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Electron-mediated entanglement of two distant macroscopic ferromagnets
within a nonequilibrium spintronic device
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Using the nascent concept of quantum spin-transfer torque [A. Zholud et al., Phys. Rev. Lett. 119, 257201
(2017); M. D. Petrović et al., Phys. Rev. X 11, 021062 (2021)], we demonstrate that a current pulse can
be harnessed to entangle quantum localized spins of two spatially separated ferromagnets (FMs) which are
initially unentangled. The envisaged setup is composed of a spin-polarizer (FMp) and a spin-analyzer (FMa)
FM layers separated by a normal metal (NM) spacer. The injection of a current pulse into the device leads to a
time-dependent superposition of many-body states characterized by a high degree of entanglement between the
spin degrees of freedom of the two distant FM layers. The nonequilibrium dynamics are due to the transfer of
spin angular momentum from itinerant electrons to the localized spins via a quantum spin-torque mechanism
that remains active even for collinear but antiparallel arrangements of the FMp and FMa magnetizations (a
situation in which the conventional spin torque is absent). We quantify the mixed-state entanglement generated
between the FM layers by tracking the time evolution of the full density matrix and analyzing the build-up of
the mutual logarithmic negativity over time. The effect of decoherence and dissipation in the FM layers due to
coupling to bosonic baths at finite temperature, the use of multielectron current pulses, and the dependence on
the number of spins are also considered in an effort to ascertain the robustness of our predictions under realistic
conditions. Finally, we propose a “current-pump–x-ray-probe” scheme, utilizing ultrafast x-ray spectroscopy,
that can witness nonequilibrium and transient entanglement of the FM layers by extracting its time-dependent
quantum Fisher information.

DOI: 10.1103/PhysRevA.109.022414

I. INTRODUCTION

Entanglement describes genuinely quantum and nonlocal
correlations between different parts of a physical system. For-
mally, it stems from a two-body or many-body wave function
that is not expressible in a separable fashion, i.e., as the di-
rect product of multiple single-particle states in some basis.
Initially explored in gedanken experiments and tests of Bell-
type inequalities involving spin-1/2 particles [1–4], quantum
entanglement nowadays has risen to the forefront of many
applications, including quantum cryptography and quantum
computation [5–10].

The question of whether quantum entanglement can sur-
vive beyond the microscopic domain into the realm of
macroscopic phenomena [11–13] has fascinated physicists
since the inception of quantum theory. Even though the laws
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of quantum physics are believed to govern the behavior of
small quantum units and large objects alike, the fast deco-
herence of massive quantum superpositions makes deviations
from a classical description very challenging to detect on a
macroscopic scale [14,15]. Notwithstanding these practical
difficulties, continuous experimental efforts over the past two
decades in quantum state preparation and readout of mechan-
ical systems have highlighted the possibility of entangling the
internal degrees of freedom of larger and larger systems. This
includes putting the phonon modes of two distant macroscopic
mechanical oscillators (each containing �1012 atoms) into a
nonclassical state [16–20], even at room temperature [21].
Recent experiments have also achieved macroscopic entan-
glement of a mechanical oscillator (several millimeters long
and ∼10 nm thick) with a cloud made up of a billion cesium
atoms (a collective atomic spin oscillator) placed at a distance
of ∼1 m using photons propagating between the two objects
as an entanglement mediator [22]. Besides its fundamental
interest [23], these advances can pave the way to a new class
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of quantum information technologies and quantum sensors.
The possibility to engineer entangled states of large objects
also opens up opportunities to improve the sensitivity of
gravitational wave detectors, such as the Laser Interferometer
Gravitational-Wave Observatory (LIGO), as illustrated by a
recent proposal to exploit entanglement between optical fields
and atomic clouds to surpass the standard quantum limit [24].

These demonstrations of nonclassical bipartite states gen-
erating entanglement between well-separated objects, as well
as earlier proposals that exploited radiation pressure effects
inside microcavities [25–27], have relied upon the use of
photons as mediators of quantum correlations [28,29]. Re-
cently, greater interest has been placed on trying to reproduce
these effects in a solid-state setup. In effect, a small ∼10
[30] or moderate ∼103 [31] number of spins in solids have
already been entangled at distances of a few lattice constants,
while predictions [32,33] of long-range entanglement among
spin-1/2 probes in strongly correlated systems have also
been recently realized in experiments with superconducting
flux circuits [34]. Moreover, several recent theoretical works
[35–38] prescribe a way to entangle much larger spin ensem-
bles (N � 1016) residing within two distant spheres carved out
of a ferrimagnetic insulator, using the cavity photon modes as
entanglement mediators. It is important to note that quantum
entanglement of a macroscopic number of degrees of freedom
is ubiquitous in the ground or low-lying excited states of
strongly electron-correlated materials, such as superconduc-
tors [11], quantum spin liquids [39], antiferromagnets [12,40–
43], and Hubbard model materials [44,45]. However, in prac-
tice, it is extremely challenging to isolate different subsystems
of such systems and then probe their mutual entanglement.

At first sight, it seems that none of the plethora of nonequi-
librium spin-dependent phenomena [46]—involving itinerant
electrons and localized spins in typical spintronic devices, like
spin valves (SVs) and magnetic tunnel junctions (MTJs)—
would be useful for investigating large-scale entanglement
of well-separated quantum units. We remind the reader that
SVs and MTJs [46] are composed of two macroscopic FM
layers hosting a very large number of localized spins, usually
derived from d orbitals of Fe, Ni, or Co. These FM layers
are separated by a few-nanometers-thick NM spacer (such as
Cu) in SVs (as illustrated schematically by our 1D model
in Fig. 1) or by an insulating barrier (such as MgO) in the
case of MTJs. At standard room temperature, the value of
these localized spins within FMs are typically S > 1, which
falls outside [47] of the “ultraquantum” limit, where quantum
corrections to the S2(1 + 1/S) eigenvalue of the Ŝ2

i operator
are significant [48]. This fact has been used to intuitively (but
not rigorously [49]) justify the modeling of spin dynamics
[50] and injected electronic currents [51] in the presence
of magnetic fields, by means of the Landau-Lifshitz-Gilbert
(LLG) equation [50,51], which treats localized spins as clas-
sical vectors of fixed length. The extended LLG equation [51]
includes a conventional (Slonczewski-Berger) spin-transfer
torque (STT) [46,52] term describing spin angular momen-
tum exchange at a semiclassical level. Such a term may be
phenomenological, as in classical micromagnetics codes [51],
or it can be computed microscopically from some steady-state
[53] or time-dependent [54] single-particle quantum transport
theory.

