
PHYSICAL REVIEW A 109, 022412 (2024)

Two methods for breaking down a quantum algorithm

Miguel Murça ,1,2,3,* Duarte Magano,1,4 and Yasser Omar1,2,3

1Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
2Centro de Física e Engenharia de Materiais Avançados (CeFEMA), Physics of Information

and Quantum Technologies Group, Lisboa 1049-001, Portugal
3PQI – Portuguese Quantum Institute, Lisboa 1600-531, Portugal

4Instituto de Telecomunicações, Lisboa 1049-001, Portugal

(Received 26 May 2023; accepted 9 January 2024; published 9 February 2024)

Despite the promise that fault-tolerant quantum computers can efficiently solve classically intractable prob-
lems, it remains a major challenge to find quantum algorithms that may reach computational advantage in
the present era of noisy, small-scale quantum hardware. Thus, there is a substantial ongoing effort to create
new quantum algorithms (or adapt existing ones) to accommodate depth and space restrictions. By adopting a
hybrid query perspective, we identify and characterize two methods of breaking down quantum algorithms into
rounds of lower (query) depth, designating these approaches as “parallelization” and “interpolation.” To the best
of our knowledge, these had not been explicitly identified and compared side by side, although one can find
instances of them in the literature. We apply them to two problems with known quantum speedup: calculating
the k-threshold function and computing a NAND tree. We show that for the first problem parallelization offers
the best performance, while for the second interpolation is the better choice. This illustrates that no approach is
strictly better than the other, and that there is more than one good way to break down a quantum algorithm into
a hybrid quantum-classical algorithm.

DOI: 10.1103/PhysRevA.109.022412

I. INTRODUCTION

Algorithms that combine classical processing with limited
quantum computational resources hold an attractive promise:
To provide computational advantage over completely classical
computation, while remaining compatible with the techno-
logical landscape of quantum computing. The appeal of this
kind of algorithm is well reflected in some of the key modern
proposals for quantum advantage, usually based on variational
principles [1]. Prominent examples include the quantum ap-
proximate optimization algorithm [2], the variational quantum
eigensolver [3–6], and some versions of quantum machine
learning [7–11]. All of these attempt to exploit circuits of lim-
ited coherence to obtain computational advantage. However,
variational approaches often cannot offer theoretical perfor-
mance guarantees, as discussed in Refs. [12,13].

Consider instead a setting where we are given a quantum
algorithm with guaranteed advantage for a certain compu-
tational problem, but the available hardware is too noisy to
execute the algorithm with a reasonable fidelity. We would
need to limit the circuit depths to values much shorter than
the ones prescribed by the original algorithm to prevent errors
from dominating the calculations. Is it still possible to guar-
antee some quantum advantage? We may phrase this question
more precisely. Say we are faced with a computational prob-
lem f that can be solved by a classical computer in time
C(f), and we know a quantum algorithm that solves f with
complexity Q(f) [Q(f) < C(f)] by running quantum circuits

*Corresponding author: miguel.murca@tecnico.ulisboa.pt

of depth D; what is the best we can do if we are only permitted
to run quantum circuits up to a depth D′ smaller than D? The
expectation is that the best strategy yields an algorithm with
a complexity between C(f) and Q(f). We believe that under-
standing this question may contribute to finding practical but
provable advantages in near-term quantum computers.

For oracular problems, the notion of limited coherence is
captured by the hybrid query (or decision tree) complexity
Q(f ; D), introduced by Sun and Zheng [14]. In this set-
ting, only the input accesses (or queries) contribute to the
complexity count, while the intermediate computations are
free. Q(f ; D) is defined as the minimum number of queries
required to solve f when limited to running quantum cir-
cuits of depth D. That is, we can only perform D queries
before being forced to measure the state of the circuit and
restart it.

It is known that quantum decision trees are strictly more
powerful than hybrid decision trees, which are strictly more
powerful than classical decision trees. Concretely, there is a
problem f for which C(f) and Q[f , O(1)] are (super) expo-
nentially separated [15], and similarly there is a problem f for
which Q[f , O(1)] and Q(f) are exponentially separated [14].
There are also problems f that exhibit a continuous trade-
off between speedup and circuit depth [16], i.e., Q(f ; D) <

Q(f ; D + 1) for every D between 1 and Q(f).
While theoretically useful, as illustrated by these sep-

arations between quantum, classical, and hybrid query
complexity, it should be noted that an advantage under
the query model does not directly translate to an advan-
tage in circuit depth. Nevertheless, an upper bound for the
query model usually implies an upper bound for the gate

2469-9926/2024/109(2)/022412(13) 022412-1 ©2024 American Physical Society

https://orcid.org/0000-0003-0651-7847
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.022412&domain=pdf&date_stamp=2024-02-09
https://doi.org/10.1103/PhysRevA.109.022412

MURÇA, MAGANO, AND OMAR PHYSICAL REVIEW A 109, 022412 (2024)

FIG. 1. Diagrammatic representation of the procedures of parallelization (procedure 1) and interpolation (procedure 2), as defined and
exemplified in this paper. For both procedures, the overall goal is to carry out a quantum algorithm (as described by some unitary U) for some
input X to calculate a property f of X , as shown in the box to the left. However, this unitary may require a prohibitive depth (modeled by us as
a prohibitive amount of coherent quantum queries). In the case of parallelization (procedure 1), this is dealt with by identifying independent,
smaller instances of the same problem that can be dealt with within the query constraints; in other words, by partitioning the input appropriately
into subproblems. Interpolation (procedure 2) involves, instead, considering multiple repetitions of some unitary (or sequence of unitaries) that
require, individually, less coherent queries, but that collectively yield the same information as a single run of U . For both of these approaches,
breaking up the original algorithm may come at a cost of more overall queries—indeed, we expect that this will be the case for most algorithms.
We show that no method is strictly better than the other, and that the best choice depends on the problem at hand.

model. For example, in the context of quantum singular value
transformations (QSVTs) [17], discussed in detail in Sec. II B,
we can block-encode an efficiently row-accessible sparse ma-
trix with O[polylog(n)] elementary gates [18], meaning that
the corresponding upper bounds for the query and gate models
differ only in polylogarithmic factors. Given this, and the
theoretical tools available to deal with query complexity, we
pose that the point of view of query complexity is a good first
step to rigorously understanding quantum-classical hybrid al-
gorithms. This is in similarity to what was historically done
for fully quantum algorithms, where the Deutsch-Jozsa algo-
rithm [19] first separated quantum and classical algorithms
in the query model, before proposals like Shor’s algorithm
[20] provided a tentative absolute separation. Nonetheless,
one must remember, when comparing in the query model, for
example, QSVT-based algorithms with algorithms in a differ-
ent framework, that the caveats of query vs time complexity
apply.

Regardless, and despite the aforementioned results in hy-
brid query complexity, and knowledge of quantum algorithms
with (time complexity) advantage, it is nonetheless not ob-
vious how to, in general, optimally break up a quantum
algorithm into circuits of smaller sizes. This problem has
been tackled: For example, when given a quantum circuit
that is too deep, Pérez-Salinas et al. [21] propose a heuristic
algorithm where one performs intermediate measurements in
a parametrized basis, as given by a shallow variational circuit,
optimized to minimize the effect of measuring and restarting
the quantum operation. But, the expressiveness of the shallow
circuit determining the measurement basis and the difficulty
of minimizing the cost function may limit the success of this
approach, and theoretical guarantees are again lost.

