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Quantum key distribution (QKD) stands as a pioneering method for establishing information-theoretically
secure communication channels by utilizing the principles of quantum mechanics. In the security proof of QKD,
the phase error rate serves as a critical indicator of information leakage and directly influences the security of
the shared key bits between communicating parties, Alice and Bob. In estimating the upper bound of the phase
error rate, phase randomization and subsequent postselection mechanisms serve pivotal roles across numerous
QKD protocols. However, the nonzero interval of phase postselection will introduce intrinsic errors, leading to
an overestimation of phase error rate. Here we make a precise phase-error-rate analysis for QKD protocols with
phase postselection, which eliminates error rate associated with nonzero interval and helps us to accurately bound
the amount of information an eavesdropper may obtain. We further apply our analysis in sending-or-not-sending
twin-field quantum key distribution (SNS-TFQKD) and mode-pairing quantum key distribution (MP-QKD). The
simulation results confirm that our precise phase error analysis can noticeably improve the key rate performance
especially over long distances in practice. Note that our method does not require alterations to the existing
experimental hardware or protocol steps. It can be readily applied within current SNS-TF-QKD and MP-QKD
for higher key rate generation.
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I. INTRODUCTION

Quantum key distribution (QKD) [1,2] provides the un-
conditional secure keys, which can not be broken even if
the eavesdropper Eve has unlimited computing resources,
between two remote parties by exploiting the fundamen-
tal properties of quantum physics. During the past four
decades, QKD has achieved great development in terms of
security [3–13] and practicality [14–39]. The decoy-state
method [14–16] allows QKD systems to utilize coherent
optical sources, diverging from the standard single-photon
source BB84 protocol. This adaptation renders practical
QKD systems resilient against photon-number splitting (PNS)
attacks, significantly enhancing both the secure key rate
and the achievable communication distance. Measurement-
device-independent (MDI) QKD protocol [17] (see also [18])
designates the measurement party as an untrusted intermedi-
ary situated within the channel, thereby making the key bits
shared between two communication parties immune to all de-
tector side attacks. However, due to the inherent transmission
loss in the channel, the key rate performance in previous QKD
is naturally constrained by the Pirandola-Laurenza-Ottaviani-
Banchi (PLOB) rate-transmittance bound [40] [see also the
Takeoka-Guha-Wilde (TGW) bound [41]]. The pursuit of
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longer communication distance and higher secure key rate
is the central issue of practical QKD. Based on the simple
and promising MDI-QKD structure, twin-field quantum key
distribution (TF-QKD) [20] and mode-pairing quantum key
distribution (MP-QKD) [31] (also named asynchronous-MDI-
QKD [32]) were proposed to break the PLOB bound without
quantum repeaters in recent years. Currently, these special
variants substantially extend the point-to-point transmission
distance, significantly advancing the practicality of QKD for
longer-distance applications.

Roughly speaking, most QKD protocols consist of code
mode and decoy mode. The communicating parties Alice and
Bob generate the raw keys in the code mode and disclose
a part of raw keys to estimate the bit error rate for error-
correction step. The key information leakage of QKD can
be bounded by the so-called phase error rate [4,5,7], which
can be estimated in the decoy mode. We find that in certain
QKD protocols with phase postselection, the phase error rate
relies on interference measurements within nonzero phase
interval which will lead to intrinsic errors unrelated to eaves-
dropping and consequently overestimating phase error rate.
From the perspective of the equivalent entanglement-based
scheme for the actual QKD protocol, the key is obtained
by measuring the bipartite auxiliary qubits AB in the Z =
{|0〉, |1〉} basis. The phase error rate is usually defined as the
bit error rate of qubits AB in the X = {|+〉 = 1√

2
(|0〉 + |1〉),

|−〉 = 1√
2
(|0〉 − |1〉)} basis. Nevertheless, the nonzero inter-

val in the phase postselection step implies that phase error
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FIG. 1. The equivalent entanglement-based scheme of certain MDI-QKD variants. Alice and Bob first prepare the ancillary qubits A, B
and signal states a, b. The signal states a, b are sent to untrusted node Charlie for measurement. After Charlie announces the measurement
outputs mi (i = 1, 2, . . . , s, s + 1 and s � 2), Alice and Bob choose the measurement outcome mj ( j = 1, 2, . . . , s) to generate the key. Note
that the measurement outcome ms+1 denotes an invalid event, which is not used to generate keys. In the key generation step, Alice and Bob
measure the ancillary bipartite qubits ρ

m j
AB ( j = 1, 2, . . . , s) in the ZA and ZB basis. The phase error rate is usually defined as the bit error

rate of qubits ρ
m j
AB in the XA and XB (X = {|+〉 = 1√

2
(|0〉 + |1〉), |−〉 = 1√

2
(|0〉 − |1〉)}) basis. In fact, it can also be defined in the XA and Xδ,B

(Xδ = {|+δ〉 = 1√
2
(|0〉 + e−iδ|1〉), |−δ〉 = 1√

2
(|0〉 − e−iδ|1〉)}) basis.

rate is not defined in the X basis but rather in the conju-
gate basis Xδ = {|+δ〉 = 1√

2
(|0〉 + e−iδ|1〉), |−δ〉 = 1√

2
(|0〉 −

e−iδ|1〉)} (δ ∈ [0, 2π )). The distinct definitions of phase error
rate across various conjugate bases commonly yield differing
values, which prompts us to make a precise phase error rate
analysis.