FIG. 1. Schematic view of one-dimensional (1D) model of a
FMp/NM/FMa spin valve where a spin-unpolarized current pulse
I (t )—carrying charge Q = ∫

I (t ) dt = Nee comprising one (Ne = 1)
or more (Ne > 1) electrons—is injected into the polarizing FMp

layer. After traversing it to become spin-polarized, it impinges onto
the analyzing FMa layer where it transfers part of its spin angular
momentum onto the localized spins via quantum STT [55,56]. Un-
like in conventional Slonczewski-Berger STT studies [52]—where
localized spins within FMp and FMa layers are modeled by clas-
sical vectors [51]—we retain a fully quantum description based on
spin operators. Their ground state expectation values 〈Ŝi〉(t � 0)
are depicted by red arrows and are arranged into a collinear but
antiparallel geometry in which conventional STT is identically zero
[52]. This process dynamically generates a mixed entangled quantum
state of the FMp ∪ FMa subsystem. To account for its dissipation
and phase decoherence, we couple each spin to its own bosonic bath
[57,58], where all such baths are kept in equilibrium at temperature
Tbb. Delayed x-ray pulses, with incoming momentum and energy
(h̄ki, h̄ωi ), are assumed to be shone during and after the current pulse
duration. X rays, with momentum and energy (h̄k f , h̄ω f ), scattered
off the FMp ∪ FMa subsystem, facilitate a witnessing scheme of
nonequilibrium entanglement we propose based on extraction [45]
of time-dependent quantum Fisher information from the trRIXS re-
sponse function [66–68].

Defying conventional wisdom, recent experiments at
ultralow temperatures (T ∼ 1 K) [55] have observed current-
driven magnetization dynamics in SVs that started from
collinear magnetizations in the two FM layers. In this situa-
tion the conventional STT is identically zero and the system’s
dynamics cannot be understood within the LLG paradigm.
This has motivated the development of a quantum STT the-
ory, where both the flowing electronic spins and localized
spins must be treated quantum mechanically [56,59–62]. Even
though a ferromagnet in equilibrium remains in a separable
(unentangled) quantum state under various externally imposed
conditions [63], a single FM layer can be driven by a spin-
polarized current to experience a quantum STT which induces
a dynamical build-up of long-range entanglement [56,64].
The simplest signature of such entanglement is a shrinking
in the expectation value of the localized spin magnitude,
i.e., |〈Ŝi〉(t )| < Sh̄ (i being the site of the crystalline lattice).
In some circumstances, these expectation values can even
be reduced to zero [56], which further explains the failure
of the classical LLG equation [51,52] to describe the STT-
driven magnetization dynamics on these systems [49,65]. The
quantum nature of the problem then calls for a full-fledged
many-body approach that captures the intrinsic quantum na-
ture of localized spins and thus goes beyond the common
paradigm of classical magnetization dynamics.
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Here we exploit the quantum STT mechanism as a means
to entangle two distant FM layers of a nonequilibrium SV
device that is achievable by modern techniques of nanofab-
rication (depicted in Fig. 1). The quantum STT is driven by a
spin-unpolarized electronic current pulse that is injected from
the left NM electrode (Fig. 1) and plays the role of an en-
tanglement mediator. As the pulse travels through the device,
it first becomes (partially) spin-polarized by interacting with
the polarizing FM layer (FMp) and then, after traversing the
NM spacer, it eventually exchanges spin angular momentum
via quantum STT with the analyzing FM layer (FMa). As
required by general theorems [28,29], the mediating pulse
must be intrinsically quantum mechanical, which assumes a
sufficiently low working temperature [55] and requires that
decoherence mechanisms affecting the charge-spin dynamics
are suppressed during its traveling time across the entire de-
vice. Under these conditions, we predict that both FM layers
will become mutually entangled over time, to a degree that can
be easily controlled by parameters such as the magnitude and
duration of injected current pulse. Furthermore, as the device
operates, the FMp ∪ FMa subsystem also becomes entangled
with the mediating pulse, placing the former into a mixed and
entangled bipartite quantum state.

The paper is organized as follows. Section II overviews the
measures of mixed-state entanglement employed in this study,
while Sec. III introduces useful concepts and notation, includ-
ing the second-quantized Hamiltonian as a microscopic model
of our SV device and the many-body algorithms employed
in this work. The results for single-electron current pulse as
mediator of entanglement, including effects due to thermal
fluctuations and coupling to bosonic baths, are reported in
Secs. IV A and IV B and Figs. 2–5, while zero-temperature re-
sults for a many-electron pulse as a mediator of entanglement
are analyzed in Sec. IV C and Fig. 6. In Sec. V and Fig. 7 we
propose an experimental scheme for witnessing macroscopic
and nonequilibrium entanglement of two FM layers based
on application [45] of the state-of-the-art time-resolved res-
onant inelastic x-ray scattering (trRIXS) technique [66–68].
We conclude in Sec. VI.

II. MIXED ENTANGLED STATES AND MEASURES
OF THEIR ENTANGLEMENT

The quantum state of localized spins of the FMp ∪ FMa

subsystem will become a mixed entangled one in the course of
time evolution (Figs. 3 and 4). That is, it will be described by
a reduced density matrix which is not expressible as a convex
combination of direct product states

ρ̂FMp∪FMa �=
∑

i

piρ̂
i
FMp

⊗ ρ̂ i
FMa

, (1)

acting in the bipartite Hilbert space HFMp ⊗ HFMa . Here
ρ̂FMp∪FMa = Treρ̂(t ), where ρ̂(t ) is density matrix of the total
system FMp ∪ FMa ∪ electrons and the partial trace is per-
formed over the degrees of freedom of the itinerant electrons.
Moreover, ρ̂FMp and ρ̂FMa are analogously defined density
matrices of the individual layers FMp and FMa. An equal-
ity in Eq. (1) would signify separable (unentangled) mixed
quantum state [69–74]. Although enormous progress has been
made in the last two decades in understanding entanglement

FIG. 2. Time evolution of the expectation values of (a) flowing
electronic spin and (b) localized spins after injection of a single-
electron (Ne = 1) current pulse that is spin-unpolarized at t = 0.
The initial quantum state of the whole system, with antiparallel
magnetizations of the FMp and FMa layers of the SV in Fig. 1, is
described by the density matrix in Eq. (10) at T = 0 K. In panel (b),
localized spins i = 1–4 belong to the FMp layer, and i = 5–8 belong
to the FMa layer.

of pure quantum many-body states [10,75,76], much less is
understood regarding the nature of quantum correlations in in-
teracting quantum many-body systems in mixed states. Thus,
how to detect and quantify mixed-state entanglement in quan-
tum devices containing many interacting particles is a topic
of great and emerging interest [70,71,73]. The mixed states
arise due to thermal fluctuations [70], due to decoherence by
an external environment or because they describe a subsystem
of interest within a much larger and globally entangled system
described by a pure state.