In this paper, we identify and discuss two general strategies
with theoretical guarantees to limit the number of queries

performed coherently in an algorithm to some specified value
D. In other words, we discuss two methods to deal with limits
on the allowed query depth, modeling the more practical case
of limits in circuit depth. We refer to these two methods as
“parallelization” and “interpolation.”

Parallelization applies when a problem can be broken down
into a number of smaller, independent subproblems, such that
the algorithm that solves these subproblems fits the permitted
query limits. In contrast, with interpolation the entire problem
is tackled at each circuit run. We show that interpolation
applies whenever there is a trade-off between the information
content of the measurement and the query depth of the corre-
sponding circuit. In these cases, we may compensate for the
information loss caused by shortening the circuit depth with
repeated runs of the shorter circuit. Intuitively, we can say
that interpolation methods break up the unitary that solves the
problem instead of breaking up the problem itself. See Fig. 1
for an illustration of these notions.

To the best of our knowledge, neither of these methods
had been explicitly identified and compared side by side, even
though several works that fit into these labels can be found
in the literature. For example, parallelization approaches are
present in Refs. [22,23], while Refs. [16,24–26] describe
interpolation methods. We more finely characterize each of
the methods in Secs. III A (parallelization) and III B (inter-
polation), further discussing how the above cited methods
in the literature may fit into these concepts. Note that our
proposed notions of parallelization and interpolation are not
meant to be new methods improving over the cited methods.
We furthermore do not provide a general statement on which
method is the best for any given problem. Rather, we are
seeking to identify two common approaches to breaking up
quantum algorithms into multiple rounds of limited quantum
computation (here, limited in the number of queries), and

022412-2

TWO METHODS FOR BREAKING DOWN A QUANTUM … PHYSICAL REVIEW A 109, 022412 (2024)

provide a unified description and distinction of these methods.
We also rule out the possibility that either method is strictly
better than the other.

We illustrate these methods with two well-known prob-
lems: The k-threshold function and perfectly balanced NAND
trees. These problems are known to exhibit quantum speed-
ups (see Refs. [27] and [2,28,29]), but, to the best of our
knowledge, neither has been discussed in the context of a
quantum-classical hybrid computing model. Both problems
are amenable to both parallelization and interpolation. We
show that for the k-threshold function parallelization of-
fers the best performance (query wise), while for evaluating
perfectly balanced NAND trees the interpolation method is
the most efficient (idem). This reinforces the relevance of
the distinction between parallelization and interpolation, and
demonstrates that no technique is a priori better than the other,
as the best option depends on the problem at hand.

II. PRELIMINARIES

A. Hybrid query model

We will be working mostly within the query model of
quantum computing. Here, we quickly review the main
concepts, referring to Ambainis [30] for a more in-depth
discussion.

The quantum query complexity model, a generalization
of decision tree complexity [31], is widely used to study
the power of quantum computers. On one hand, it captures
the important features of most quantum algorithms, including
search [32], period finding [20], and element distinctness [33].
On the other hand, it is simple enough to make the proof of
lower bounds attainable [27,34].

In the query model, the goal is to compute a Boolean
function f (x1, . . . , xN) of variables xi ∈ {0, 1}. The function
can be total (defined on {0, 1}N) or partial (defined on a subset
of {0, 1}N). We only get information about the input variables
by querying a black-box quantum operator O acting as

O|i〉|b〉 = |i〉|b ⊕ xi〉 (1)

for every b ∈ {0, 1} and i ∈ {0, 1}N . A quantum query al-
gorithm is specified by a set of input-independent unitaries
U0,U1, . . . ,UT . The algorithm consists of performing the
transformation

UT OUT −1, . . . ,U2 OU1 OU0|0〉 (2)

and measuring the result, which is then converted into the
answer of the problem according to a predefined rule. In the
query model, the algorithm’s complexity increases with each
query, while the intermediate computations are free. That is,
the complexity of the algorithm corresponding to transforma-
tion (2) is T , independent of how the unitaries Ui are chosen.

We say that a quantum algorithm computes f with bounded
error if, for all x ∈ {0, 1}N , the answer of the algorithm agrees
with f (x) with probability at least 2/3, where the probability
is over the randomness of the algorithm’s measuring pro-
cess. The minimum query complexity of any bounded-error
algorithm computing f is the quantum (bounded-error) com-
plexity of f , denoted as Q(f).

The hybrid query model introduced by Sun and Zheng [14]
captures the idea of restricted-depth computation in an orac-

ular setting. Hybrid algorithms are in direct correspondence
with hybrid decision trees. A hybrid decision tree is similar
to a (classical) decision tree, but the decision at each node is
determined by the output of a quantum algorithm with query
complexity no more than a value D, which we refer to as the
depth of the hybrid algorithm. The hybrid algorithm’s answer
is the output of the algorithm at the leaf node. More plainly, a
hybrid algorithm works by running and measuring sequences
of circuits like (2) with T � D, using the intermediate mea-
surements to decide what quantum circuit to run next.

A hybrid algorithm computes f with bounded error if, for
all x ∈ {0, 1}N , the answer of the algorithm agrees with f (x)
with probability at least 2/3, where the probability is over
the randomness of the internal measurements. The complexity
of a path in a hybrid tree is the sum of the complexities of
the algorithms associated with each node in the path. The
complexity of a hybrid algorithm that computes a function f
is the maximal complexity of any path that connects the root
and a leaf, that is, it is the total number of queries needed to
evaluate f in the worst case. The minimum query complexity
of any bounded-error hybrid algorithm computing f is the
hybrid (bounded-error) complexity of f , denoted as Q(f ; D).

B. Quantum singular value transformations

In this paper we make extensive use of QSVTs [17,18,35].
As a generalization of the work on quantum signal processing
[36], QSVTs have provided a unifying description of several
algorithms, including amplitude estimation, quantum simula-
tion, and quantum methods for linear systems.

By the singular value decomposition theorem, an arbitrary
matrix A of rank r can be written as

A =
r∑

i=1

σi|wk〉〈vk|, (3)

where {wk}k and {vk}k are orthogonal sets (known as the left
and right singular values of A, respectively) and {σk}k are
positive real numbers (known as the singular values of A). For
functions P : R → C, we call

P(SV)(A) :=
r∑

i=1

P(σi)|wk〉〈vk| (4)

a singular value transformation of A.
When considering performing such transformations on ar-

bitrary matrices with quantum computers, we are immediately
faced with the difficulty that quantum states evolve according
to unitary transformations. The introduction of block encod-
ings overcomes this apparent limitation [37]. Let � and �̃ be
orthogonal projectors and U be a unitary; we say that �, �̃,
and U form a block encoding of the operator A if

A = �̃U�. (5)

Based on this concept, the main theorem of QSVTs can be
phrased as follows.

Theorem 1 (QSVTs [17]). Let �, �̃, and U be a block
encoding of a matrix A, and let P : [−1, 1] → [−1, 1] be
a polynomial of degree d . Then, we can implement a uni-
tary UP such that �, �̃, and UP form a block encoding of

022412-3

MURÇA, MAGANO, AND OMAR PHYSICAL REVIEW A 109, 022412 (2024)

P(SV)(A) using O(d) calls to U , U † and �/�̃-controlled-NOT
operations [38].