Based on the above idea, we propose a precise phase-
error-rate analysis in this paper to further reduce the lower
bound of phase error rate. Our method demonstrates notice-
able enhancements in key rate performance for several QKD
protocols with phase postselection, such as sending-or-not-
sending twin-field quantum key distribution (SNS-TFQKD)
[22] and MP-QKD.

We structure the remainder of this paper as follows. In
Sec. II, we introduce a general equivalent entanglement-based
scheme applicable to certain MDI-QKD variants and perform
the precise phase-error-rate analysis. In Sec. III, we give
the security proof for SNS-TF-QKD based on the equivalent
entanglement-based scheme and obtain a precise phase error
rate from the previously established formula. Our simulations
demonstrate the noticeable enhancement achieved by our
method in practical actively odd-parity pairing (AOPP) SNS-
TFQKD protocol. Additionally, we provide a brief overview
of MP-QKD and showcase the improvements facilitated by
our approach. Finally, a conclusion is given and we expect
our method can be used in current AOPP-SNS-TFQKD and
MP-QKD protocols.

II. PRECISE PHASE ERROR ANALYSIS

We first consider the following equivalent entanglement-
based scheme for certain MDI-QKD variants in Fig. 1.

The communicating parties Alice and Bob prepare the
ancillary qubit particles A, B and the signal particles a, b in
a joint quantum state ρABab. The signal particles a and b are

sent to untrusted party Charlie through an untrusted channel.
Charlie measures the received signal states and announces
the measurement outputs mi (i = 1, 2, . . . , s, s + 1 and s� 2).
Without loss of generality, we can introduce a positive
operator-valued measure (POVM), which is a set of positive-
semidefinite Hermitian matrices {M1, M2, . . . , Ms, Ms+1} act-
ing on state ρab = TrAB(ρABab) associated with the outcomes
{m1, m2, . . . , ms, ms+1}, to denote the Charlie’s measurement
and channel transmission effects. So the probability p(mi )
of the outcome mi is p(mi ) = Tr(ρabM†

i Mi ). After Charlie’s
measurement and announcing the outcome mi, the ancillary
bipartite qubits collapse into the normalized quantum state
ρ

mi
AB = Trab(ρABabM†

i Mi ))/p(mi ). Note that the measurement
outcome ms+1 denotes an invalid event, which is not used
to generate keys. For the ancillary bipartite qubits ρ

mj

AB ( j =
1, 2, . . . , s), Alice and Bob both measure them in the Z =
{|0〉, |1〉} basis to obtain the key bits or measure them in the
X = {|+〉 = |0〉+|1〉√

2
, |−〉 = |0〉−|1〉√

2
} basis for phase error test. If

Alice still measures her ancillary qubit in the X basis but Bob
measures his ancillary qubit in the Xδ = {|+δ〉 = 1√

2
(|0〉 +

e−iδ|1〉), |−δ〉 = 1√
2
(|0〉 − e−iδ|1〉)} basis, it can still be used

for phase error test. In fact, we can introduce a unitary op-
erator U δ

B for Bob’s qubit B to convert the ancillary bipartite
qubits ρ

mj

AB to σ
mj

AB where U δ
B|0〉B = |0〉B and U δ

B|1〉B = eiδ|1〉B.
As discussed in Ref. [33], this unitary operator has no physical
effects on the key bits generation and Eve’s potential system.
It is obvious that the measurement output for σ

mj

AB in the X
and X basis can be defined as the phase error. So we conclude
that the phase error rate can be obtained by measuring the
ρ

mj

AB in the X and Xδ basis due to the fact that such measure-
ment output is equivalent to measuring σ

mj

AB in the X and X
basis.

In fact, we can separately define the phase error rates of the
key bits under every effective announcement by Charlie. That
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means we can classify the key bits into s classes according to
the announced outputs by Charlie. We denote the phase error
rate of ρ

mj

AB under the X and X basis as e j
ph and under the X

and Xδ basis as eδ, j
ph . We will estimate the upper bound on e j

ph

given eδ, j
ph below.