To quantify the entanglement of a quantum many-body
mixed state ρ̂FMp∪FMa of a FMa ∪ FMp subsystem, we cal-
culate the mutual logarithmic negativity (MLN) between the
FMp and FMa layers defined by [74]

EN (FMp|FMa) ≡ EN (ρ̂FMp∪FMa ) = ln
∥∥ρ̂

TFMp

FMp∪FMa

∥∥
1

= ln
∥∥ρ̂

TFMa
FMp∪FMa

∥∥
1 = ln

∑
n

|λn|, (2)

where ||Â||1 = Tr|Â| = Tr
√

Â†Â is the trace norm of the op-

erator Â, and λn are the eigenvalues of ρ̂
TFMp

FMp∪FMa
or ρ̂

TFMa
FMp∪FMa

.
The matrix elements of the partial transpose with respect to,
e.g., FMp are given by [10]

(
ρ̂

TFMp

FMp∪FMa

)
iα; jβ = (ρ̂FMp∪FMa ) jα;iβ, (3)

using matrix elements of ρ̂FMp∪FMa :

(ρ̂FMp∪FMa )iα; jβ = FMp〈i| FMa〈α|ρ̂FMp∪FMa | j〉FMp |β〉FMa . (4)

Although the MLN can be zero for an entangled mixed state, a
nonzero MLN necessarily implies existence of entanglement
between the two parts. The MLN also offers a useful probe for
distinguishing bipartite and multipartite quantum correlations
in a pure state of the total system—for a tripartite pure state
|�〉FMp∪FMa∪e of a system composed of all localized spins
and injected electrons, as denoted by FMp ∪ FMa∪ electrons,
MLN of ρ̂FMp∪FMa in Eq. (2) detects genuine quantum corre-
lations between FMa and FMp. In the SV device depicted in
Fig. 1, they build up dynamically [Figs. 3(d) and 4] for t > 0
when the device is out of equilibrium, while not being present
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FIG. 3. Time evolution of the von Neumann entropy [Eq. (6)]
of localized spins at T = 0 K within (a) FMp ∪ FMa and (b) FMp

(dash-dotted line) or FMa (dotted line) subsystems of SV in Fig. 1.
From the entropies in (a) and (b), we construct in panel (c) the MI
between the FMp and FMa layers. Panel (d) plots the corresponding
MLN [Eq. (2)] between the FMp and FMa layers at T = 0 K (solid
black line). For comparison, panel (d) also plots the MLN at temper-
ature TGibbs = 100 K (dotted red line) using the initial condition in
Eq. (12) where localized spins are described by the Gibbs canonical
ensemble density matrix at t = 0, as well as in the presence of
bosonic baths [57,58] interacting (Fig. 1) with localized spins (solid
orange and red lines for Tbb = 10 K and Tbb = 100 K, respectively)
and evolved via Eqs. (17) and (18) while using the initial condition
in Eq. (10). The gray strip around the solid orange and red lines
quantifies statistical errors in quantum trajectories algorithm [111]
(where averaging over 200 trajectories is performed) for solving the
Lindblad QME (Sec. III B).

prior (t � 0) to the injection of current pulse when the SV
remains in equilibrium.

In addition, we also use the mutual information (MI)
[Fig. 3(c)] between FMp and FMa layers,

I (FMp|FMa) = SFMp + SFMa − SFMp∪FMa , (5)

obtained from the standard [75,76] von Neumann entangle-
ment entropy [Figs. 3(a) and 3(b)]

Ssub(t ) = −Tr [ρ̂sub(t ) ln ρ̂sub(t )], (6)

where ρ̂sub(t ) is the time-dependent nonequilibrium re-
duced density matrix of a chosen subsystem (sub), such as
sub = FMp ∪ FMa, sub = FMp and sub = FMa. The MI
[74–76] is sensitive to both quantum and classical correlations
that arise from tripartite correlations between FMp, FMa, and
all injected electrons, unlike the MLN which detects only
genuine quantum correlations [10,77].

For a single injected electron (Ne = 1), the reduced den-
sity matrices ρ̂sub(t ) are obtained by directly solving the von
Neumann or the Lindblad equation for the density matrix of
the total system FMp ∪ FMa ∪ electrons and then partially
tracing over electronic quantum states. For a multielectron
(Ne > 1) current pulse, we use the adaptive time-dependent

FIG. 4. Time evolution of the MLN between the FMp and FMa

layers at T = 0 K for the same single-electron (Ne = 1) spin-
unpolarized current pulse injection used in Figs. 2 and 3, but with
an increasing number of localized spins N/2 + N/2 within the FMp

and FMp layers. The case 4 + 4, with four localized spins in each
layer, is identical to the red solid line in Fig. 3(d) plotted here for
easy comparison.

density matrix renormalization (tDMRG) algorithm [78–82],
tailored for quantum STT [56,60]. In the latter case we cal-
culate the von Neumann entropy of the density matrix of half
of the lattice, Shalf (t ), a measure often employed in studies of
entanglement of quantum many-body systems [56,84].

III. MODELS AND METHODS

The dynamics of the 1D SV device in Fig. 1 is described
by the quantum many-body Hamiltonian

Ĥ = −γ
∑
〈i j〉

ĉ†
iσ ĉ jσ − Jsd

∑
i

ŝi · Ŝi

−
∑
〈i j〉

[
J
(
Ŝx

i · Ŝx
j + Ŝy

i · Ŝy
j

) + JzŜ
z
i · Ŝz

j

]
, (7)

where i and j label positions in the chain and 〈i j〉 signifies that
couplings exist only between the nearest-neighbor (NN) sites.
As customary, ĉ†

iσ (ĉiσ ) is a fermionic creation (annihilation)
operator for an electron with spin σ = ↑,↓ placed on site
i of an s-orbital tight-binding chain of Lx = 201 sites with
NN hopping between them of strength γ = 1 eV. This sets
an energy scale in the problem, as well as a unit of velocity
for the propagating electrons. Also in Eq. (7), the second
term describes an on-site sd exchange interaction of strength
Jsd = 0.5 eV [85] between the electronic spin and a localized
Heisenberg spin. The last term is an NN Heisenberg XXZ fer-
romagnetic Hamiltonian that describes localized spins within
FMp and FMa layers with the z axis as the easy axis.

To describe the spin of the propagating electron, we define
the operator

ŝα
i =

∑
σ={↑,↓}

ĉ†
iσ σ̂ α

σσ ′ ĉiσ ′ (8)

as the α component of the electronic spin density at the site i,
where σ̂ α is a Pauli matrix with α ∈ {x, y, z}. In this way, the
sum of ŝα

i over i yields the total electronic spin operator

ŝα
e =

∑
i

ŝα
i . (9)
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By contrast, each localized spin-1/2 has a two-dimensional
Hilbert space, Hn (n = 1, . . . , N), so that in Eq. (7)
the localized spin at site i is described by an operator
Ŝα

i = Î ⊗ Î · · · Î︸ ︷︷ ︸
i − 1

⊗σ̂ α ⊗Î ⊗ · · · ⊗ Î︸ ︷︷ ︸
N − i times

, where Î is the unit opera-

tor (or unit 2 × 2 matrix in representation). The localized spin
interacts with its NNs within the same FM layer by an XXZ
Heisenberg term of strength J = 0.1 eV and Jz = 1.005J . The
total number of localized spins is N , half of which belong to
the FMp layer and the other half to the FMa layer. The two
layers are separated by NNM sites with no localized spins so as
to simulate the NM layer depicted in Fig. 1.

Thus, our model describes the FM layers as quantum
Heisenberg chains which, in place of being insulating, are
effectively metallic as there are electrons hopping between
their sites. From the viewpoint of strongly correlated electron
physics, each FM layer can be interpreted as a Kondo-
Heisenberg model [86] sandwiched by fermionic leads (i.e.,
the chain sites hosting no localized spins), with a ferromag-
netic (J, Jz > 0) exchange interaction between localized spins
as well as with the spin of the flowing electrons (Jsd > 0).