A transformation that will be particularly useful for us is
the step (or Heaviside) function,

σ �→
{

1, if σ � μ

0, if σ < μ
, (6)

for some μ ∈ [−1, 1]. References [17,39] show that we can
approximate this transformation up to arbitrary accuracy by a
polynomial approximation of the error function, defined as

erf (x) := 2√
π

∫ x

0
e−t2

dt . (7)

The result is stated below.
Theorem 2 (Polynomial approximation of step function

[17]). There is a polynomial Pδ,η,μ(λ) : [−1, 1] → [−1, 1] of
degree

O

[
1

δ
ln

(
1

η

)]
(8)

satisfying

|Pδ,η,μ(σ)| � η, ∀σ ∈ [−1, μ − δ] (9)

Pδ,η,μ(σ) � 1 − η, ∀σ ∈ [μ + δ, 1]. (10)

We will also be interested in performing a step transforma-
tion on the modulus of the singular values (also known as a
window function due to the shape of its plot),

σ →
{

1, if |σ | � μ

0, if |σ | > μ
. (11)

Noting that Pδ,η,−μ − Pδ,η,μ is a polynomial with the same
degree as Pδ,η,μ, we immediately derive the following.

Corollary 1 (Polynomial approximation of window func-
tion). There is a polynomial P′

δ,η,μ(λ) : [−1, 1] → [−1, 1] of
degree

O

[
1

δ
ln

(
1

η

)]
(12)

satisfying

|P′
δ,η,μ(σ)| � η, ∀σ ∈ [−1,−μ − δ] ∪ [μ + δ, 1] (13)

P′
δ,η,μ(σ) � 1 − η, ∀σ ∈ [−μ + δ, μ − δ]. (14)

Combining Theorems 1 and 2, we find a method to distin-
guish the singular values of a block-encoded matrix that are
above or below a given threshold. Similarly, from Theorem 1
and Corollary 1 we can distinguish the singular values of a
block-encoded matrix whose modulus are above or below a
given threshold.

III. TWO APPROACHES TO RESTRICTED
QUERY-DEPTH COMPUTATION

A. Parallelization

In many cases the problem at hand can be broken down
into a number of smaller, independent subproblems. As an
example, consider the problem of computing the OR function

on N bits. We can partition the domain into p subdomains of
size approximately N/p. If for any of those subdomains there
is an index i for which xi = 1, then we return 1; otherwise the
answer is 0. In other words, the problem is reduced to evaluat-
ing p OR function on N/p bits. With Grover’s algorithm [32]
we can evaluate each subdomain with O(

√
N/p) queries. In

total, this strategy has a query complexity of

O(
√

pN). (15)

If we are limited to circuits of query depth D, we set p =
O(N/D2), finding that

Q(OR; D) = O

(
N

D
+

√
N

)
. (16)

By Corollary 1.5 of Sun and Zheng [14], this is optimal.
We say that the algorithms that employ this kind of

strategy—breaking the problem into smaller, independent
problems that fit the permitted query depth—fall into the
category of parallelization methods.

Note that this kind of procedure does not presume multiple
quantum processors operating at the same time, even though
it is amenable to it. The important point is that the different
subproblems considered are independent and may be treated
as such. This should be contrasted with the notion of parallel
quantum algorithms as defined by Jeffery et al. [40], where a
number of queries are realized at the same time (in parallel),
but by a number of quantum registers that may be entan-
gled with each other. This requires fully coherent operation,
preventing a trade-off of resources. For our notion of paral-
lelization, the quantum registers may not be entangled with
each other, as, in principle, every round could be performed
in series, with the same processor, halting and measuring
between each round.

Arguably, parallelization as described above is the most
natural approach to breaking up a quantum algorithm into in-
dependent circuits of lower quantum query depth, since there
is an exploitation of the structure of the problem and its input
to produce multiple problems, individually fitting the imposed
constraints. One example of parallelization within the query
model is Zalka [22], containing the OR function discussed
above. Critically, Zalka performs parallelization “by assigning
different parts of the search space to independent quantum
computers.” Another example is Grover and Radhakrishnan
[23], who generalize the approach of Zalka and investigate the
results of searching for marked elements over many copies of
a database. Like Zalka, the action of the parallel processors is
considered independent, and to each processor is given a copy
of the database. Departing from the query model, in literature
concerned with near-term quantum computing, where circuit
depth limitation is a main concern, we again find proposals
that divide a large problem into independent smaller instances
by exploiting the structure of the input. For example, in the
variational quantum eigensolver proposal [3], the (more de-
manding) problem of a phase estimation is replaced by the
evaluation of multiple expectation values of observables that
are easily implemented as measurements, by using the fact
that the Hamiltonians under study are local. We may find
generalizations of this approach, now exploiting, for example,
the sparsity of the Hamiltonians [41].

022412-4

TWO METHODS FOR BREAKING DOWN A QUANTUM … PHYSICAL REVIEW A 109, 022412 (2024)

B. Interpolation

Contrary to parallelization, interpolation methods do not
distribute the problem into different subproblems. Instead, at
each run the entire problem is tackled, but this is done over
several quantum circuit runs. Since the circuit query depth
is limited, each circuit measurement can only yield partial
information about the answer to the problem; the definitive
answer is recovered by repeating the computation multiple
times.

We illustrate this approach with an information-theoretic
argument (similar to that of Wang et al. [24]). Say that we
have a quantum routine A that prepares the state

|0n〉 A−→
√

1 − p|ψ0〉 + √
p|ψ1〉 (17)

for some unknown p ∈ [0, 1], and assume that we can ef-
ficiently distinguish between |ψ0〉 and |ψ1〉. The goal is to
estimate p, noting that many query problems can be reduced
to estimating an amplitude. With Grover’s iterator [32], we
can prepare the state

cos[(1 + 2k)θ]|ψ0〉 + sin[(1 + 2k)θ]|ψ1〉, (18)

where θ = arcsin(
√

p), with O(k) calls to A. Now suppose
that we prepare and measure the state (18) in the {|ψ0〉, |ψ1〉}
basis l times, recording the outcomes. The Fisher information
associated with this experiment is

I (π) := l
∑
i=0,1

1

P [|ψi〉|π]

(
∂

∂π
P [|ψi〉|π]

)2

= l (1 + 2k)2

π (1 − π)
, (19)

where P [|ψi〉|π] is the probability of observing outcome |ψi〉
in a single trial assuming that p = π . Expression (19) reveals
that the measurement is more informative the larger the value
of k (in particular, that it grows quadratically with k, justifying
the quadratic speedup of Grover’s algorithm).

References [16,25,26] have suggested different schemes to
harness the enhanced information of deeper circuits. Outside
the query model, circuit cutting [42,43] is also an example
of a scheme to approximate a large quantum circuit by in-
dependent runs of multiple smaller quantum circuits, with a
resulting classical overhead, growing as the quantum circuit
is more broken up. Here, we adopt the query model, as has
been done so far, and take the perspective put forward by
Magano and Murça [26], according to which QSVTs consti-
tute a natural framework for interpolation methods. The idea
is to trade off the quality of the polynomial approximation to
a target function by statistical sampling. In QSVT, a greater
number of coherent quantum queries directly relates to the
ability to realize a polynomial transformation over a matrix
of larger degree. The scheme of Ref. [26] compensates for
the usage of polynomials of lower degree (corresponding to a
smaller number of coherent queries in the circuit) by running
the quantum circuits more times. The result is a continuous
trade-off between circuit depth and quantum speedup, without
ever needing to identify independent subproblems.