For the given ancillary bipartite qubits ρ
mj

AB, Alice first
measures her local qubit in the X basis and obtains the
state |+〉 with probability p+ and |−〉 with probability
p− (p+ + p− = 1). Bob also measures his local qubit in
the X basis. Given Alice’s output |+〉, we can assume
that Bob obtains the state |+〉 with probability 1 − e+ and
|−〉 with probability e+. Given Alice’s output |−〉, we as-
sume that Bob obtains the state |−〉 with probability 1 −
e− and |+〉 with probability e−. Here, we have the phase
error rate

e j
ph = p+e+ + p−e−. (1)

Given Alice’s output |+〉, Bob’s density matrix is

ρ+
B = (1 − e+)|+〉〈+| + e+|−〉〈−| + x+|+〉〈−| + x�

+|−〉〈+|,
(2)

where x+ is a complex number, x�
+ is the complex conjugate of

x+. If Bob measures ρ+
B in the Xδ basis and defines the output

|−δ〉 as the error event, the error rate is

eδ
+ = 〈−δ|ρ+

B |−δ〉

= (1 − e+)
1 − cos δ

2
+ e+

1 + cos δ

2
+ x+

1 + e−iδ

2

1−eiδ

2

+ x�
+

1 − e−iδ

2

1 + eiδ

2

= e+ cos δ + 1 − cos δ

2
+ Re[−ix+ sin δ], (3)

where Re[x] is the real part of the complex number x. Given
Alice’s output |−〉, Bob’s density matrix is

ρ−
B = e−|+〉〈+| + (1 − e−)|−〉〈−| + x−|+〉〈−| + x�

−|−〉〈+|,
(4)

where x− is a complex number, x�
− is the complex conjugate of

x−. If Bob measures ρ−
B in the Xδ basis and defines the output

|+δ〉 as the error event, the error rate is

eδ
− = 〈+δ|ρ−

B |+δ〉

= e−
1 + cos δ

2
+ (1 − e−)

1− cos δ

2
+ x−

1 + eiδ

2

1 − e−iδ

2

+ x�
−

1 − eiδ

2

1 + e−iδ

2

= e− cos δ + 1 − cos δ

2
+ Re[ix− sin δ]. (5)

So the phase error rate eδ, j
ph under the X and Xδ basis is

eδ, j
ph = p+eδ

+ + p−eδ
−

= e j
ph cos δ + 1 − cos δ

2
+ p+Re[−ix+ sin δ]

+ p−Re[ix− sin δ]

= e j
ph cos δ + 1 − cos δ

2
+ Aj

X sin δ, (6)

where Aj
X = p+Re[−ix+] + p−Re[ix−]. Note that Aj

X is inde-
pendent of δ.

In most practical MDI-QKD variants, we do not consider
the phase error rates under different Charlie’s announcements
but define only one phase error rate for all key bits. We
assume that the probability of effective events mj announced
by Charlie in an effective round is pj (

∑s
j=0 p j = 1). So the

total phase error rate under the X and X basis is

eph =
s∑

j=0

p je
j
ph, (7)

and the total phase error rate under the X and Xδ basis is

eδ
ph =

s∑
j=0

p je
δ, j
ph

=
s∑

j=0

p j

(
e j

ph cos δ + 1 − cos δ

2
+ Aj

X sin δ

)

= eph cos δ + 1 − cos δ

2
+

⎛
⎝ s∑

j=0

p jA
j
X

⎞
⎠ sin δ. (8)

We find that the phase error rate in some certain QKD vari-
ants with phase postselection is defined as e�

ph = 1
2�

∫ �

−�
eδ

phdδ

(0 < � < π
2 ), which is easily estimated by the decoy-state

analysis. In fact, eph and e�
ph have the following correlation:

e�
ph = 1

2�

∫ �

−�

eδ
phdδ

= 1

2�

∫ �

−�

⎡
⎣eph cos δ + 1− cos δ

2
+

⎛
⎝ s∑

j=0

p jA
j
X

⎞
⎠ sin δ

⎤
⎦dδ

= 1 − sinc�

2
+ ephsinc�, (9)

where sinc(x) = sin(x)
x . So, we can estimate the precise phase

error rate by the previous given phase error rate e�
ph:

eph = 1

sinc�
e�

ph + 1

2

(
1 − 1

sinc�

)

� 1

sinc�
ē�

ph + 1

2

(
1 − 1

sinc�

)
, (10)

where ē�
ph is the upper bound of previous loose phase error rate

estimated by the decoy-state analysis. Note that our analysis
is applicable to the finite-key regime as long as the previous
loose phase error rate is also for the finite-key case.

