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Quantum state tomography of undetected photons
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The measurement of quantum states is one of the most important problems in quantum mechanics. We intro-
duce a quantum state tomography technique in which the state of a qubit is reconstructed, while the qubit remains
undetected. The key ingredients are (i) employing an additional qubit, (ii) aligning the undetected qubit with a
known reference state by using path identity, and (iii) measuring the additional qubit to reconstruct the undetected
qubit state. We establish theoretically and demonstrate experimentally the method with photonic polarization
states. The principle underlying our method could also be applied to quantum entities other than photons.
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I. INTRODUCTION

The process and interpretation of quantum measurements
have been vastly studied since the early days of quantum
mechanics [1]. The results of measurements made on a given
quantum system can be succinctly summarized in the form of
a quantum state, which represents the complete description of
the quantum system. The quantum state estimation spans mul-
tiple techniques, such as projective measurements [2,3], weak
measurements [4–7], and device-independent measurements
[8–10]. The quantum state tomography consists in the identifi-
cation of a quantum state by measurements on many identical
copies of a quantum system [11]. In the case of photons, the
measurement is destructive via direct measurements [12,13]
or interferometric measurement [14]. Furthermore, technical
limitations might hinder an efficient detection process. For
example, single-photon detectors are not equally efficient over
the whole spectrum. Therefore, standard quantum tomogra-
phy approaches may be challenging or even impossible in
some cases.

Here we introduce and implement a quantum tomography
method in which the state of a single qubit is reconstructed
without the qubit being detected or any direct measurement
being performed on it.1 Instead, we introduce an additional
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1We note here that for some quantum systems such as trapped ions,

the quantum state can be determined by detecting fluorescence light,
i.e., without performing direct measurement on the ions [15,16].
However, such approaches are not applicable to photons and many
other quantum entities such as neutrons, electrons, etc.

particle (photon in our case). We then apply the concept of
path identity [17] to build an interferometer, in which only
the additional photon is detected via intensity measurement.
We reconstruct the quantum state of the qubit from the inter-
ferometric data. Our method works for both pure and mixed
states, and we experimentally demonstrate it for pure single-
photon polarization states. In contrast to existing tomographic
methods, our method is applicable to cases in which the qubit
cannot be detected for any technical or fundamental reason.
This is because we do not detect the qubit and the additional
photon can be chosen at a frequency for which adequate
detectors are available.

Our method of quantum state tomography is based on the
quantum phenomenon of induced coherence without induced
emission [18,19], which can be viewed as interference by path
identity [17]. Mandel and co-workers first demonstrated this
phenomenon using an interferometric arrangement consisting
of two photon-pair sources. They induced coherence between

FIG. 1. Quantum state tomography with detected and undetected
particles. (a) Quantum state tomography retrieves the state of a
quantum system by measuring an ensemble of identical particles.
(b) In our scheme, the target subsystem for which we aim to obtain
ρ̂ remains undetected. What is measured instead is an auxiliary
subsystem that is quantum correlated to the target one.
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two modes of one photon by making paths of its partner
photon identical. They obtained a single-photon interference
pattern detecting the former photon only. The detection of
the partner photon was not required. We henceforth refer to
this phenomenon as induced coherence for simplicity. The
potential of induced coherence has already been recognized
as it has found use in quantum imaging [20], spectroscopy
[21], holography [22], distillation [23], sensing [24], optical
coherence tomography [25,26], measurement of two-photon
correlations, and entanglement [27–30]. This phenomenon
has also been exploited to investigate the interplay between
the polarization and coherence [31,32]. Nevertheless, to date,
no technique based on induced coherence has been developed
to fully reconstruct the polarization state of single photons.

II. PRINCIPLE

In the standard polarization quantum state tomography
[Fig. 1(a)] a photon is prepared in a general state ρ̂ and then
subjected to intensity measurements performed in various set-
tings given by the Pauli operators. The recorded results are
then used to obtain the Stokes parameters and the associated
density matrix ρ̂ [12]. In our technique [Fig. 1(b)], the tar-
get photon whose state ρ̂ we reconstruct remains undetected.
What is measured instead is an auxiliary photon with which
the target photon interacts. Information about the state ρ̂

is transferred to the auxiliary photon by employing a path
identity approach (Fig. 2).2 Through this step, the state of
the target photon changes; its representation can be found in
Appendix D. To obtain ρ̂, the auxiliary photon is prepared,
projected, and detected in different configurations. The state
ρ̂ is retrieved from the interference patterns obtained by mea-
suring the auxiliary photon.