In the subsequent sections, we consider both approaches
(interpolation and parallelization) to achieve computation

with query advantage, in a setting where the number of co-
herent quantum queries allowed are limited. We will illustrate
their distinction by presenting examples where either one is
advantageous.

IV. SOMETIMES PARALLELIZATION IS BETTER:
THRESHOLD FUNCTION

Consider the k-threshold function, a total symmetric
Boolean function defined as follows:

Thresholdk (x1, . . . , xN) =
{

0 if
∑N

i=1 xi � k
1 otherwise

. (20)

This function admits a quantum query speedup: Whereas in
the classical case �(N) queries are required (easily concluded
by an adversarial argument), the quantum query complexity
is �[

√
N min(k, N − k)] (as follows from Beals et al. [27]),

resulting in the aforementioned quadratic speed-up when
min(k, N − k) = O(1), and no speedup when min(k, N −
k) = �(N). For simplicity, we assume from now on that k �
N/2.

We approach the problem from the perspective of QSVTs.
This is a departure from the original proof of Beals et al.
[27], where the problem of evaluating any totally symmetric
Boolean function is reduced to quantum counting. Arguably,
QSVTs permit tackling the k-threshold problem more directly,
while also offering a more natural route towards interpolation.
We show in Appendix B that our approach can also be gener-
alized to any totally symmetric Boolean function, although in
that case the proof resembles more closely that of Beals et al.
[27].

We start by making the (trivial) observation that the
k-threshold function can be written as a function of the Ham-
ming weight of the input, which we denote by |x|. The first
step of our algorithm will be to block-encode

√|x|/N (or,
more technically, to block-encode the 1 × 1 matrix whose
only entry is

√|x|/N). Then, we will perform a QSVT on this
value to prepare the desired function of |x|.

Consider the unitary transformation

(21)

where n = log2(N)—assuming, without loss of generality,
that N is exactly a power of two—and O is our query operator
(defined in Sec. II A). We have that

U |0n+1〉 =
√

1

N

⎛
⎝ ∑

i: xi=0

|i〉|0〉 +
∑

i: xi=1

|i〉|1〉
⎞
⎠

=
√

1 − |X |
N

|φ0〉|0〉 +
√

|X |
N

|φ1〉|1〉, (22)

where |φ0〉 and |φ1〉 are normalized states. Choosing

� = |0n+1〉〈0n+1| and �̃ = I2n ⊗ |1〉〈1|, (23)

we find that

�̃U� =
√

|x|
N

. (24)

022412-5

MURÇA, MAGANO, AND OMAR PHYSICAL REVIEW A 109, 022412 (2024)

That is, �̃, �, and U form a block encoding of
√|x|/N .

We would like to distinguish between cases where
√|x|/N

is smaller than or equal to
√

k/N and those where it is larger
than

√
k/N . From the results on QSVTs (Theorems 1 and 2)

we can perform the transformation

|0n+1〉 → Pδ,η,μ

(√
|x|
N

)
|φ1〉|1〉 + |⊥1〉, (25)

where |⊥1〉 is such that �̃|⊥1〉 = 0, using O[(1/δ) ln(1/η)]
calls to U . As U only calls the query operator O once, the
operation (25) only involves O[(1/δ) ln(1/η)] queries. We
choose the parameters as

η = 1/8, (26)

δ = 1

2
(
√

(k + 1)/N −
√

k/N) = �

(
1√
kN

)
, (27)

μ = 1
2 (
√

(k + 1)/N +
√

k/N), (28)

in which case the operation (25) consumes O(
√

kN) queries.
For the derivation of Eq. (27), see Appendix C. The final
step is simply to measure the last qubit of the resulting state,
outputting 0 if we measure |0〉 and outputting 1 if we measure
|1〉. To verify that this yields the desired answer, consider the
two possible scenarios:

(i) Thresholdk (x1, . . . , xN) = 0. Then,
√|x|/N �√|k|/N , which means that Pδ,η,μ(

√|x|/N) � η = 1/8.
So, the probability of measuring the last qubit in state |1〉 is
less than 1/3.

(ii) Thresholdk (x1, . . . , xN) = 1. Then,
√|x|/N >√|k|/N , which means that Pδ,η,μ(

√|x|/N) � 1 − η = 7/8.
So, the probability of measuring the last qubit in state |1〉 is
greater than 2/3.

If instead k > N/2, the algorithm does not change signif-
icantly: Denote the logical negation of x by x̄, and note that
Thresholdk (x1, . . . , xN) = 1 − Thresholdk (x̄1, . . . , x̄N). It fol-
lows that we just need to evaluate the threshold function on x̄,
whose Hamming weight is |x̄| = N − |x|. Looking at expres-
sion (22), we see that U already provides a block encoding
of the

√|x̄|/N : We just need to replace �̃ with I2n ⊗ |0〉〈0|.
Everything else follows as before.

We now proceed to adapt this algorithm to a limitation on
the number of allowed coherent quantum queries, according
to the schemes laid out in Secs. III B and III A.

A. Interpolation

Consider the approach described in Sec. III B. Recall that
the idea is now to implement, with QSVT, a rougher poly-
nomial approximation to a target function. Considering a
rougher approximation will allow us to satisfy the coherent
quantum query limitations, and will be compensated for by
performing a larger number of measurements.

Concretely, the trade-off between circuit depth and repeti-
tions of the circuit can be controlled by the parameter η, which
we had previously fixed to be O(1) [cf. (26)]. Now we choose

η = �(2−δD) (29)

in such a way that the circuit depth associated with the trans-
formation by Pδ,η,μ is upper bounded by D. If we measure the

last qubit of state (25), the probability that we see |1〉 is

� η2, if Thresholdk (x) = 0, or (30)

� (1 − η)2, if Thresholdk (x) = 1. (31)

So, the problem is reduced to distinguishing the bias of a
Bernoulli distribution with precision 1 − 2η. It is well known
that �[1/(1 − η)2] samples are sufficient (and necessary) to
achieve such a precision with bounded-error probability. That
is, we prepare and measure state (25)

O

(
1

(1 − η)2

)
Eq. (29)= O

(
1

[1 − �(2−δD)]2

)
δD=O(1)= O

(
1

(δD)2

)
(32)

times. The total number of queries to O is

O

⎛
⎜⎜⎜⎝ 1

(1 − η)2︸ ︷︷ ︸
O(1/(δD)2)

× 1

δ︸︷︷︸
O(1/δ)

× ln
1

η︸︷︷︸
O(δD)

⎞
⎟⎟⎟⎠ = O

(
1

δ2D

)
. (33)

Replacing the definition of (27) in Eq. (33), and by means
of the calculations given in Appendix C, we conclude that

Q(Thresholdk; D) = O

(
kN

D

)
if D = O(

√
kN). (34)

Based on the proof above, it might seem that also for
D = �(

√
kN), the query complexity would be smaller than

O(
√

kN). But it is well known, as stated, that the quantum
query complexity for the problem of calculating a threshold
function is Q(Thresholdk) = �[

√
N min(k, N − k)]. Note the

condition in Eq. (32) that δD = O(1). If this is not the case,
as happens for D = �(

√
kN), then the higher power terms of

(δD) will dominate in the expansion of 2−δD, and the conclu-
sion of Eq. (34) is no longer valid. Thus, the query complexity
is “saturated” at O(

√
kN), at which point the known amplitude

estimation approach is optimal. We conclude

Q(ThresholdK ; D) = O

(
kN

D
+

√
kN

)
. (35)

B. Parallelization

The approach of Ref. [26] was originally developed in the
context of phase estimation. In phase estimation the parameter
φ to be estimated is accessed via a black-box oracle that
changes the phase of a particular state by an angle propor-
tional to φ. In that case, the interpolation is likely optimal.
However, the threshold problem has more structure than phase
estimation. Indeed, we can choose to query only a subset of
the input variables, in which case the block encoding holds
information about the Hamming weight of that subset of input
variables, whereas we cannot choose to query a “fractional
phase.”