III. SOME QKD WITH PHASE POSTSELECTION
APPLICABLE TO OUR METHOD

We find some QKD protocols with phase postselection
applicable to our precise phase-error-rate analysis. We aim
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to implement our method within SNS-TFQKD and MP-QKD
protocols, simulating its potential enhancements.

A. Apply our method to SNS-TFQKD

The SNS-TFQKD protocol, introduced by Wang et al.
in 2018, has emerged as a prominent TF-QKD protocol in
current practice. In code mode, Alice (Bob) generates a key
bit 1 (0) with a probability of p while sending a phase-
randomized coherent state. Conversely, she (he) generates a
key bit 0 (1) with a probability of 1 − p and does not send
anything. We give the equivalent entanglement-based scheme
as follows:

ρABab =
√

1 − p|0〉A|0〉a + √
p|1〉A|√μeiα〉a

⊗ √
p|0〉B|√μeiβ〉b +

√
1 − p|1〉B|0〉b

=
√

p(1 − p)|00〉AB|0〉a

∞∑
m=0

√
Pmeimβ |m〉b

+
√

p(1 − p)|11〉AB

∞∑
n=0

√
Pneinα|n〉a|0〉b

+ (1 − p)|01〉AB|00〉ab + p|10〉AB

∞∑
n=0

√
Pneinα|n〉a

×
∞∑

m=0

√
Pmeimβ |m〉b, (11)

where |0〉A(B) and |1〉A(B) denote the local auxiliary qubits
which are used to generate the key between Alice and Bob,
|0〉a(b) denotes the vacuum state, |√μeiα(β )〉a(b) denotes the
phase-randomized coherent state sent by Alice (Bob), Pn =
e−μμn/n! is the Poisson distribution with mean photon num-
ber μ, and α (β) is the random phase.

In a round of code mode in SNS-TFQKD, the key bit
shared between Alice and Bob when one side sends nothing
and the other side happens to send out the single-photon
pulse is defined as the untagged bit [22]. Only the untagged
bits are deemed as genuinely valid coded bits, originating
from the partial quantum state ρABab within the corresponding
entanglement-based scheme:

ρu
ABab =

√
p(1 − p)|00〉AB|0〉a

√
P1eiβ |1〉b + √

p(1 − p)|11〉AB

√
P1eiα|1〉a|0〉b√

2p(1 − p)P1

= |00〉AB|0〉aei(β−α)|1〉b + |11〉AB|1〉a|0〉b√
2

, (12)

where |1〉a(b) is the single-photon state when Alice (Bob) sends the coherent state. In fact, the relative phase between |00〉AB|01〉ab
and |11〉AB|10〉ab plays no role in the results of the measurement for generating the secure key and Eve’s potential system. As
the method proposed in Ref. [33], we can introduce a unitary operation U αβ

AB to the bipartite auxiliary qubits AB before the
measurement on them, where U αβ

AB |00〉AB = ei(α−β )|00〉AB and U αβ

AB |11〉AB = |11〉AB. This unitary operation can be achieved by
constructing a hypothetical private channel through which Alice and Bob can share phase information α and β. So the quantum
state σ u

ABab can take the following equivalent form:

σ u
ABab = |00〉AB|01〉ab + |11〉AB|10〉ab√

2
. (13)

We can reformulate σ u
ABab in the X and Xδ basis as

σ u
ABab =

|+〉A+|−〉A√
2

|+δ〉B+|−δ〉B√
2

|01〉ab + |+〉A−|−〉A√
2

|+δ〉B−|−δ〉B√
2e−iδ |10〉ab√

2

=
|+〉A|+δ〉B+|−〉A|−δ〉B√

2
|01〉ab+eiδ |10〉ab√

2
+ |+〉A|−δ〉B+|−〉A|+δ〉B√

2
|01〉ab−eiδ |10〉ab√

2√
2

. (14)

This indicates that the phase error rate defined in the X and Xδ

basis is related to the yields of the quantum states |01〉ab+eiδ |10〉ab√
2

and |01〉ab−eiδ |10〉ab√
2

.
In the decoy mode of SNS-TFQKD, Alice and Bob prepare

and send the phase-randomized coherent state with intensity
μ1 to Charlie. After Charlie’s measurement and announce-
ment, Alice and Bob disclose the phases θA and θB of
each pulse and postselect the instances that |θA − θB| � �

2
and |θA − θB − π | � �

2 for phase-error-rate estimation [42].