We will consider in the remainder of this paper that
the chain of Lx sites is traversed by either (1) a single
(spin-unpolarized) electron pulse or (2) a pulse composed
of equal number of spin-up and spin-down electrons. For
a single injected electron (Ne = 1), the system has support
in the Hilbert space H = Horb

e ⊗ Hspin
e ⊗ H1 ⊗ · · · ⊗ HN ,

where Horb
e (Hspin

e ) is the space of orbital (spin) states of the
electron. In the multielectron simulations, an even number
Ne > 1 of electrons are injected in the chain, so that the system
Hamiltonian now acts in the space H = Fe ⊗ H1 ⊗ · · · ⊗ HN

where Fe is the Fock space for many spin-1/2 itinerant
electrons.

A. Unitary time evolution for an injected single-electron pulse
(via the von Neumann equation)

We start by considering that a single spin-unpolarized and
right-propagating electron pulse is injected into the fermionic
chain, from the left [59,61,62,87,88]. Such a situation can be
experimentally realized [89] by applying a Lorentzian voltage
pulse that excites a soliton-like quasiparticle—the so-called
leviton [90]—of elementary charge ( Q = ∫

I (t ) dt = e ), out
of the Fermi sea. Therefore, the initial quantum state of the
complete system, at zero temperature, is described by the
density matrix

ρ̂(t = 0) ≡ |
〉〈
| ⊗ 1
2

(|↑〉〈↑| + |↓〉〈↓|)
⊗ |FMp〉〈FMp| ⊗ |FMa〉〈FMa|, (10)

where the two leading terms refer to the quantum state of
propagating electron, and the last are oppositely magnetized
states of both FM layers, i.e., |FMp〉 = |↑↑↑↑〉 ∈ H1 ⊗ · · · ⊗
HN/2 and |FMa〉 = |↓↓↓↓〉 ∈ HN/2+1 ⊗ · · · ⊗ HN . Note that
the state in Eq. (10) is an example of a multipartite but fully
separable (unentangled) mixed state [70,71] which is almost
pure, except for the second factor that expresses the zero spin
polarization of the injected electron pulse. The corresponding
orbital state is pure and given by the Gaussian wave function

〈x|
〉 = C exp
[
ikxx − δ2

kx
(x − x0)2/4

]
, (11)

with C as the normalization constant, and kx = π/2 and δkx =
0.2 selected to reduce dispersive spreading [91] of such a
quantum wave packet. The propagation of the wave packet
through SV in Fig. 1 is animated, together with emergence
of its nonzero spin density in the movie in the Supplemental
Material (SM) [92].

Since entanglement in solids inevitably decays as tempera-
ture increases [41–43,93], we also consider the time evolution
of the system at finite temperature by switching the initial
quantum state from Eq. (10) to

ρ̂(t = 0) ≡ |
〉〈
| ⊗ 1
2 (|↑〉〈↑| + |↓〉〈↓|) ⊗ ρ

eq
FMp∪FMa

,

(12)

where ρ
eq
FMp∪FMa

= Z−1 exp (−βHFMp∪FMa ) is the equilibrium
density matrix of all localized spins in the canonical ensemble
at temperature T = 1/βkB, and Z = Tr exp ( − βHFMp∪FMa )
is the corresponding partition function.

In both cases, the unitary time evolution of ρ̂(t ) is com-
puted by solving the von Neumann equation

ih̄
∂ρ̂

∂t
= [Ĥ, ρ̂], (13)

where two algorithms are used. To evolve the zero-
temperature state, we employ a spectral method based upon
an efficient and stable Chebyshev polynomial expansion of the
time-evolution operator [94,95]. This technique, coupled with
a robust parallelization scheme [96], have recently proved
very useful to study nonequilibrium transport phenomena in
both 1D [97] and two-dimensional (2D) [98] non-interacting
electronic systems. In the present context, its use allows us
to simulate large tight-binding lattices with FM layers that
host up to 10 localized spins each (labeled as 10 + 10 case
in Fig. 7). For the finite temperature time evolution of 4 + 4
localized spins [Fig. 3(d)], we used standard fourth-order
Runge-Kutta method converged with a time step of δt = 0.1
fs.

B. Nonunitary time evolution for an injected single-electron
pulse plus decoherence (via the Lindblad equation)

In a realistic SV device, the degrees of freedom in question
(electron pulse + FM layers) form an open quantum system
subject to dissipation and phase decoherence. To investigate
the impact of such processes, we consider nonunitary time
evolution due to localized spins being coupled to a generic
heat bath of bosons in thermal equilibrium at temperature T .
We assume that there are no significant correlations between
the SV system and the bath at t = 0 and that the timescale of
evolution of the SV is much greater than the bath’s correlation
time [99]. Such a Markovian time evolution, wherein memory
effects are suppressed, greatly simplifies matters and will al-
low us to assess how the entanglement generation is affected
by coupling to a dissipative environment.

For this purpose, the Hamiltonian [Eq. (7)] is supplemented
with two additional terms

Ĥtot = Ĥ + Ĥbath + V̂ . (14)
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Here Ĥbath is the Hamiltonian of the bosonic bath, modeled as
a set of harmonic oscillators

Ĥbath =
∑

ik

wik â†
ik âik, (15)

with an operator âik (â†
ik) annihilating (creating) a boson in

mode k. This model interacts with spin operator at site i [100]
via

V̂ =
∑

k

gk

∑
i

Ŝi(âik + â†
ik ), (16)

where gk = 0.12 are the coupling constants. We assume that
each spin interacts with the bosonic bath independently of
other spins [57,58]. Furthermore, if we assume small gk ,
the quantum master equation (QME) of the Lindblad type
[101,102] can be derived by tracing out the bosonic bath and
by expanding the resulting equation to the second order.

The study of quantum spins interacting with bosonic bath
has a long history, dating back to the spin-boson model
[103] and its generalizations [104], as archetypal systems for
exploring dissipative quantum mechanics. Furthermore, for
problems involving magnetic materials hosting many spins
[58,105], or for multiple qubits [106], one needs to go be-
yond one quantum spin S = 1/2 of the spin-boson model.
Such extensions have been pursued in recent derivations of
QMEs for two [106] or more [105] quantum spins interacting
both with their NNs and with an external bosonic bath. How-
ever, traditional approaches for the derivation of the Lindblad
QME—such as using Born, Markov, and secular approxi-
mations [102,107]—work well for two spins [106] but fail
already for four spins [58] because of (nearly) degenerate
eigenlevels. To avoid this problem, we follow the proce-
dure of Ref. [57] for deriving an universal Lindblad QME
which evades difficulties of the secular approximation [108].
This evades limitations in recently derived [105] Lindblad
QMEs for many localized quantum spins due to unwarranted
assumptions made on the relative size of energy splittings
compared to the bath fluctuations. The universal Lindblad
QME [57] considers a single Lindblad operator L̂i for each
spin, so that N such operators are needed to obtain

d ρ̂/dt = −i[Ĥ, ρ̂] +
N∑
i

L̂iρ̂L̂†
i − 1

2
{L̂†

i L̂i, ρ̂}, (17)

where we also ignore typically negligible Lamb-shift cor-
rections [107] to the Hamiltonian. The Lindblad QME is
time-local due to the assumption that bath-induced changes
to the system dynamics are slow relative to the typical corre-
lation time of the bath. Following Ref. [58], we compute L̂i

operators as a power series

L̂i =
NL∑

n=1

cn(adĤ )n[Ŝi], cn = (−i)n

n!