III. METHOD

Our aim is to reconstruct the quantum state of a photon,
henceforth referred to as the idler photon, whose density ma-
trix has the general form

ρ̂I =
(

PH I
√

PH PV e−iξ

I
√

PH PV eiξ PV

)
. (1)

In the formula above, PH (PV ) is the probability of detecting
the horizontal H (vertical V ) polarization of the idler photon,
PH + PV = 1; 0 � ξ < 2π is the relative phase between H
and V ; and 0 � I � 1 quantifies the purity of the state. It
can be readily checked that I = 0 and 1 correspond to fully
mixed and pure states, respectively.

Our reconstruction technique employs the experimental
setup depicted in Fig. 3. We employ an additional photon,
referred to as the signal photon, such that the two photons are

2This scenario resembles the indirect-measurement scenario where
the system of interest interacts with a meter system, and it is the latter
that is then subjected to a projective measurement. An advantage of
our approach is that it allows for reconstructions of states of photons,
whose ability to interact is notoriously known to be very weak.

target

auxiliary

State preparation

undetected

Path identity with
reference state

Measurement

Visibility

FIG. 2. Path identity concept of implementation. The crucial
point in our scheme is transferring the state information from the
target to the auxiliary particle, which is done by a path identity
approach. Measurements on the auxiliary particle allow us to fully
retrieve ρ̂ of the target particle. Here φ denotes phase shifter; U,
unitary operation; P, projector; BS, beam splitter; and D, detector.

in the state

ρ̂1 = |HSa〉〈HSa| ⊗ ρ̂I , (2)

where |HSa〉 represents a horizontally polarized signal photon
propagating along path a and the idler photon I propagates
along path b′ in the state ρ̂I . Our technique uses two sources
of photon pairs, denoted by Q1 and Q2. The first source
comprises a single nonlinear crystal and produces photons
in a separable state. After the state preparation of the idler
photon, this state is given by Eq. (2). The second source com-
prises two nonlinear crystals in a cross-crystal configuration
and produces photon pairs in a maximally entangled state
ρ̂2 = |ψ2〉〈ψ2| in path b, where

|ψ2〉 = 1√
2

(|HSb〉|HIb〉 + |VSb〉|VIb〉). (3)

Here, |VSb〉 (|VIb〉) represents a vertically polarized signal
(idler) photon propagating along path b. The state given by
Eq. (3) plays the role of a reference state of polarization, with
respect to which state ρ̂I is probed, as explained below.

Sources Q1 and Q2 are pumped coherently. The pump
power for both sources is low such that the two sources do
not emit photons simultaneously and the effect of stimulated
emission can be neglected. In this case, one photon pair is in
a coherent superposition of being emitted by sources Q1 and
Q2. The density matrix representing a photon pair in such a
scenario is given by Eq. (A3) in Appendix A.

The alignment of the idler photons’ paths plays a crucial
role in our technique. We superimpose the two signal-photon
paths a and b at a beam splitter and later the two polarization
modes in path b are separated by a polarizing beam splitter.
The final H (V ) component is collected by detector D1 (D2)
(see Fig. 3). When the idler beam emitted from the source Q1
is aligned precisely such that it overlaps with the idler beam
emitted from the source Q2, the source information is erased
and an interference pattern arises in intensities detected by
D1 and D2. Therefore, we have an effective twofold induced
coherence in two orthogonal polarization modes H and V ,
where the level of indistinguishability depends on ρ̂I .