When the phase difference between Alice and Bob is |θA −
θB| = δ or |θA − θB − π | = δ, they can estimate the phase
error rate eδ

ph as depicted in (8). So our precise phase error
analysis is adapted to SNS-TFQKD protocol. In the decoy
mode, Ref. [42] uses the round that Alice and Bob both send
the coherent state with intensity μ1 to estimate the phase error
rate in (9) as

e�
ph � ēph

1 = T� − 1
2 e−2μ1 S00

2μ1e−2μ1 sZ
1

, (15)
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FIG. 2. The key rate per round and the phase error rate in AOPP-
SNS-TFQKD, comparing the original protocol with the outcomes of
our precise analysis. The PLOB bound is also displayed in the figure.

where T� is the error-click ratio of the instances that Alice
and Bob both send the coherent pulse with intensity μ1 and
their phase difference meets the postselection condition |θA −
θB| � �

2 or |θA − θB − π | � �
2 [42], S00 is the counting rate

of vacuum state, and sZ
1 is the lower bound of the counting rate

of single-photon state. So the precise phase error rate is

ep
ph � 1

sinc
(

�
2

) T� − 1
2 e−2μ1 S00

2μ1e−2μ1 sZ
1

+ 1

2

(
1 − 1

sinc
(

�
2

))
. (16)

We use this precise phase error analysis in the prac-
tical AOPP-SNS-TFQKD protocol [28,29,43] and simulate
the original AOPP-SNS-TFQKD and our improved protocol
in Fig. 2.

We use the same finite-key analysis and linear simulation
model mentioned in Ref. [29]. The simulation parameters can
be obtained from the experiments in Refs. [44–47]. Some
crucial parameters are specifically listed in Table I. We set
the total sending pulse as 1×1012, the misalignment error
as 5%, the dark count rate as 1×10−8, the fiber loss co-
efficient as 0.2 dB/km, the photon detection efficiency as
30%, the error-correction inefficiency as 1.1, and the failure
probability when calculating the effect of statistical fluctua-
tion as 1×10−20. Furthermore, we achieve a security level of

TABLE I. The numerical simulations utilize a set of experimental
parameters detailed in the table. These parameters encompass pd as
the dark count rate for Charlie’s detectors, ed representing the mis-
alignment error probability, ηd denoting the detection efficiency of
Charlie’s detectors, f indicating the error-correction inefficiency, α f

serving as the fiber loss coefficient in decibels per kilometer (dB/km),
and ξc representing the failure probability during the computation of
the statistical fluctuation effect.

pd ed ηd f α f ξc

1.0×10−8 5% 30% 1.1 0.2 10−20

4.66×10−9 in the sense of composable security against coher-
ent attacks. The simulation results indicate that, for distances
surpassing 380 km, there is a 4%–5% reduction in phase
error rates, accompanied by a key-rate improvement of 10%
or more. Additionally, the maximum achievable distance has
been extended by 3 km. These findings affirm the practical
effectiveness of our precise phase error analysis in noticeably
enhancing the key-rate performance.

B. Apply our method to MP-QKD

The specific process of MP-QKD protocol and the secu-
rity proof in the finite-key regime based on the equivalent
entanglement-based scheme have been thoroughly discussed
in Ref. [33]. Here, we provide a brief overview of the coded
quantum states sent by Alice and Bob and directly show the
equivalent entanglement-based scheme.

In each round of MP-QKD, Alice (Bob) randomly sends
the phase-randomized coherent pulses with intensity μa(b) and
νa(b) and the vacuum state with probabilities pμa(b) , pνa(b) and
po to untrusted node Charlie for interference measurement.
Only the rounds where only detector L or R clicks are kept
for subsequent step. In the postprocessing step, Alice and Bob
choose two rounds in the maximal pairing interval to form
the effective event pair. We denote the intensity in the first
and second rounds of the effective event pair as k1

a(b) and k2
a(b).

Only those pairs in which vacuum states are paired with weak
coherent states are used for key generation. Alice sets her key
bit to 0 if k2

a �= k1
a = 0 or 1 if k1

a �= k2
a = 0. Bob sets her key

bit to 0 if k1
b �= k2

b = 0 or 1 if k2
b �= k1

b = 0. Similar to SNS-
TFQKD, only the key bit when Alice and Bob decide to send a
coherent state but happen to send out the single-photon state is
considered genuinely valid coded bit. We give the equivalent
entanglement-based scheme as follows:

ρABa1a2b1b2 = |0〉A|01〉a1a2
+ |1〉A|10〉a1a2√

2

⊗ |0〉B|10〉b1b2
+ |1〉B|01〉b1b2√

2
. (17)

We can reformulate ρABa1a2b1b2 in the Xδa = {|+δa〉A =
1√
2
(|0〉A + e−iδa |1〉A), |−δa〉A = 1√

2
(|0〉A − e−iδa |1〉A)}

and Xδb = {|+δb〉B = 1√
2
(|0〉B + e−iδb |1〉B), |−δb〉B =

1√
2
(|0〉B − e−iδb |1〉B)} basis as

ρABa1a2b1b2

=
|+δa〉A+|−δa〉A√

2
|01〉a1a2

+ |+δa〉A−|−δa〉A√
2e−iδa

|10〉a1a2√
2

⊗
|+δb〉B+|−δb〉B√

2
|10〉b1b2

+ |+δb〉B−|−δb〉B√
2e−iδb

|01〉b1b2√
2

=
|+δa〉A

|01〉a1a2
+eiδa |10〉a1a2√

2
+ |−δa〉A

|01〉a1a2
−eiδa |10〉a1a2√

2√
2

⊗
|+δb〉B

|10〉b1b2
+eiδb |01〉b1b2√

2
+ |−δb〉B

|10〉b1b2
−eiδb |01〉b1b2√

2√
2

.