It is the parallelization approach that yields the optimal
algorithm for evaluating the threshold function in a restricted
query-depth setting. To show this, we follow a procedure
similar to that of Grover and Radhakrishnan [23]. First,
we partition the set {1, 2, . . . , N} into p disjoint subsets

022412-6

TWO METHODS FOR BREAKING DOWN A QUANTUM … PHYSICAL REVIEW A 109, 022412 (2024)

V1, . . . ,Vp of size N/p (to simplify the notation, we assume
that N/p is an integer). Then, for each subset Vi, we prepare
the uniform superposition

√
p/N

∑
j∈Vi

| j〉|0〉 and apply to it
the query operator O. The resulting state is√

p|x//Vi|
N

|φ′
1〉|1〉 +

√
1 − p|x//Vi|

N
|φ′

0〉|0〉, (36)

where |φ′
0〉, |φ′

1〉 are normalized states and |x//Vi| := |{x j ∈
x : j ∈ Vi}|. If we run the amplitude estimation algorithm of
Brassard et al. [44] for D steps, we get an estimate of the
amplitude

√
p|x//Vi|/N up to precision

O

(
1

D

√
p|x//Vi|

N

)
(37)

with a constant probability. To lower the probability that the
algorithm fails to 1/p, we repeat the amplitude amplification
routine O(ln p) times; this guarantees a bounded probability
that all the amplitude estimations succeed in returning a pre-
cision as in (37). We set

D =

⎧⎪⎨
⎪⎩

O
(√

N ln p
p

)
if k � p ln p

O
(√

Nk
p

)
if k � p ln p.

(38)

Then, for every subset Vi, we are estimating |x//Vi| with
precision

εi =

⎧⎪⎨
⎪⎩

O
(√

|x//Vi|
ln p

)
if k � p ln p

O
(√

|x//Vi|
k/p

)
if k � p ln p.

(39)

We estimate |x| as the sum of our estimates for |x//Vi|. If it
exceeds k, we output 1, and otherwise we output 0.

The actual behavior of the algorithm depends on how the
1-input variables are distributed among the subsets V1, . . . ,Vp.
In the worst-case scenario, all the ones are concentrated in a
single bin. However, this scenario is extremely unlikely. Raab
and Steger’s “balls into bins” theorem [45] states that, with
probability greater than 2/3,

max
i

|x//Vi| =
⎧⎨
⎩

O(ln p) if |x| � p ln p

O
(

|x|
p

)
if |x| � p ln p.

(40)

Using this result, we show in Appendix A that there is
a choice for the constant factors in (38) that guarantees that
our estimate for |x| is larger than k if Thresholdk (x) = 1 and
smaller than or equal to k if Thresholdk (x) = 0.

Putting everything together, we conclude that

Q(Thresholdk; D) = O

[
N

D
ln2

(
N

D

)
+

√
Nk ln k

]
. (41)

Comparing with the upper bound that we derived with the
interpolation method [Eq. (35)], we see that parallelization
offers the best performance. Indeed, for short circuit query
depths the complexity of the parallelization method is smaller
by a factor of k (up to logarithmic factors).

V. SOMETIMES INTERPOLATION IS BETTER:
NAND TREES

We now apply the interpolation and parallelization tech-
niques for the problem of evaluating a balanced binary NAND
formula. This problem has been widely studied in the litera-
ture: Farhi et al. [46] proposed a quantum walk algorithm that
runs in O(N1/2) time with an unconventional, continuous-time
query model. Later, Childs et al. [28] understood that this
algorithm could be translated into the discrete query model
(as presented in Sec. II A) with just an O(No(1)) overhead.
Finally, Ambainis et al. [29] presented an optimal O(N1/2)-
time algorithm on the conventional query model. We adapt
their approach to a restricted query-depth setting.

Let � be a Boolean function on N inputs x1, . . . , xN ex-
pressed with NAND gates. We treat each occurrence of a
variable separately, in that N is counting with the variables’
multiplicity. Equivalently, we could be considering a formula
expressed in terms of the gate set {AND, OR, NOT}. The
input is accessed via the conventional query operator O as
defined in Sec. II A.

The formula � can be represented by a tree, where the
internal nodes are NAND gates acting on their children and
the leafs hold the input variables. Here, we restrict our atten-
tion to formulas that are represented by perfectly balanced
binary trees. We note that Ambainis et al.’s algorithm can
be applied to general formulas after a proper rebalancing of
the corresponding tree [47,48]. Similarly, our arguments could
also be extended to the general case.

Ambainis et al. [29] prove that (after efficient classical
preprocessing) �(x) can be evaluated with bounded-error
probability using

√
N queries to O. The main idea is to build a

weighted graph whose adjacency matrix, denoted as H , has a
spectrum that relates to the value of �(x). Then, one simulates
a discrete-time quantum walk on this graph. By applying a
phase estimation on this process for a special starting state,
one is able to infer the value of �(x).

We present a succinct definition of H , referring the reader
to the original paper [29] for a more detailed explanation. We
construct a symmetric weighted graph from the formula’s tree,
attaching to the root node (call it r) a tail of two nodes, r′ and
r′′. For each node v, let sv be the number of variables of the
subformula rooted at v. The weights on the graph are defined
in the following manner. If p is the parent of a node v, then

〈v|H |p〉 :=
(

sv

sp

)1/4

, (42)

with two exceptions:
(1) if v is a leaf reading 1, then 〈v|H |p〉 := 0 [effectively

removing the edge (v, p) from the graph];
(2) 〈r′|H |r′′〉 := 1/(

√
2N1/4).

The spectrum of H has the following properties [[29],
Theorem 2]:

(1) if �(x) = 0, then there is a zero-eigenvalue eigenstate
|g〉 of H |〈r′′|g| � 1/

√
2;

(2) if �(x) = 1, then every eigenstate with support on |r′′〉
has eigenvalue at least 1/(18

√
2N) in absolute value.

That is, we can evaluate � by determining whether |r′′〉 has
a large zero-eigenvalue component.

022412-7

MURÇA, MAGANO, AND OMAR PHYSICAL REVIEW A 109, 022412 (2024)

A. Interpolation

Starting on the graph construction of Ambainis et al. [29],
we present a different, QSVT-based approach to infer the
value of �(x), circumventing the quantum walk and phase
estimation steps. With the aforementioned principle of trading
off lower degree polynomial approximations by longer statis-
tical sampling, this will allow us to derive an interpolating
algorithm for evaluating general NAND trees.