When the pump powers are adjusted appropriately (see
Appendix C), the intensity (photon counting rate) for H po-
larization at detector D1 is given by

〈R̂H 〉 = 1
4 [1 + |TH |√PH cos(φ)], (4)
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FIG. 3. Experimental setup for the proposed quantum tomog-
raphy method of polarization states. The pump, the idler, and the
signal photons are represented by the green, red, and blue lines,
respectively. One photon pair is created in a coherent superposition
of three nonlinear crystals (NL1–NL3). Idler beams are overlapped
in order to erase the which-source information, the lack of which
induces coherence of the signal photon. Signal photons emitted in
each crystal are superposed on a beam splitter (BS), split into H and
V polarization by a polarizing beam splitter (PBS), and detected by
detectors D1 and D2. The recorded intensities of the signal photon
exhibit interference as the independent phase φ is varied. Our method
allows one to identify the polarization state of the idler photon
emitted in crystal NL1 (source Q1) even though it is never detected.
Here a, b, b′, and c stand for optical paths.

provided that the half waveplate HWPS is set to 0◦, where
TH is the total amplitude transmission coefficient of the H
polarization, which takes into account all optical components
placed on path b′, and φ ∈ R is the relative phase between
the two sources. The rate 〈R̂V 〉 for vertical polarization stays
constant for such a setting. To record the interference pattern
for V polarization, we set the HWPS to 45◦ such that the signal
photon’s state in path a turns to |VSa〉. In this case, rate 〈R̂H 〉
monitored by D1 stays constant, while detector D2 records
photon counts whose rate varies according to

〈R̂V 〉 = 1
4 [1 + I |TV |√PV cos(φ + ξ )], (5)

where TV is the transmission coefficient for the V polarization,
defined analogously to TH , and ξ was introduced in Eq. (1).
Upon varying φ the two expressions above display interfer-
ence with visibilities3

VH = |TH |√PH , (6)

VV = I |TV |√PV . (7)

These formulas quantify the level of indistinguishability in the
two orthogonal polarization modes. We can perform a sepa-
rate measurement of the amplitude transmission coefficients
|TH | and |TV | (i.e., losses and alignment). These coefficients
determine the maximum achievable visibilities. The visibility
VH allows us to infer the value of PH and PV = 1 − PH , the
visibility VV contains information about the degree of coher-
ence I , and the local phase ξ is equal to the relative phase

3The visibility is V = (〈Rmax〉 − 〈Rmin〉)/(〈Rmax〉 + 〈Rmin〉), where
〈Rmax〉 and 〈Rmin〉 are the maximum and minimum intensities,
respectively.

shift between interference fringes for 〈R̂H 〉 [Eq. (4)] and 〈R̂V 〉
[Eq. (5)]. This way we can reconstruct state ρ̂I in Eq. (1).

IV. IMPLEMENTATION

We demonstrated the described technique of reconstruction
of the idler state experimentally. We used periodically poled
potassium titanyl phosphate crystals emitting photon pairs by
spontaneous parametric down-conversion in a nondegenerate,
type-0 process. Signal (idler) photons had a central wave-
length of 842 (780) nm. In the detection part, we used a
800-nm long-pass filter and an (842 ± 1)-nm interference fil-
ter to select only signal photons. Two single-photon avalanche
diode detectors collected signal photons in the H and V out-
puts. Each detector showed on average 500 dark counts/s and
collected a mean of signal photons of 35 000 counts/s per
crystal.

The tomography procedure needs to be calibrated to
compensate for the misalignment in the experimental imple-
mentation. To that end, we measured the maximum visibilities
TH and TV that can be achieved experimentally for H and V
polarizations. We experimentally obtained TH = 0.85 ± 0.03
and TV = 0.73 ± 0.02.4 The calibration itself consisted in the
division of each experimentally obtained visibility VH (VV ) by
TH (TV ).

A cascade of a half waveplate (HWPI ) and a quarter wave-
plate (QWPI ) is used to prepare the polarization state ρ̂I of the
idler photon generated by the source Q1 in the path b′. The
tomography was performed by taking measurements in two
configurations of the signal photon, |HSa〉 and |VSa〉, which
were prepared by HWPS . For the configuration |HSa〉 (|VSa〉)
we recorded the intensity 〈R̂H 〉 (〈R̂V 〉) at the detector D1 (D2)
while the phase φ was varied. Fitting a sinusoidal function
to the recorded intensity profiles we extracted the visibilities
for the signal photon as well as the phase shift for each state.
The values of PH , PV , and ξ were then extracted using Eqs. (4)
and (5). Additionally, we implemented a maximum-likelihood
estimation algorithm to reconstruct density matrices from our
data.5

Experimental results are presented in Fig. 4, where dots
represent experimental data and solid lines represent theoret-
ical prediction. We performed two measurement scans. In the
first scan the entire range of pure linearly polarized states of
the idler photon was traversed by rotating HWPI . Calibrated
experimental results, which are presented in Fig. 4(a), agree
well6 with the theoretical predictions given by Eqs. (6) and
(7). Indeed, initially VH is maximal and VV is minimal as

4The difference between these maximum visibilities is caused by
the impossibility of imaging the crystal plane of the source Q1
simultaneously to the crystal planes of the two crystals comprising
the source Q2. However, this difference could be fixed by building
the source Q2 in the Sagnac geometry.