∫ ∞

−∞
dtg(t )t n, (18)

where the sum is truncated to NL = 20. Here adĤ [X ] =
[Ĥ, X ], and the jump correlator function is defined via the
Fourier transform of the spectral function of the bath, J (ω) =
2π

∑
δ(ω − ωk ), as

g(t ) = 1√
2π

∫ ∞

−∞
dω

√
J (ω)e−iωt . (19)

For numerical calculations, we considered an Ohmic spectral
function with a rigid ultraviolet cutoff

J (ω) = �ω/ωm�(ωm − ω)nBE(ω), (20)

where � is the reorganization energy representing the mag-
nitude of fluctuations and dissipation; ωm characterizes how
quickly the bath relaxes towards equilibrium; nBE(ω) is
the Bose-Einstein distribution; and � is the Heaviside step
function. The Lindblad QME [Eq. (17)] is valid only for
a weak spin-bath coupling, as it assumes a second-order
truncation in gk .

We do not directly couple the itinerant electrons to a
dissipative environment, as it is common in calculations of
conventional STT [52] where a current of injected electrons
is always treated by some version of a fully phase-coherent
quantum transport formalism [52,53,109,110]. The reason is
that STT is an interfacial phenomenon, where spin angular
momentum is absorbed within a few tens of lattice spacings
away from the NM-FMa interface [109], so that such a length
scale is shorter than the dephasing length for charge and
spin degrees of freedom of itinerant electrons (even at room
temperature). We solve Eqs. (17) and (18) for the system of a
single coherent electron + localized spins coupled to bosonic
baths, as illustrated in Fig. 1, using a quantum trajectories
algorithm [111] where we average over 200 trajectories.

C. Unitary time evolution for an injected
multielectron pulse (via tDMRG)

Unlike the single-electron pulse cases, the time evolution
of the system upon the injection of a multielectron pulse
is handled using a tDMRG algorithm [56,60,78–82]. This
requires the following extra terms to be included in the Hamil-
tonian of Eq. (7):

ĤV,B = − V (t � 0)
Nconf∑
i=1

(ĉ†
i↑ĉi↑ + ĉ†

i↓ĉi↓)

+ gμBB(t � 0)

⎛
⎝ ∑

i∈FMa

Ŝz
i −

∑
i∈FMp

Ŝz
i

⎞
⎠, (21)

where g is the electron gyromagnetic ratio and μB is the
Bohr magneton. The first term on the right-hand side (r.h.s.)
is a scalar potential term (V = 2γ ) that acts only for times
t � 0, in order to confine all electrons within Nconf = 10
sites at the left edge of Fig. 1. Because the potential acts
equally on both spin sectors, confined electrons remain spin-
unpolarized, i.e., with their total spin 〈ŝe〉(t � 0) = 0. For
t > 0, the confinement is switched off and the electrons
get injected into FMp/NM/FMa region of Fig. 1, spread-
ing from left to right. Likewise, the last terms on the r.h.s.
of Eq. (21) introduce an external magnetic field B(t � 0) =
10γ /gμB at negative times, which polarizes the localized
spins of the FMp (FMa) layer along the +z axis (−z axis),
guaranteeing that 〈Ŝz

i 〉/Sh̄ = +1 (〈Ŝz
i 〉/Sh̄ = −1) at t = 0 as

illustrated in Fig. 1. In this way, the ground state of Eq. (21)
properly initializes the whole system as a quantum many-
body state |�(t = 0)〉FMp∪FMa∪e at the beginning of the time
evolution.
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FIG. 5. Time dependence of probability [Eq. (25)] to find lo-
calized spins at T = 0 K of the FMp ∪ FMa subsystem within
the SV in Fig. 1 in the subspace spanned by many-body
states |σ1 . . . σN/2〉|σN/2+1 . . . σN 〉 where m = 0, 1, 2, . . . , 8 spins are
flipped with respect to the initial state in Eq. (24). Such ex-
cited m-magnon states are compatible with the spin conservation
[Eq. (28)], and examples of projectors onto their subspaces are given
in Eqs. (26) and Eq. (27). The time evolution is initiated by injecting
a single-electron (Ne = 1) current pulse, with other parameters the
same as in Figs. 2–4.

The adaptive tDMRG algorithm [78–82] evolves the
nonequilibrium state of the total system

|�(t + δt )〉FMp∪FMa∪e = e−iĤδt/h̄|�(t )〉FMp∪FMa∪e, (22)

using the time step δt = 0.1h̄/γ . We start the propagation
with m = 100 states and limit the truncation error to 10−7,
while the maximal number of states allowed during the
evolution is set to mmax = 400. Since the simulated chains
are finite (unlike standard single-particle quantum transport
calculations with semi-infinite leads [54]), the SV system can
be evolved only for a limited amount of time (Fig. 6) before
electrons are backscattered by the right boundary, breaking
the left→right current flow. Nevertheless, the quantum
dynamics of the injected electrons is effectively equivalent
to the dynamics in an infinite [54,83] open quantum system
before the boundary reflection takes place.

IV. RESULTS AND DISCUSSION

A. Single-electron pulse injection

We first present the results obtained from evolving the SV
device upon the injection of a single-electron pulse. Figure 2
shows the expectation value of the electronic spin, as well as
of all 4 + 4 localized spins, over time. The results show that
the electronic pulse starts from a spin-unpolarized state that
develops a finite z-axis polarization, 〈ŝz

e〉 as it passes through
the FMp layer. This quantum average is obtained as

〈ŝe〉(t ) = Tr
[
ρ̂spin

e (t )σ̂
]
, (23)

where ρ̂
spin
e = Trotherρ̂(t ) with the partial trace performed

over the states in Horb
e ⊗ H1 ⊗ · · · ⊗ HN . As the electron

pulse becomes polarized, the dynamics of the localized spins
within the FMp layer is also initiated [top bundle of curves
in Fig. 2(b)] at t � 10 fs. The partially polarized (by the
FMp layer) spin of the injected electron starts to decay at
around t � 20 fs in Fig. 2(a), which is exactly the time when
the localized spins within the FMa layer [bottom bundle of
curves in Fig. 2(b)] start to evolve due to transfer [56] of
spin angular momentum. The signature of such quantum-STT-
driven localized spin dynamics within the FMa layer is the
evolution of only the 〈Ŝz

i 〉(t ) component, without any rotation
away from the z axis because 〈Ŝx

i 〉(t ) = 〈Ŝy
i 〉(t ) ≡ 0. This is

a genuinely nonclassical magnetization dynamics that is im-
possible within the framework of the LLG equation where
STT-driven 〈Ŝi〉(t ) can rotate only while keeping its length
constant [51,52].