We begin by constructing a block encoding of H . As H
has a bounded degree and the weights of its edges are upper
bounded by 1, we can use standard block-encoding techniques
for sparse matrices [18,37]. Namely, for projectors

�, �̃ = |0m〉〈0m|, (43)

with m = O(ln N), there is a unitary UH that block-encodes
H/3 with O(1) calls to O. By definition, the unitary UH is
such that, for an arbitrary state |ψ〉,

UH |0m〉|ψ〉 = |0m〉
(

H

3
|ψ〉
)

+ |⊥〉, (44)

where |⊥〉 is orthogonal to |0m〉.
We would like to distinguish between the eigenstates of

H/3 whose eigenvalue is close to zero and those whose eigen-
value is larger than

1

3
× 1

18
√

2N
=: δ (45)

in absolute value. We treat this as a QSVT problem, as dis-
cussed in Sec. II B. Indeed, let {λi, |vi〉}i be an eigenvalue
decomposition of H/3 and |ψ〉 = ∑

i αi|vi〉 be an arbitrary
state. From Theorem 1 and Corollary 1, we can perform the
transformation

|0m〉|ψ〉 =|0m〉
(∑

i

αi|vi〉
)

→|0m〉
(∑

i

P′
δ,η,μ(λi)αi|vi〉

)
+ |⊥〉, (46)

where P′
δ,η,μ is an approximation to the window function (as

defined in Corollary 1), with O[(1/δ) ln(1/η)] queries to O.
We now have all the necessary tools to solve the problem.

We start by preparing the state |r′′〉 (this does not involve any
oracle queries). We then transform |r′′〉 as in (46). We measure
the m first qubits (i.e., the block-encoding register) of the
resulting state, assigning an outcome “yes” if we observe |0m〉
and an outcome “no” otherwise. From the spectral properties
of H we known that

P [“yes”]

{
� (1−η)2

2 , if �(x) = 0
� η2, if �(x) = 1

. (47)

So, we need to determine the bias of a Bernoulli distribution
with precision no larger than (1 − η)/4. It is well known
that O[1/(1 − η)2] samples are sufficient (and necessary) to
achieve such a precision with bounded-error probability. In
summary, we can evaluate �(x) with bounded-error probabil-
ity by running O[(1/δ) ln(1/η)]-deep circuits O[1/(1 − η)2]

times, amounting to a total of

O

[
1

(1 − η)2
× 1

δ
ln

(
1

η

)]
(48)

queries to O.
We have purposely left η as a free parameter in our algo-

rithm. We get the best possible complexity by choosing η =
1 − �(1), in which case the algorithm’s query complexity is
[using definition (45)]

O

(
1

δ

)
= O(

√
N), (49)

recovering the scaling of Ambainis et al. [29]. But this choice
of η requires running circuits of (query) depth also in O(

√
N).

Suppose now that we want to limit the circuit depth to some
maximum value D. We can run the same algorithm, setting
this time η to be

η = O(2−δD). (50)

Replacing into expression (48), we find that

Q(�; D) = O

(
N

D
+

√
N

)
. (51)

B. Parallelization

The problem of evaluating NAND trees is also amenable
to parallelization. The key observation is that, if for any given
level of the tree we know the logical value of all the nodes
at that level, then we can infer �(x) without performing any
more queries to the input. Therefore, we solve the problem if,
for every node v at that level, we run the quantum algorithm
for evaluating the NAND tree rooted at v.

Say that we want to limit to at most D coherent calls
to the query. We partition the input variables into O(N/D2)
subsets of O(D2) variables each. To each subset of variables
corresponds a subtree of the total tree. For each such sub-
tree, we evaluate the logical value of the root node with an
error probability bounded by D2/N , which we can do with
O[

√
D2 ln(N/D2)] queries to O. Since we repeat this for all

subtrees, the hybrid query complexity becomes

Q(�; D) = O

[
N

D
ln

(
N

D

)
+

√
N

]
. (52)

We find that both the interpolation and parallelization
methods can be applied for evaluating balanced binary NAND
trees. Although the resulting complexities are close, the par-
allelization approach comes with an extra ln(N/D) factor.
This problem illustrates that there are also situations where
interpolation is advantageous over parallelization.

VI. CONCLUSIONS

In this paper, we suggest two distinct approaches for adapt-
ing a quantum algorithm to a restricted query-depth setting:
Parallelization and interpolation. An algorithm is said to be
parallelizable whenever we can split its action into smaller,
independent subproblems; and interpolatable if the loss of

022412-8

TWO METHODS FOR BREAKING DOWN A QUANTUM … PHYSICAL REVIEW A 109, 022412 (2024)

information caused by shortening the circuit query depth can
be compensated for by repeated runs of the shorter circuit.
Therefore, informally, these two methods can be understood
as either breaking up the input (for parallelization) or breaking
up the unitary procedure (for interpolation).

We argue that QSVTs closely relate to the notion of in-
terpolation, rather than parallelization. For QSVTs, a smaller
circuit query depth, and thus a smaller circuit depth, corre-
spond to a polynomial approximation to a target function of
lower degree, which needs to be compensated for by longer
statistical sampling.

We apply these approaches to two problems with known
quantum speed-ups: The k-threshold function and perfectly
balanced NAND trees. To the best of our knowledge, neither
of these problems had been studied in a hybrid, restricted
query-depth setting. For the k-threshold function, we show
that parallelization offers the best performance by a factor of
Õ(k) (in terms of query complexity). In contrast, for evaluat-
ing perfectly balanced NAND trees the interpolation method
is the most efficient, differing by a factor of O[ln(N/D)].
This way, we demonstrate that no technique (parallelization or
interpolation) is strictly better than the other—each one may
be the best option depending on the problem at hand.

This shows that, when designing a quantum-classical hy-
brid algorithm obeying certain (query) depth limitations, both
of the proposed techniques can be explored as a strategy
for maintaining some of the speedup (over a fully classical
approach) of a quantum unrestricted query-depth counterpart.
While we have ruled out that one of the two methods is
always optimal, it remains to understand whether there is a
criterion to determine which method is optimal a priori for a
given problem, which we leave as an open question. In any
case, given the close connection between (depth unrestricted)
algorithms formulated in terms of QSVTs and the interpo-
lation method, our results imply that, when searching for
hybrid quantum-classical algorithms for a particular problem,
it may be a good option to start by formulating a (depth unre-
stricted) QSVT algorithm for the problem, and then seeking to
interpolate it.

We note that we only offered an example of a problem (per-
fectly balanced NAND trees) where the interpolation beats
parallelization by a logarithmic factor. It would be interest-
ing to find a problem for which the interpolation procedure
is polynomially more efficient than the corresponding par-
allelization, to rule out the possibility that parallelization,
whenever applicable, is always optimal up to logarithmic fac-
tors. We leave the existence of such a problem as an open
question. In any case, if disregarding the logarithmic separa-
tion, we nonetheless conclude that the method of interpolation
may achieve the same performance (in the query model) as
parallelization, while exploiting a different mechanism to ful-
fil the query depth limitations.