5Additional information about the explicit form and evolution
of the photons’ state, polarization measurement, calibration, state
reconstruction, and postmeasurement state can be found in the Ap-
pendixes.

6The standard deviation is obtained from the sinusoidal function
fitted to the experimental data.
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FIG. 4. Experimental results for pure state tomography of photons that are never detected. Main results of visibility measurements are
shown in the left panels. The red and blue colors represent the horizontal and vertical polarization, respectively. (a) The idler photon is prepared
in different linear polarization states by HWPI (see the Bloch sphere in the inset). The signal photon visibility for each linear polarization is
plotted against the angle of HWPI . (b) The idler photon is prepared in different elliptical polarization states by QWPI , starting in |HIb′ 〉. The
signal photon visibility is plotted against the angle of QWPI . The calibrated experimental data points in (a) and (b) are in agreement with the
theoretical predictions, which are given by the solid lines. The idler states |DIb′ 〉 and |AIb′ 〉, designated by (1) and (2) in (a), and |RIb′ 〉 and
|LIb′ 〉, designated by (3) and (4) in (b), are all represented by the same visibilities of the signal photon. Nevertheless, these four states have
different relatives phases. We have included the experimental density matrices obtained for these four states in the insets (1)–(4).

the idler state is H polarized. As HWPI is rotated, VH (VV )
gradually decreases (increases) until it reaches its minimum
(maximum) when the idler photon is V polarized. The mean
fidelity of states reconstructed in this scan is found to be
F̄HWP = 0.968 ± 0.041, where the fidelity of each state is
calculated by

F = |〈ψth|ψex〉|2, (8)

with |ψth〉 the theoretical prediction and |ψex〉 the experimen-
tal result. The errors are estimated from measured data using
Poissonian error propagation (see Appendix F).

In the second scan, QWPI was rotated to generate a series
of pure elliptically polarized states ranging from the right-
circular polarization to the horizontal polarization and then

further to the left-circular polarization. We started with |HIb′ 〉.
As QWPI is rotated and the state of the idler photon acquires
a complex V -polarized component, the visibility for H de-
creases whereas that of V increases until they both reach the
extreme value of 1/

√
2 when the state is right or left circular.

This behavior is closely followed by the experimental data,
which are presented in Fig. 4(b). The states measured in this
scan have a mean fidelity of F̄QWP = 0.916 ± 0.074.

As has been pointed out in the preceding section, the vis-
ibilities VH [Eq. (6)] and VV [Eq. (7)] do not identify the
idler photon’s state unambiguously. Any two states ρ̂I and ρ̂ ′

I
for which VH = V ′

H and VV = V ′
V will be misidentified. For

precise identification also the phase shift between interference
patterns in Eqs. (4) and (5) is needed. This fact is illustrated
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(a)

(b)

FIG. 5. Fidelities of reconstructed states. (a) Fidelities for a HWP
with the mean and lowest fidelities being F̄HWP = 0.968 ± 0.041
and F (min)

HWP = 0.830 ± 0.041, respectively. (b) Fidelities for a QWP
with the mean and lowest fidelities being F̄QWP = 0.916 ± 0.074 and
F (min)

QWP = 0.720 ± 0.001, respectively.

for states |DIb′ 〉 and |AIb′ 〉 (diagonal and antidiagonal) in the
insets of Fig. 4(a) and states |RIb′ 〉 and |LIb′ 〉 (right and left
circular) in the insets of Fig. 4(b). Visibilities VH and VV are
identical for all these states, but the relative phases differ.