(18)
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Note that we further consider the definition of phase er-
ror rate. After Charlie’s measurement and announcement,
Alice and Bob can also measure the ancillary bipar-
tite qubits ρAB in the Z ′

A = Z ′
B = {|0〉, e−iδa |1〉} basis to

generate key bit or measure ρAB in the XA = XB = {|+〉 =
1√
2
(|0〉 + e−iδa |1〉), |−〉 = 1√

2
(|0〉 − e−iδa |1〉)} basis for phase

error test. Similar to before, phase error rate can also be de-
fined in the XA = {|+〉 = 1√

2
(|0〉 + e−iδa |1〉), |−〉 = 1√

2
(|0〉 −

e−iδa |1〉)} and Xδ,B = {|+δ〉 = 1√
2
(|0〉 + e−i(δa+δ)|1〉), |−δ〉 =

1√
2
(|0〉 − e−i(δa+δ)|1〉)} basis and there is the same correlation

between the two definitions as shown in (8). In order to facil-
itate understanding of the definition of phase error rate, here
we imagine the following scenario according to (18).

Alice generates a key bit κa ∈ {0, 1} and prepares

the quantum state
|01〉a1a2

+ei(δa+κaπ )|10〉a1a2√
2

. Bob also gener-
ates a key bit κb ∈ {0, 1} and prepares the quantum state
|01〉b1b2

+e−i(δb+κbπ )|10〉b1b2√
2

. Note that δa ∈ [0, 2π ) and δb ∈ [0, 2π )
are predetermined. They both send the quantum states to Char-
lie for interference measurement to share key bit. According
to complementarity [7], the phase error rate of genuinely
valid coded bits in MP-QKD is the bit error rate in such a
scenario. Note that achieving the prepared quantum states in
the imagined scenario poses challenges. Consequently, Alice
and Bob send phase-randomized coherent states with identi-
cal intensity, which allows them to estimate the phase error
rate using the decoy-state method. The phase postselection
condition in the original MP-QKD protocol corresponds to
the case that |δa − δb| � � or |δa − δb − π | � � here. We
define δ = δb − δa. Note that δ and δ + π are equivalent in
phase error test. The original MP-QKD protocol provides an
estimation of the following loose phase error rate:

e�
ph = 1

4π�

∫ 2π

0

∫ δa+�

δa−�

eδa,δb
ph dδbdδa

= 1

4π�

∫ 2π

0

∫ �

−�

eδa,δa+δ
ph dδ dδa, (19)

where eδa,δb
ph is the bit error rate in the imagined scenario for

the given δa and δb as well as the phase error rate in the Xδa

and Xδb basis.
Similar to (8), we can also get the following equality:

eδa,δa+δ
ph = eδa,δa

ph cos δ + 1 − cos δ

2
+

(
s∑

j=0

p jA
j
X

)
sin δ.

(20)

By integrating δ in the interval [−�,�] and δa in the interval
[0, 2π ] in both sides of (20), we can obtain the following
precise phase error rate:

eph = 1

2π

∫ 2π

0
eδa,δa

ph dδa

= 1

sinc�
e�

ph + 1

2

(
1 − 1

sinc�

)

� 1

sinc�
ē�

ph + 1

2

(
1 − 1

sinc�

)
, (21)

FIG. 3. The key rate per round and the phase error rate in MP-
QKD with original method and our precise analysis. The PLOB
bound is also displayed in the figure.

where e�
ph is defined in (19) and ē�

ph is the upper bound of e�
ph.

We use this precise phase error analysis in the practical
MP-QKD protocol [33] and simulate the original MP-QKD
and our improved protocol in Fig. 3.