The definitions we have provided for the terms “paral-
lelization” and “interpolation” are not strictly rigorous; they
should be seen as general strategies, rather than formal no-
tions. This does not preclude that in some situations these
classifications may not apply. As such, we expect there is
room for discussion on what other classes of methods may
exist besides the ones discussed here, and for other systematic
approaches to hybridization.

ACKNOWLEDGMENTS

We thank R. de Wolf for his comments on quantum
query lower bounds for the problem of quantum counting,
in the context of calculating the threshold function, and N.
Stamatopoulos for his comments regarding the proof of the
parallelization method for the threshold function. We also
acknowledge support from FCT – Fundação para a Ciên-
cia e a Tecnologia (Portugal), namely, through Project No.
UIDB/04540/2020, as well as from projects QuantHEP and
HQCC supported by the EU QuantERA ERA-NET Cofund in
Quantum Technologies and by FCT (QuantERA/0001/2019
and QuantERA/004/2021, respectively), and from the EU
Horizon Europe Quantum Flagship project EuRyQa (Project
No. 101070144). D.M. and M.M. acknowledge the sup-
port from FCT through scholarships 2020.04677.BD and
2021.05528.BD, respectively.

M.M. and D.M. contributed equally to this work.

APPENDIX A: THRESHOLD FUNCTION—PROOF
OF PARALLELIZATION METHOD

From Brassard et al. [44], there is a constant c such that the
error for our estimate of |x//Vi| is bounded as

εi < c

√
N |x//Vi|/p

D
. (A1)

We analyze separately the cases where Thresholdk (x) = 0
and Thresholdk (x) = 1.

If Thresholdk (x) = 0, the following possible relations be-
tween p, k, and |x| need to be considered.

(1) p ln p � |x| � k. From the result of Raab and Steger
[Eq. (40)], we know that |x//Vi| = O(|x|/p) for all i. So, by our
expression for the error (39), we see that εi = O(

√|x|/k) =
O(1).

(2) |x| � p ln p � k. Now, we know that |x//Vi| = O(ln p).
So, for all i, εi = O(

√
p ln p/k) = O(1).

(3) |x| � k � p ln p. Equation (40) ensures that |x//Vi| =
O(ln p). From the expression for the error, we see that εi =
O(

√
ln p/ ln p) = O(1).

That is, there is a choice of constants that guarantees that
εi < 1/2 for all i with bounded probability. In that case, we
estimate each |x//Vi| exactly, and so we exactly infer |x| and
consequently the value of Thresholdk (x).

If Thresholdk (x) = 1, the proof is slightly different. Again,
we consider three scenarios.

(1) p ln p � k � |x|. Equation (40) tells us that |x//Vi| =
O(|x|/p). Combining with (39), we see that there is a (con-
trollable) constant C for which

εi < C

√
|x|
k

(A2)

for all |x|, k. Unlike before, we cannot guarantee that εi is
kept below 1/2 for all |x|. But we can make sure that our
estimate for the Hamming weight is always greater than k. Let
Xj be the random variables corresponding to the estimations
of each |x//Vj |, and σ 2

j the corresponding variances. From the

022412-9

MURÇA, MAGANO, AND OMAR PHYSICAL REVIEW A 109, 022412 (2024)

Chebyshev bound,

Pr

⎡
⎣∣∣∑

j

Xj − |x|∣∣ > |x| − k

⎤
⎦ <

∣∣∣∣∣
∑

j σ j

|x| − k

∣∣∣∣∣
2

<

<

∣∣∣∣C′ p

√|x|/k

|x| − k

∣∣∣∣2 (A3)

for some constant C′. Thus, we can attain with constant prob-
ability an estimation of |x| with error within |x| − k if there
exists a constant C′ such that there exists a value |x|∗ satisfying
the following:

(i) If |x| < |x|∗, the error in the estimation of each
|x//Vj | is less than 1/2, such that the estimate of |x| is exact,

(ii) If |x| > |x|∗, then C′√|x|/k < (|x| − k)/p, bound-
ing the error probability to be constant.
Choosing |x|∗ = k + p ln p, one can check that C =

1/4(C′) satisfies the conditions above.
(2) k � p ln p � |x|. Again, for all i, |x//Vi| = O(|x|/p).

Combining this with the expression for the error (39), we get
εi = O(|x|/p ln p). The proof follows the same steps as the
p ln p � k � |x| case.

(3) k � |x| � p ln p. From Eq. (40) we know that |x//Vi| =
O(ln p) for all i. Then, εi = O(

√
ln p/ ln p) = O(1). So, in

this case we can also ensure that we estimate
∑

i |x//Vi| ex-
actly.

APPENDIX B: TOTAL NONCONSTANT SYMMETRIC
BOOLEAN FUNCTIONS

We have shown before how to interpolate the k-threshold
function based on quantum singular value transformations.
A similar interpolation scheme to the one we have shown
can actually be applied to the calculation of any symmetric
Boolean function, as we now show. Furthermore, we show
that a similar difference exists between the scaling for this
interpolation and the scaling for a parallelization procedure.

We start by reviewing an intermediate claim of Beals et al.
[27]:

Lemma 1. (Part of Theorem 4.10 of Beals et al. [27]) For
a symmetric Boolean function f , if given an algorithm that
outputs |X | if |X | < [N − �(f)]/2 or outputs “in” otherwise,
with Q queries to the oracle, immediately there is an algorithm
that computes f with Q queries to the oracle.

Proof. Let A be an algorithm as outlined in the lemma,
requiring Q queries to the oracle. By definition of �(f),
f is constant for X such that |X | ∈ {[N − �(f)]/2, [N +
�(f)]/2}. Therefore, let A′ be an algorithm that runs A, and
then

(i) If A outputs “in”, A′ outputs f {[N − �(f)]/2},
(ii) If A outputs |X |, A′ outputs f (|X |).
A′ requires only as many queries as A.
Now, departing from Beals et al.’s proof, we rephrase

the construction of an algorithm matching the description of
lemma 1 in terms of quantum singular value transformations.

We start with the following lemma of Low and Chuang
[49]:

Lemma 2. [49] For a given k ∈ R, δ ∈ [−1, 1] and ε ∈
[0, O(1)], there exists a real polynomial p(x) satisfying

|p(x)| � 1 , x ∈ [−1, 1], and

|p(x) − erf[k(x − δ)]| � ε , x ∈ [−1, 1]

with polynomial degree

deg(p) = O

⎛
⎝√(ln

1

ε

)(
k2 + ln

1

ε

)⎞⎠. (B1)

From this lemma follows the already mentioned construc-
tion for a polynomial approximation to the threshold function,
which we restate:

Corollary 2. [49] For a given δ ∈ [−1, 1], ε ∈ [0, O(1)],
η ∈ (0, 1/4), there exists a real polynomial p satisfying

|p(x)| � 1 , x ∈ [−1, 1]

|p(x) − 1| � η , x ∈ [−1, δ − ε],

|p(x)| � η , x ∈ [δ + ε, 1],

and with polynomial degree

deg(p) = O

(
1

ε
ln

1

η

)
.

To make use of these polynomial transformations, we also
recall the block encoding of the quantities of interest, which
are the same as for the k-threshold case; for unitary

and � = |0n+1〉〈0n+1|, we have that (I2n ⊗ |1〉〈1|)U� is a
block encoding of

√|X |/N , and (I2n ⊗ |0〉〈0|)U� is a block
encoding of

√
(N − |X |)/N .