The experimental results clearly demonstrate the feasibility
of our reconstruction technique, as long as pure polarization
states of photons are considered. We successfully character-
ized all the linearly polarized states and also a specific class of
elliptically polarized states. Fidelities of all the states, shown
in Fig. 5, lie above Fmin = 0.720 ± 0.001. As follows from
the plot, the worst-case scenarios correspond to states close to
|DIb′ 〉 and |RIb′ 〉, respectively. Finally, the different fidelities
might be explained by the mechanical backlash of a crafted
phase shifter, made to preserve both spatial and polarization
indistinguishability. This component can be easily improved,
leading to more accurate fidelities.

V. CONCLUSION

In this paper we introduced a tomography method that
allows one to determine a polarization state of a photon that is
never detected. This photon is a part of one photon pair that is
emitted in a coherent superposition of two spatially separated
sources. The first source emits idler photons in an unknown
state that is to be reconstructed. The second source produces
a reference state that contains two orthogonal polarization
modes.7 As a result of the indistinguishability in the two po-
larization modes, the resulting interference patterns contain all
the information about the idler photon that allows us to fully

7We note that the crystal NL3 can in principle be replaced by
additional retarder plates placed in the idler path before NL2.

reconstruct its state. We demonstrated experimentally this re-
construction for two classes of idler states: linearly polarized
states and elliptically polarized states. We also presented the
theoretical treatment of the general case in which the idler
photon’s polarization state can be mixed. The fidelities of
states can be increased by improving the phase stability in the
experiment.

The main advantage over traditional techniques stems from
the fact that in our approach only signal photons are de-
tected and these can have a different wavelength from that
of idler photons. In certain frequency (wavelength) ranges,
efficient detectors are not affordable or available. In our ap-
proach, the high flexibility of the spontaneous parametric
down-conversion process allows us to choose a favorable
wavelength that can be efficiently detected [24,33–36].

To conclude, this work provides a different tool for the pre-
cise identification of single-photon states with high potential
in a wide range of applications. Our approach can be adapted
to the tomography of high-dimensional degrees of freedom
of single photons, such as the orbital angular momentum
[37]. Including spatial modes in our technique, i.e., position
and momentum, one can implement polarization quantum
imaging with undetected photons [20]. It can also be used
in the characterization of birefringent materials, sensing, and
polarization-sensitive optical coherence tomography [25,26].
Note that the postmeasurement state of the idler photon still
carries partial information about the state preparation. If the
idler detection is not a problem, our scheme can be used
in quantum communication protocols between two parties,
where one party obtains information through interference pat-
terns (signal photon) and the other party obtains probabilistic
information via projective measurements (idler photon). It has
also not escaped our notice that our method can be adapted
to any two-level quantum system, such as atoms, ions, or
molecules.
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APPENDIX A: TOTAL STATE OF A PHOTON PAIR
EMITTED FROM SOURCES Q1 AND Q2

To study the state of photons produced by the setup we
apply the analysis developed in Ref. [29]. The most general
state of two photons that can be generated by sources Q1 and
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Q2 (after state preparation) discussed in the main text is of the
form

ρ̂tot = |b1|2|HSa〉〈HSa| ⊗ ρ̂I + |b2|2ρ̂2

+ [b1b∗
2(cross terms) + H.c.], (A1)

where ρ̂I is the unknown state of the idler photon given by
Eq. (2), b1 and b2 are weighting factors that represent the
unbalanced pumping of the two sources (|b1|2 + |b2|2 = 1),

and ρ̂2 = |ψ2〉〈ψ2| is the state of the second source with

|ψ2〉 = √
PH2|HSb〉|HIb〉 + eiθ

√
PV 2|VSb〉|VIb〉. (A2)

To express the total state ρ̂tot in the ex-
plicit matrix form, let us choose the basis
{|HSaHIb′ 〉, |HSaVIb′ 〉, |VSaHIb′ 〉, |VSaVIb′ 〉, |HSbHIb〉, |HSbVIb〉,
|VSbHIb〉, |VSbVIb〉}, where a, b, and b′ denote paths in the
setup as given in Fig. 3.