The shrinking of the vector magnitude |〈Ŝi〉(t )| < Sh̄ is
the consequence of entanglement of localized spins i to all
other degrees of freedom. Considering that in Fig. 2 we study
a closed total quantum system FMp ∪ FMa ∪ electrons that
does not interact with natural intrinsic bosonic baths (such
as phonons of the crystal lattice or photons of the ambient
electromagnetic environment), external baths [112], or ex-
ternal fermionic reservoirs, this effect can arise solely from
localized spin i becoming entangled with other localized spins
and/or itinerant electron spin. To demonstrate this, in Fig. 3
we examine the MI and the MLN between FMp and FMa

layers, as defined by Eqs. (2)–(6). The increase of the MI
in Fig. 3(c) and of the MLN in Fig. 3(d) from a zero value
at t = 0 to finite value for t > 0 confirms that the FMp

and FMa layers are becoming dynamically entangled through
nonequilibrium dynamics driven by quantum STT. The onset
of such nonequilibrium and dynamical entanglement occurs at
around t � 20 fs, which is precisely the instant of time when
the nonclassical dynamics of the localized spins of the FMa

layer is initiated [bottom bundle of curves in Fig. 2(b)] or
the von Neumann entropy of the FMa layer turns nonzero,
SFMa (t � 20 fs) > 0, in Fig. 3(b).

We also consider the localized spins of the FMp ∪ FMa

subsystem at finite temperature. In this case, the von Neumann
entropies and MI are nonzero in equilibrium (for t � 0) even
for a separable (unentangled) mixed thermal state in Eq. (12),
so we recompute only the MLN [dotted red line in Fig. 3(d)]
at finite temperature TGibbs = 100 K since such a quantity
remains zero at t = 0 [Fig. 3(d)]. The thermal fluctuations
of the localized spins are seen to postpone [49] the onset of
nonzero MLN to later times [dotted red line in Fig. 3(d)] when
compared to MLN at zero temperature [solid black line in
Fig. 3(d)]. They also lead to a smaller value of MLN when
compared to the T = 0 case, but without leading to its decay
within simulated time.

In order to generate MLN decay and probe the underlying
timescales, we couple each localized spin to a bosonic bath
at temperature Tbb. Note that such interactions, as exemplified
by spin-phonon ones, are expected to be a major decoherence
channel disrupting superpositions within a mixed entangled
state ρ̂FMp∪FMa . This produces the solid orange and red curves
in Fig. 3(d), as computed (Sec. III B) from the Lindblad
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FIG. 6. Time evolution (at T = 0 K) using the tDMRG algorithm [78–82] of the expectation values of localized spins initiated by injecting
a spin unpolarized multielectron (Ne > 1) current pulse: (a) Ne = 2, (b) Ne = 4, and (c) Ne = 8. The corresponding von Neumann entropy
Shalf (t ) [Eq. (6)] of the half of the system in Fig. 1, which includes all sites i = 57–112 hosting localized spins of the FMa layer and all
electrons present in that half at time t , is plotted in respective panels (d)–(f). The initial quantum state of the whole system, with antiparallel
magnetizations of the FMp and FMa layers of the SV in Fig. 1, is a pure many-body one with electrons confined within Nconf = 10 sites of
the left edge of the 1D chain in Fig. 1 and with their total spin [Eq. (9)] 〈ŝe〉(t = 0). For t � 0, the confining potential is switched off, so that
electrons spread from left to right, thereby being injected into FMp layer. Localized spins i = 1–4 belong to the FMp layer, and i = 5–8 belong
to the FMa layer.

QME [57,58,101,102]. The decay of MLN, within the sim-
ulation time, is absent for Tbb = 10 K, while its presence for
Tbb = 100 K suggests transient macroscopic entanglement on
the scale of ∼100 fs. This suggests that conducting experi-
ments on SVs at ultralow temperature, as already achieved in
Ref. [55] by using T � 1 K, could generate entangled mixed
states whose nonzero MLN lives for a sufficiently long time to
enable detection by the scheme proposed in Sec. V. We note
that Lindblad QME-computed curves in Fig. 3(d) exhibit an
unphysical increase of MLN at early times, even before in-
teraction with injected electron takes place, but this is simply
an artifact [80] of quantum trajectories algorithm employed to
solve the QME. In other words, entanglement between distant
localized spins of two FM layers via dissipative environment,
conjectured as possibility in Ref. [106], is not seen if we
compute MLN at early times via a computationally much
more expensive fourth-order Runge-Kutta method.

Finally, in Fig. 4 we examine the scaling of MLN with
the total number of localized spins N/2 + N/2 within the
FMp ∪ FMa subsystem of the SV in Fig. 1. The growth
of entanglement with N is in accord with time evolution
of quantum many-body systems typically leading to a state
with maximal entanglement (in the absence of localization by
spatial disorder or nonunitary evolution due to projective mea-

surements or decoherence by environment [113,114]) allowed
by conservation laws (see Sec. IV B) and symmetries.

B. Quantum tomography of mixed entangled
state of localized spins within SV

Quantum tomography is the task of reconstructing the
full quantum state of a system from multiple measurements,
which scales exponentially in the system size. Nevertheless,
for a sufficiently small many-body system it is possible to
reconstruct, by measurement or from numerical calculations
[115], the structure of its density matrix. We delineate the
structure of the density matrix as a function of time for a
mixed entangled state of all localized spins within the SV in
Fig. 1 using the 4+4 case from Figs. 2–4. For this purpose,
specific sums of the diagonal elements of ρ̂FMp∪FMa (t ) are
plotted in Fig. 5 [except for the dotted line in Fig. 5(a), which
involves off-diagonal elements, see last paragraph of this
section], and both diagonal and off-diagonal elements are
animated in the movie in the SM [92]. In equilibrium t � 0,
the quantum state of the FMp ∪ FMa subsystem is given by

|�(t = 0)〉FMp∪FMa = |FMp〉 ⊗ |FMa〉 = |↑↑↑↑〉|↓↓↓↓〉,
(24)
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being pure and separable (unentangled). The single-electron
current pulse injection will initiate its evolution, necessarily
converting it into a mixed quantum state (Figs. 3 and 4), as
described by the density matrix ρ̂FMp∪FMa (t ). The diagonal
matrix elements of ρ̂FMp∪FMa (t ) in a proper representation
give the probability to find the FMp ∪ FMa subsystem in a

subspace of quantum many-body state with zero or m spin
flips (i.e., magnons [116])

Probm−magnons(t ) = Tr[P̂m−magnonsρ̂FMp∪FMa (t )], (25)

where the projection operators are given explicitly for zero-
and one-magnon cases as

P̂0−magnon = |↑↑↑↑〉|↓↓↓↓〉〈↑↑↑↑|〈↓↓↓↓|, (26)

P̂1−magnon = |↓↑↑↑〉|↓↓↓↓〉〈↓↑↑↑|〈↓↓↓↓| + |↑↓↑↑〉|↓↓↓↓〉〈↑↓↑↑|〈↓↓↓↓| + |↑↑↓↑〉|↓↓↓↓〉〈↑↑↓↑|〈↓↓↓↓|
+ |↑↑↑↓〉|↓↓↓↓〉〈↑↑↑↓|〈↓↓↓↓| + |↑↑↑↑〉|↑↓↓↓〉〈↑↑↑↑|〈↑↓↓↓| + |↑↑↑↑〉|↓↑↓↓〉〈↑↑↑↑|〈↓↑↓↓|
+ |↑↑↑↑〉|↓↓↑↓〉〈↑↑↑↑|〈↓↓↑↓| + |↑↑↑↑〉|↓↓↓↑〉〈↑↑↑↑|〈↓↓↓↑|. (27)

.