We use the same finite-key analysis and simulation model
mentioned in Ref. [33]. The simulation parameters can be
obtained from the experiments in Refs. [48,49]. Some cru-
cial parameters are specifically listed in Table II. We set the
total sending pulse as 1×1013, the maximal pairing interval
as 1×106, the misalignment error in Z basis as 0.5%, the
misalignment error in X basis as 5%, the dark count rate as
1×10−8, the fiber loss coefficient as 0.2 dB/km, the photon
detection efficiency as 70%, the error-correction inefficiency
as 1.1 and the failure probability when calculating the ef-
fect of statistical fluctuation as 1×10−23. Furthermore, we
achieve a security level of 1×10−10 in the sense of com-
posable security against coherent attacks. The simulation
results indicate that, for distances surpassing 360 km, there
is a 4%–5% reduction in phase error rates, accompanied
by a key-rate improvement of 10% or more. Additionally,
the maximum achievable distance has been extended by
2 km, which once again confirms that our precise phase er-
ror analysis noticeably improves the key-rate performance in
practice.

TABLE II. The numerical simulations utilize a set of experimen-
tal parameters detailed in the table. These parameters encompass
pd as the dark count rate for Charlie’s detectors, ηd denoting the
detection efficiency of Charlie’s detectors, α serving as the fiber loss
coefficient in decibels per kilometer (dB/km), f indicating the error-
correction inefficiency, εtol representing the total secure coefficient,
and eZ

d and eX
d are the misalignment errors of the Z and X bases,

respectively.

pd ηd α f εtol eZ
d eX

d

1×10−8 70% 0.2 1.1 1×10−10 0.5% 5%
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IV. CONCLUSION

In conclusion, our precise phase-error-rate analysis pro-
vides a comprehensive and accurate comprehension of phase
error rate for QKD with phase postselection. The versatility
of our method enables its direct integration into AOPP-
SNS-TFQKD and MP-QKD protocols, facilitating notable
enhancements in key-rate performance without necessitating
alterations to the existing experimental hardware or protocol
steps. Given its adaptable nature, we anticipate its appli-
cability to extend beyond these specific protocols, offering
potential improvements in various other QKD with phase
postselection.
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APPENDIX: A MORE INTUITIVE PHASE ERROR
ANALYSIS FOR SNS-TFQKD

In the equivalent entanglement-based scheme of
SNS-TFQKD protocol, we can reformulate σ u

ABab in
(13) under the Xδ = {|+δ〉 = 1√

2
(|00〉 + e−iδ|11〉), |−δ〉 =

1√
2
(|00〉 − e−iδ|11〉)} basis (0 � δ < π

2 ) as

σ u
ABab =

|+δ〉AB+|−δ〉AB√
2

|01〉ab + |+δ〉AB−|−δ〉AB√
2e−iδ |10〉ab√

2

=
|+δ〉AB

|01〉ab+eiδ |10〉ab√
2

+ |−δ〉AB
|01〉ab−eiδ |10〉ab√

2√
2

. (A1)

Here we follow the idea proposed in [22] that the genuinely
valid coded quantum state and the conjugated quantum state
used for phase error estimation in SNS-TFQKD are similar
to that in a BB84 protocol [1]. This indicates that the phase
error rate defined in the Xδ basis is related to the yields of the
quantum states |01〉ab+eiδ |10〉ab√

2
and |01〉ab−eiδ |10〉ab√

2
.

To estimate the phase error rate in the practical SNS-
TFQKD protocol, Charlie should measure the bipartite signal
qubits |01〉ab+eiθ |10〉ab√

2
(θ ∈ [0, 2π )) sent from Alice and Bob on

the measuring device M. Since Charlie does not know the
phase difference θ when measuring the signal qubits a and
b, we can assume without loss of generality that Charlie’s
measurement device M can perfectly discriminate the quan-
tum state between |01〉ab+|10〉ab√

2
and |01〉ab−|10〉ab√

2
, i.e., the click of

the L port must indicate the quantum state |01〉ab+|10〉ab√
2

and the

click of the R port must indicate the quantum state |01〉ab−|10〉ab√
2

.
Naturally, Charlie can not perfectly discriminate whether the

state is |01〉ab+eiδ |10〉ab√
2

or |01〉ab−eiδ |10〉ab√
2

(δ �= 0 or π ), i.e., the click

of the L port partially indicates the quantum state |01〉ab+eiδ |10〉ab√
2

and the click of the R port partially indicates the quantum state
|01〉ab−eiδ |10〉ab√

2
. For the L port click events, we define the events

caused by the quantum state |01〉ab−eiδ |10〉ab√
2

as the error events,
which enlightens us to define the quantum state |−δ〉AB as an
error in the Xδ basis. Correspondingly, we define the events
caused by the quantum state |01〉ab−eiδ |10〉ab√

2
as the error events

for the R port click events, which enlightens us to define the
quantum state |+δ〉AB as an error in the Xδ basis.