In this basis, the total state reads

ρ̂tot =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|b1|2PH |b1|2I
√

PH PV e−iξ 0 0 b1b∗
2

√
PH PH2 0 0 b1b∗

2

√
PH PV 2e−iθ

|b1|2I
√

PH PV eiξ |b1|2PV 0 0 b1b∗
2L

√
PV PH2eiξ 0 0 b1b∗

2L
′√PV PV 2e−i(θ−ξ )

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

b∗
1b2

√
PH PH2 b∗

1b2L
√

PV PH2e−iξ 0 0 |b2|2PH2 0 0 |b2|2
√

PH2PV 2e−iθ

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

b∗
1b2

√
PH PV 2eiθ b∗

1b2L ′√PV PV 2ei(θ−ξ ) 0 0 |b2|2
√

PH2PV 2eiθ 0 0 |b2|2PV 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A3)

The parameters L and L ′ quantify the coherence between
the V polarization of the first source and the H and V polar-
ization of the second source, respectively. In order for matrix
ρ̂tot in Eq. (A3) to be a valid density operator, it must have a
unit trace and be positive semidefinite. The former condition
is easy to check; for the latter condition one can use the gen-
eralization of Sylvester’s criterion for positive-semidefinite
matrices [38]. The requirement of positive semidefiniteness
implies that 0 � I = L = L ′ � 1.

APPENDIX B: EVOLUTION OF THE TOTAL STATE

We model the alignment process as an effective beam
splitter that deflects with probability |RH |2 (|RV |2) the H-
polarized (V -polarized) idler beam propagating along path
b′ from source Q1 into auxiliary path w. With the comple-
mentary probability |TH |2 (|TV |2), the effective beam splitter
directs the idler beam into path b, that is,

|HIb′ 〉 → RH |HIw〉 + TH |HIb〉, (B1)

|VIb′ 〉 → RV |VIw〉 + TV |VIb〉, (B2)

where |RH |2 + |TH |2 = 1 and |RV |2 + |TV |2 = 1. These trans-
formation rules are applied to the total state ρ̂tot in Eq. (A1).

After the alignment of the idler beams we only manipulate
the signal photon in the rest of the setup. For reasons that are
explained later on, we use two settings of the signal photon’s
polarization: one when its polarization in path a is prepared
in state |HSa〉 [see Eq. (A1)] and one when it is rotated with
a half waveplate into the vertical polarization |VSa〉. When the
first setting is considered, the reduced density operator of the
signal photon in the basis {|HSa〉, |VSa〉, |HSb〉, |VSb〉} is given

by

ρ̂S =

⎛
⎜⎜⎜⎜⎝

|b1|2 0 ρ12 ρ14

0 0 0 0

ρ∗
12 0 |b2|2PH2 0

ρ∗
14 0 0 |b2|2PV 2

⎞
⎟⎟⎟⎟⎠, (B3)

where the off-diagonal terms read ρ12 = TH b1b∗
2

√
PH PH2 and

ρ14 = TV b1b∗
2I

√
PV PV 2ei(ξ−θ ). In the second case, the re-

duces density operator takes the form

ρ̂ ′
S =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 |b1|2 ρ12 ρ14

0 ρ∗
12 |b2|2PH2 0

0 ρ∗
14 0 |b2|2PV 2

⎞
⎟⎟⎟⎟⎠. (B4)

After adjusting the polarization of the signal photon in path a,
the signal beams from sources Q1 and Q2 are superimposed
at a beam splitter. The action of the beam splitter can be
represented by the formulas

ρ̂S → BSρ̂SBS†, ρ̂ ′
S → BSρ̂ ′

SBS†, (B5)

where BS is a matrix of the form

BS = 1√
2

(
1 1
1 −1

)
⊗

(
1 0
0 1

)
. (B6)

APPENDIX C: POLARIZATION MEASUREMENT

In the end, we perform standard polarization measurement
in the H-V basis of signal photons leaving the beam splitter
along path b. The resulting photon count rates in the H com-
ponent for state ρ̂S in Eq. (B3) are given by

〈R̂H 〉 = 〈HSb| BSρ̂SBS† |HSb〉, (C1)
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and analogously for the V component and state ρ̂ ′
S . In the

experiment, we use two measurement settings. For the first
setting, when the signal photon’s polarization in path a is
equal to |HSa〉, we obtain the following photon count rates.
For the H component we get

〈R̂H 〉 = 1
2

[|b1|2 + |b2|2PH2

+ 2|b1||b2||TH |√PH PH2 cos(φ)
]
, (C2)

where b1 ∈ R and b2 = |b2|eiφ . The visibility of this expres-
sion, when φ is varied, equals