Figure 5 shows the time dependence Probm−magnons(t )
[Eq. (25)], for different m = 1, . . . , 8 magnon states al-
lowed by energy and angular momentum conservation
laws [61,62], in the course of the same time evolu-
tion studied in Figs. 2–4. That is, only those m-magnons
which conserve total spin in the z direction can be
excited, [

Ĥ , Ŝz
tot

] = 0, (28)

where Ŝz
tot = ŝz

e + Ŝz
1 + · · · + Ŝz

N is the z component of the
total spin operator of the electron and all localized spins. Note
that 〈Ŝz

tot〉(t ) = 0 for the setup in Fig. 1. Figure 5(a) shows that
the initial state in Eq. (24), or equivalently Prob0−magnons(t ),
maintains its probability close to one, until m = 1, 2, 3-
magnon states are concurrently excited around t � 20 fs in
Figs. 5(a) and 5(b). At later times, even state |↓↓↓↓〉|↑↑↑↑〉
with all eight spins flipped becomes excited, as signified by
P̂8−magnon > 0 in Fig. 5(d). The probabilities of exciting m �
3-magnon states are progressively smaller in Figs. 5(b)–5(d),
when compared to m = 1, 2-magnon states in Fig. 5(a), but
they would increase further Ne > 1 electrons comprise the
injected current pulse. The total number of excited m-magnon
states compatible with the conservation law in Eq. (28)
is 182 out of 256 for 4 + 4 localized spins—for example,
Tr(|↓↓↓↓〉|↓↓↓↓〉〈↓↓↓↓|〈↓↓↓↓| ρ̂FMp∪FMa (t )) ≡ 0, because
such a four-magnon state would violate Eq. (28). Thus, in
contrast to single FM layer driven by injection of fully spin-
polarized electrons, where spin conservation [Eq. (28)] limits
the number of different excitations (such as one-magnon for a
single injected electron [59,62]), here 〈Ŝz

tot〉(t ) = 0 allows for
many joint excitations of FMp and FMa layers with initially
antiparallel magnetizations, as long as their total spin z can-
cels (akin to many-spinon excitations by quantum STT on an
antiferromagnet [62]).

By adding more localized spins and/or by injecting
more electrons, larger and larger superpositions of separable
states will be generated. They could be in principle written
explicitly for an arbitrary number of localized spins N ,
based on the conservation law in Eq. (28), except that
coefficients in front of individual terms in superposition
comprising ρ̂FMp∪FMa have to be computed numerically, as
depicted by Fig. 5 and the movie in the SM [92]. Such
computation becomes impossible in the macroscopic

limit N → ∞. We expect that such entangled states of
macroscopically large number of degrees of freedom and
with a macroscopic number of terms in superpositions are
more robust to decoherence, as has been studied [117,118]
in the context of entangled pure states as the number
of localized spin-1/2 (or, equivalently, qubits [117,118])
increases N → ∞. For example, these studies have concluded
that the Greenberger-Horne-Zeilinger (GHZ) or “cat”
state, |GHZ〉 = (|↑↑↑↑〉|↓↓↓↓〉 + |↓↓↓↓〉|↑↑↑↑〉)/

√
2

written here for the case of our FMp ∪ FMa, exhibits
much less robust entanglement than the so-called W
state, |W 〉 = (|↓↑↑↑〉|↓↓↓↓〉 + |↑↓↑↑〉|↓↓↓↓〉 + . . . +
|↑↑↑↑〉|↓↓↓↑〉)/

√
8, with built-in size robustness

against several types of decoherence [117,118]. Note
that excitation of W state is encoded by a one-magnon
sector of the off-diagonal elements of ρ̂FMp∪FMa , as
confirmed by nonzero probability Prob1−magnon−W(t ) =
Tr(|W 〉〈W |ρ̂FMp∪FMa (t )) plotted as a dotted line
in Fig. 5(a).

C. Multielectron current pulse injection

The exact time evolution of the system in Fig. 1 with
more than one injected electron can, in principle, be obtained
by brute force application of the time-evolution operator in
Eq. (22). However, such an approach is limited to very small
systems due to the exponential growth of the basis with the
system size. For example, for the SV modeled on Lx = 112
sites (employed in tDMRG calculations in Fig. 6) and with
N = 8 localized spin-1/2 in the FMp and FMa layers, the
vectors and matrices in Eq. (22) have size

(Lx

N↑
e

)(Lx

N↓
e

)
2N . This

reaches ∼1016 for N↑
e = N↓

e = 4 and a total of Ne = N↑
e +

N↓
e = 8 electrons [employed in the pulse in Figs. 6(c) and

6(f)]. To overcome this unfavorable scaling, we employ the
adaptive tDMRG algorithm [78–82] for which the computa-
tional complexity is polynomial (instead of exponential) in
system size.

When compared to the single-electron (Ne = 1) current
pulse used in Fig. 2(b), the vector magnitude |〈Ŝi〉(t )| <

Sh̄, as a purely nonclassical effect driven by quantum STT
[49,56], shrinks further in Figs. 6(a)–6(c) since more spin
angular momentum can be transferred from the current pulse
to the localized spins [56]. This also leads to a progres-
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FIG. 7. Time dependence of QFI fQ [Eq. (29)] for 4+4, 7+7 and
10+10 localized spins (at T = 0 K) of the FMp ∪ FMa subsystem for
momentum transfer h̄|k| = h̄π/6a (dotted lines) and h̄|k| = h̄π/2a
(solid lines) between incident and scattered x-ray photons h̄k =
h̄ki − h̄k f in the setup of Fig. 1. The time evolution is initiated by
injecting a single-electron (Ne = 1) current pulse, with other param-
eters the same as in Figs. 2–4.

sively larger asymptotic value of the von Neumann entropy
Shalf of the half of the lattice in Fig. 1 of the total system
FMa ∪ FMp ∪ electrons, as the number of electrons com-
prising the pulse is increased from Ne = 2 in Fig. 6(d) to
Ne = 8 in Fig. 6(f). Thus, the degree of macroscopic en-
tanglement of two FM layers can be controlled by tailoring
the magnitude and duration of the injected electronic current
pulse.

V. WITNESSING NONEQUILIBRIUM ENTANGLEMENT
OF LOCALIZED SPINS VIA ULTRAFAST

X-RAY SPECTROSCOPY

Experimentally demonstrated protocols [119,120] to quan-
tify entanglement in quantum many-body systems use pure
quantum states of ∼10 trapped cold atoms or ions, which
can also be in a state of time-dependent nonequilibrium.
Such protocols essentially rely on unique capabilities of AMO
techniques—such as the ability to make copies of a quantum
system or single-atom manipulation and observation—which
make it possible to isolate a subsystem (consisting of one or
few atoms) and directly measure its (possibly time-dependent)
Rényi entanglement entropy [119]. However, they are limited
to small system sizes and cannot be ported to solid-state
lattices that are always at finite temperature [hence, possible
entangled states are necessarily mixed as in Eq. (1)] and can
also be out-of-equilibrium (as in the case of spintronic devices
like the one in Fig. 1). How to measure entanglement of mixed
quantum states is far less understood even in the context of
AMO systems [71].