We first consider the L port click events announced by
Charlie. Alice and Bob prepare the joint quantum state
ρABab = σ u

ABab in (13) and send the signal qubits a and b to
Charlie for measuring. We define the phase error rate eδ,L

ph as

eδ,L
ph = 〈−δ|ρAB|−δ〉

= 1
2 (〈00| − eiδ〈11|)ρAB(|00〉 − e−iδ|11〉)

= 1
2 [〈00|ρAB|00〉 + 〈11|ρAB|11〉 − e−iδ〈00|ρAB|11〉
− eiδ〈11|ρAB|00〉]

= 1
2 − Re[eiδ〈11|ρAB|00〉], (A2)

where Re[z] is the real part of the complex number z and ρAB

is the quantum state of local auxiliary qubits A and B after
Charlie’s measurement on signal states a and b.

In the decoy mode of SNS-TFQKD, Alice and Bob send
the coherent states to Charlie for interference on the beam
splitter, followed by two photon detectors L and R. This
allows us to estimate the yield of the quantum state ρ� =
1
�

∫ �
2

− �
2

[(P{ |01〉ab+e−iδ |10〉ab√
2

} + P{ |01〉ab−e−iδ |10〉ab√
2

})/2]dδ which in-

dicates the phase error rate e�,L
ph for the L port click events:

e�,L
ph = 1

�

∫ �
2

− �
2

eδ,L
ph dδ

= 1

�

∫ �
2

− �
2

(
1

2
− Re[eiδ〈11|ρAB|00〉]

)
dδ

= 1

2
− sinc

(
�

2

)
Re[〈11|ρAB|00〉], (A3)

where sinc(x) = sin(x)
x . In fact, e�,L

ph is not the optimal phase-
error-rate definition. We can use the current measurement data
to estimate the precise phase error rate eL

ph in the X0 = {|+〉 =
1√
2
(|00〉 + |11〉), |−〉 = 1√

2
(|00〉 − |11〉)} basis as follows:

eL
ph = 〈−|ρAB|−〉

= 1
2 (〈00| − 〈11|)ρAB(|00〉 − |11〉)

= 1
2 [〈00|ρAB|00〉 + 〈11|ρAB|11〉 − 〈00|ρAB|11〉
− 〈11|ρAB|00〉]

= 1
2 − Re[〈11|ρAB|00〉]. (A4)
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Combining (A3) and (A4), we have

eL
ph = 1

sinc( �
2 )

e�,L
ph + 1

2

(
1 − 1

sinc( �
2 )

)
. (A5)

Similarly, we define the phase error rate eδ,R
ph for the R port

click events as

eδ,R
ph = 〈+δ|ρAB|+δ〉

= 1
2 (〈00| + eiδ〈11|)ρAB(|00〉 + e−iδ|11〉)

= 1
2 [〈00|ρAB|00〉 + 〈11|ρAB|11〉 + e−iδ〈00|ρAB|11〉
+ eiδ〈11|ρAB|00〉]

= 1
2 + Re[eiδ〈11|ρAB|00〉]. (A6)

Alice and Bob also use the sent quantum state ρ� =
1
�

∫ �
2

− �
2

[(P{ |01〉ab+eiδ |10〉ab√
2

} + P{ |01〉ab−eiδ |10〉ab√
2

})/2]dδ to estimate

the phase error rate e�,R
ph for the R port click events as follows:

e�,R
ph = 1

�

∫ �
2

− �
2

eδ,R
ph dδ

= 1

�

∫ �
2

− �
2

(
1

2
+ Re[eiδ〈11|ρAB|00〉]

)
dδ

= 1

2
+ sinc

(
�

2

)
Re[〈11|ρAB|00〉]. (A7)

The precise phase error rate eR
ph is

eR
ph = 〈+|ρAB|+〉 = 1

2 (〈00| + 〈11|)ρAB(|00〉 + |11〉)

= 1
2 [〈00|ρAB|00〉 + 〈11|ρAB|11〉 + 〈00|ρAB|11〉
+ 〈11|ρAB|00〉] = 1

2 + Re[〈11|ρAB|00〉]. (A8)

Combining (A7) and (A8), we also have

eR
ph = 1

sinc( �
2 )

e�,R
ph + 1

2

(
1 − 1

sinc( �
2 )

)
. (A9)

In the current SNS-TFQKD system, we usually consider
the click events of the L and R ports together to calculate the
total phase error rate

etot
ph = nL

nL + nR
eph(L) + nR

nL + nR
eph(R), (A10)

where nL and nR are the number of click events from
ports L and R. The loose phase error rate e�

ph = nL
nL+nR

e�,L
ph +

nR
nL+nR

e�,R
ph . The precise phase error rate ep

ph = nL
nL+nR

eL
ph +

nR
nL+nR

eR
ph. Combining (A5) and (A9), we can get the precise

phase error rate from the loose phase error rate given the
measurement data

ep
ph = 1

sinc
(

�
2

)e�
ph + 1

2

(
1 − 1

sinc
(

�
2

))
. (A11)
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