VH = 2|b1||b2||TH |√PH PH2

|b1|2 + |b2|2PH2
. (C3)

At the same time, the V component stays constant and equals
〈R̂V 〉 = |b2|2PV 2/2. For the second setting we rotate the polar-
ization of signal photons in path a such that their state is |VSa〉.
The count rate for the H component now stays at a constant
value of 〈R̂H 〉 = |b2|2PH2/2. The V component, in contrast,
varies like

〈R̂V 〉 = 1
2

[|b1|2 + |b2|2PV 2

+ 2I |b1||b2||TV |√PV PV 2 cos(φ + θ − ξ )
]
. (C4)

The visibility of this expression is equal to

VV = 2I |b1||b2||TV |√PV PV 2

|b1|2 + |b2|2PV 2
. (C5)

Our experimental arrangement corresponds to conditions
b2 = √

2b1 and PH2 = PV 2 = 1
2 . As a result, the above expres-

sions reduce to

〈R̂H 〉 = |b1|2[1 + |TH |√PH cos(φ)], (C6)

〈R̂V 〉 = |b1|2[1 + I |TV |√PV cos(φ + θ − ξ )], (C7)

with visibilities

VH = |TH |√PH , (C8)

VV = I |TV |√PV . (C9)

APPENDIX D: POSTINTERACTION IDLER STATE

The postinteraction state of the idler photon is

ρ
post
I = 1

2 |ψIb′ 〉〈ψIb′ | + 1
2 (1/2). (D1)

The final state is a uniform mixture of the maximally mixed
state 1/2 and the original pure state |ψI〉 in path b′. Evidently,
the postinteraction state of the idler photon still contains some
information about its original state of polarization.

APPENDIX E: CALIBRATION

In the real experiment, the values of visibilities have to be
calibrated first as the maximum achievable visibility may not

FIG. 6. Experimental visibility calibration. The maximum vis-
ibility |TH | = 0.85 ± 0.03 is obtained from the intensity profile
measured by the detector D1 when the idler photon is in the state
|HIb′ 〉 and the signal photon is in the state |HSa〉. The maximum
visibility |TV | = 0.73 ± 0.02 is obtained for the setting |VIb′ 〉 and
|VSa〉, when the intensity profile is recorded by the detector D2. Errors
are given by the standard deviation of a sinusoidal function fitted to
the experimental data.

be unity due to technical imperfections of the experimental
setup [cf. Eqs. (6) and (7)]. The calibration measurement with
maximum visibilities for H and V polarizations is presented
in Fig. 6.

APPENDIX F: DENSITY-MATRIX RECONSTRUCTION BY
MAXIMUM-LIKELIHOOD ESTIMATION TECHNIQUE

To reconstruct the density matrix of the undetected photon,
we employ the maximum-likelihood-reconstruction technique
[39] that consists in least-square fitting of a parametrized
valid density matrix to the experimental data [12]. At first,
keeping the polarization of the idler photon fixed, we collect
the experimental data in the form of detector counts for each
setting of HWPS and phase shift φ (see Fig. 1). The resulting
data {hk}k and {vk}k for horizontal and vertical polarization of
the signal photon, respectively, should follow Eqs. (4) and (5).
We construct a cost function in the form

f ({hk}k, {vk}k, PH , ξ ,I )

=
∑

k

(n〈R̂H 〉 − hk )2 +
∑

k

(n〈R̂V 〉 − vk )2, (F1)

where n stands for the total number of counts for a fixed
setting of HWPS , the expression 〈R̂H 〉 is a function of PH

and φk , and 〈R̂V 〉 is a function of 1 − PH , φk , ξ , and I . The
function f represents the difference between the experiment
and the theoretical prediction. Its minimum is obtained for the
optimal fitting parameters PH , PV = 1 − PH , ξ , and I . Using
minimization routines such as FindMinimum in Mathematica,
we find the optimal values of these parameters, which are
then plugged into Eq. (1) to reconstruct the corresponding
density matrix. The error is estimated by generating additional
data sets of input values distributed according to the Poisson
distribution around the measured values. The optimization is
applied to each additional data set and from the resulting dis-
tribution of visibilities and fidelities, the mean value, as well
as the standard deviation for both quantities, is determined.
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