The very recent neutron scattering experiments [41–43]
have succeeded to directly witness intrinsic entanglement
in solids [93] present without any external driver. A salient
example of such entanglement of a macroscopically large
number of localized spins in equilibrium is offered by
quasi-1D quantum antiferromagnets [41–43]. Witnessing of
their entanglement was achieved by extracting the quantum

Fisher information (QFI) [121,122] from neutron scattering
data on dynamic susceptibility [93,123]. However, this
approach is not applicable to nanoscale devices like the SV
in Fig. 1, which are driven far from equilibrium by current
pulses (dynamic susceptibility probes only near equilibrium
states by relying on the Kubo linear-response theory [123]).

Nonetheless, a very recently proposed scheme [45] makes
it possible to obtain (via an integral equation) time-dependent
QFI from transient dynamical structure factor S(k, ω, t ). Al-
though S(k, ω, t ) is directly proportional to inelastic neutron
scattering cross section, neutron scattering at present offers
slow time resolution ∼1 ms. An ultrafast spectroscopy, with
time resolution down to ∼50 fs is offered by trRIXS [66–68]
as a photon-in–photon-out (see Fig. 1 for an illustration) scat-
tering process with a resonant intermediate state and cross
section that can be directly related [45] to S(k, ω, t ).

The QFI is one of many entanglement witnesses
[42,121,122] which can distinguish separable (unentangled)
from entangled multipartite pure or mixed states. Although
construction of a single witness that can detect all possible
entangled states is computationally prohibitively expensive,
QFI has been proven as particularly useful (e.g., it can wit-
ness multipartite entanglement even in complex topological
quantum phases and their transitions [124]) and robust against
experimental artifacts [42]. The time-dependent QFI for the
subsystem of localized spins of FMp and FMa layers in the
SV in Fig. 1 is defined by [45]

fQ(k, t ) = 4

N

∑
i, j

ek·(ri−r j )
{
Tr

[
Ŝz

i Ŝz
j ρ̂FMp∪FMa (t )

]

− Tr
[
Ŝz

i ρ̂FMp∪FMa (t )
]
Tr

[
Ŝz

j ρ̂FMp∪FMa (t )
]}

, (29)

where we replace instantaneous pure entangled quantum state
used in Ref. [45] with our mixed entangled one ρ̂FMp∪FMa (t ).
Here ri is the real-space position vector of site i. The data
from Figs. 2–4 can be reorganized via Eq. (29) to produce
QFI for our SV in Fig. 1, as shown in Fig. 7. We envis-
age that ∼1 ns current pulse will “pump” the SV out of
equilibrium via quantum STT, so that delayed x-ray pulses
applied during or after the current pulse will be able to
probe thereby an induced nonequilibrium mixed entangled
state ρ̂FMp∪FMa (t ) with ultrafast temporal resolution during
which decoherence cannot diminish MLN to zero [Fig. 3(d)].
Thus experimentally extracted QFI can then be compared
[45] with theoretical predictions [68] exemplified by the one
in Fig. 7.

We note that such a “current-pump–x-ray-probe” scheme
is realistic. For example, a similar one investigating the dy-
namics of localized spins driven by conventional STT has
already been demonstrated in spintronics [125] (using more
than 1012 current pulses of ∼1 ns duration and time-resolved
x-ray images with 100 ps temporal resolution). However, in
the probing of Ref. [125] (based on x-ray magnetic circular
dichroism rather than trRIXS) localized spins at room temper-
ature are assumed to behave as classical vectors described by
classical micromagnetics [51] and the LLG equation, which
requires that their quantum state remains a separable (unen-
tangled) one, |�(t )〉lspins = |σ1(t )〉 ⊗ |σ2(t )〉 ⊗ · · · |σN (t )〉, for
all times t .
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VI. CONCLUSIONS AND OUTLOOK

In conclusion, using the recently introduced concept
of quantum STT [55,56,59–62], we predict that a spin-
unpolarized current pulse comprising flowing electrons can
act as a mediator of macroscopic entanglement between two
distant magnetic layers within a SV device. Thus generated
entangled state is a mixed one (Figs. 3 and 4), involving a
macroscopically large number of localized spins in a realistic
device. It would also involve a macroscopically large (Fig. 5)
number of superimposed separable states because all such
states that can be excited in accord with conservation laws
operative in spin transfer are eventually introduced into
the superposition over time. The latter feature can make
them far more resistant [117,118] to different types of
decoherence than when only a few separable states appear in
superposition.

The SV is widely used device in fundamental and applied
research in standard room-temperature spintronics, but for
the entanglement scheme proposed here it will have to be
kept at ultralow temperatures [55], T � 10 K according to
Fig. 3(d), in order to suppress decoherence and dissipation
effects. This opens a new avenue for exploration and ma-
nipulation of macroscopic entanglement where experimental
demonstrations [16–22] thus far have been mostly focused on
distant mechanical oscillators and photons as mediators. An
advantageous nonequilibrium spintronic system for realizing
our proposal is offered by “intrinsic” MTJs based on two-
dimensional magnetic materials, such as two atomic planes
of CrI3 with oppositely oriented localized spins sandwiched
by graphite electrodes [110,126,127]. This device naturally
realizes the relative orientation of FMp and FMa layers in
Fig. 1, while the spacer between them being vacuum and
electrodes made of graphite minimize the number of deco-
herence channels for the electronic orbital and spin degrees
of freedom.

We underline that the very recent neutron scattering exper-
iments [41–43] have demonstrated witnessing entanglement
of a macroscopically large number of localized spins within
low-dimensional antiferromagnetic [12,40] materials in equi-
librium, as long as they are kept below “entanglement temper-
ature” TE � 200 K [42]. This achievement, previously demon-
strated only on a few hundred trapped ions as simulators of
quantum magnets [119,120], suggests that localized quantum
spins in solids can be kept entangled even [11,12] when their

number is macroscopically large and their temperature is finite
[41–43]. Thus, we expect that our protocol for macroscopic
entanglement could work for nonequilibrium ferromagnets
within SVs at sufficiently low [Fig. 3(d)] temperatures as
well. While witnessing entanglement via QFI extracted from
neutron scattering data for equilibrium bulk materials [41–43]
cannot be ported to nonequilibrium many-spin systems in our
study, we envisage that a recently proposed [45] laser-pump–
ultrafast-x-ray-probe scheme for bulk nonequilibrium materi-
als extracting time-dependent QFI (Fig. 7) from trRIXS cross
section can be adapted to spintronic devices as a “current-
pump–x-ray-probe” scheme. Such a scheme is realistic, and
some type of it has already been demonstrated in spintronics
[125] but for devices at room temperature with presumed
classical dynamics of localized spins (as well as using a
different type of x-ray-probe). So the experimental challenge
remains to develop a “current-pump–trRIXS-probe” scheme
for a nonequilibrium spintronic device embedded into an ex-
ternal circuit and kept at ultralow temperatures.
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