are taken
as

B(2,2)
0 =

(
(I[ t

2 ] ⊗ σ3) 0
0 1

)
;

B(2,2)
1 =

(
(I[ t

2 ] ⊗ σ1) 0
0 1

)
.

One derives again that the Bell nonlocality of bipartite
high-dimension pure states can be shared under projective
measurements.

III. CONCLUSIONS AND OUTLOOK

We have shown that projective measurements are suffi-
cient for sharing the Bell nonlocality of high-dimensional
entangled pure states. Namely, two independent Bobs may
share states with a single Alice such that all the shared states
violate the CHSH inequality. Our work greatly expands the
range of quantum states given in Ref. [30]. These quantum
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states share the Bell nonlocality through projection measure-
ments and the distribution of shared classical randomness.
These results are not only theoretically interesting but also
are of significance for experimental implementation, since
projective measurements enable one to demonstrate sequen-
tial nonlocality sharing in much simpler setups than previous
nonprojective measurements [10,11,17,18,21]. In fact, un-
sharp quantum measurements have been proven to be useful
for device-independent self-testing and recycling quantum
communication [41–43]. Our results show that with only
projection measurements it might be feasible for some se-
quential quantum information protocols related to quantum
coherence [44], entanglement witnessing [45,46], quantum
steering [47,48], and quantum contextuality [49].

We have proven that based on POVMs, a high-dimension
bipartite entangled pure state may produce n sequential
violations of the CHSH inequality [20]. For projective
measurements how many sequence violations can occur for
high-dimensional entangled pure states is still unknown. It is

also a meaningful problem to design the optimal projection
measurement scheme. Instead of pure states, one may ask if
any special mixed states can also be used for nonlocality shar-
ing under projection measurements and shared randomness.
Moreover, conclusions about simultaneous bilateral measure-
ments and shared randomness would also be of importance.
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