Now we first determine whether the Hamming weight of
the input should produce output “in” or not, which is, es-
sentially, the task of calculating the k-threshold function with
k = [N − �(f)]/2 and with k′ = [N + �(f)]/2. As stated in
the body text, the case of threshold k′ can be reduced to
the case of threshold k calculated for the complement of the
Hamming weight N − |X |, and so we conclude that this step
requires O{2√

N[N − �(f)]} = O{√N[N − �(f)]} applica-
tions of the oracle.

In the event that we find |X | to be smaller than [N −
�(f)]/2, or larger than [N + �(f)]/2, it remains to output
the Hamming weight of X , or of X̄ , respectively. We consider
henceforth the case of |X | < [N − �(f)]/2, from which gen-
eralization is easy.

Note first that performing bisections on |X | for |X | ∈
{0, [N − �(f)]/2} corresponds to performing successive
threshold operations for thresholds k′ < [N − �(f)]/2, so,
by binary search, we have that we may find |X | with
O{√N[N − �(f)] ln2[N − �(f)]} applications of the oracle,
where one of the ln factors is due to the binary search, and
the other to error probability bounding. However, by making
direct use of lemma 2, the ln factors can be significantly
lowered. Consider the following lemma:

Lemma 3. Given the block encoding of a value z ∈
[a, b] ⊆ [−1, 1], it is possible to determine [a′, b′] ⊆ [a, b]

022412-10

TWO METHODS FOR BREAKING DOWN A QUANTUM … PHYSICAL REVIEW A 109, 022412 (2024)

such that z ∈ [a′, b′], and (b′ − a′) � (b − a)/2, with

Dround = O

(
1

b − a

)
(B2)

coherent applications of the oracle, and

Tround = O

(
1

b − a
ln

1

E

)
(B3)

total applications of the oracle, with probability of error at
most E .

Proof. Fix η ∈ O(1), for example, η = 1/8. Using QSVT,
create a block encoding of P(z), where P is the polynomial
approximating erf[k(x − δ)] up to absolute error ε (to be de-
termined), with k = 2

b−a erf-1(1 − 2η) and μ = (b − a)/2. For
a choice of σ , after O[ln(1/E)/σ 2] samples of this encoding,
one obtains an estimate for erf[k(z − μ)]2 up to precision
σ + ε2 with error probability E ; denote this estimate p̃. This
estimate implies a new window [a′, b′] for z satisfying

b′ − a′ � 1

k
{erf-1[2

√
p̃ − 1 + 2(σ + ε)]

− erf-1[2
√

p̃ − 1 − 2(σ + ε)]}, (B4)

which in turn satisfies, with our choice of k,

b′ − a′

b − a
� 2

erf-1(1 − 2η)
(σ + ε)

× max
y∈[−2,2]

(erf-1)′[2
√

p̃ − 1 + y(σ + ε)]. (B5)

Demanding that

σ + ε
!
� η/4, (B6)

we have

b′ − a′

b − a
� η

4

√
π

erf-1(1 − 2η)
e[erf-1(1−η)]2 (B7)

which, for η = 1/8, has a right-hand side of less than one half.
Since η ∈ O(1), we may choose σ ∈ O(1) and ε ∈ O(1),

satisfying the constraint (B6), and thus it follows that this
procedure requires

Mround = O

(
1

σ 2
ln

1

E

)
= O

(
ln

1

E

)
(B8)

measurements of a circuit encoding a polynomial transforma-
tion of degree [cf. Eq. (B1)]

Dround = O(k) = O

(
1

b − a

)
(B9)

or, equivalently, the same number of coherent queries. The
total number of queries is therefore

Tround = Dround Mround = O

(
ln E -1

b − a

)
(B10)

as claimed.
By repeating the procedure given in the lemma above,

we may reduce the window for
√|X |/N until this value

is unambiguous. This requires a final window of size � =
1
2 [

√
N − �(f) − √

N − �(f) − 1], which in turn requires

ln[
√

N − �(f)/�] = O(ln{√N[N − �(f)]}) rounds of appli-
cation of the lemma.

Since we wish any of these rounds to fail with probability
at most 1/3, this requires that each round fails with probability
at most 1/(3 ln{√N[N − �(f)]}).

Therefore, overall, this procedure requires

D = O(
√

N[N − �(f)]) (B11)

maximum coherent oracle calls, and a total number of oracle
calls

T = O(
√

N − �(f) ln ln{
√

N[N − �(f)]}). (B12)

Performing the interpolation now is straightforward: In-
stead of demanding the procedure from lemma 3 be repeated
until the window is so small that the Hamming weight of
X is unambiguous, we instead choose a final window size
�′ that respects the given coherent query limit. After this
limit has been reached, we “switch” to statistical sampling
until the final window size for the value of

√|X |/N is �.
This procedure therefore is split into two steps; following
an analysis analogous to the one for the unbound case, we
conclude that for some choice of �′, the first phase requires
maximum coherent query depth

Dfirst = O

(
1

�′

)
(B13)

and total query count

Tfirst = O

(
ln E -1

�′

)
. (B14)

Using the fact that (erf-1)′(x) � √
π/2, one may then con-

clude that the second phase requires corresponding

Dsecond = O

⎡
⎣ 1

�′

√
ln

(
C

�′

�

)⎤⎦ (B15)

Tsecond = O

⎡
⎣�′

�2

√
ln

(
C

�′

�

)
ln E -1

⎤
⎦, (B16)

where, again, E is the error probability, and C is a constant in
O(1).

Choosing this intermediate window size �′ to be �1−α ,
for α ∈ [0, 1], we recover complexities analogous to those
verified for α-quantum phase estimation [25,26]:

D(α) = Dfirst + Dsecond = O[�α−1
√

ln(C�−α)] (B17)

T (α) = Tfirst + Tsecond

= O[�−(1+α)
√

ln(C�−α) ln E -1]. (B18)

Using again the fact that �-1 = O{√N[N − �(f)]}, and
with considerations as to the error probability identical to
before, we finally have

D(α) = Õ({N[N − �(f)]}(1−α)/2) (B19)

T (α) = Õ({N[N − �(f)]}(1+α)/2). (B20)

022412-11

MURÇA, MAGANO, AND OMAR PHYSICAL REVIEW A 109, 022412 (2024)

APPENDIX C: PROOF OF
√

k + 1 − √
k = �(1√

k
)

We start with the lower bound:

√
k + 1 −

√
k =

√
k(k + 1) − k√

k
. (C1)

Clearly the numerator is positive and smaller than 1 for all
k = 1, . . . , N . Thus,

√
k + 1 −

√
k = O

(
1√
k

)
. (C2)

To show that the bound is tight, it suffices to show that
1√
k√

k + 1 − √
k

= 1√
k(k + 1) − k

= O(1). (C3)

The denominator in that expression is monotonically growing
with k, for any integer k > 0. Therefore,

1√
k(k + 1) − k

� 1√
2 − 1

= O(1). (C4)

This concludes the lower bound proof.
The results stated in Eqs. (27) and (34) follow directly from

the demonstration above.

[1] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-
Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T.
Menke, W.-K. Mok, S. Sim, L.-C. Kwek, and A. Aspuru-Guzik,
Noisy intermediate-scale quantum algorithms, Rev. Mod. Phys.
94, 015004 (2022).

[2] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approxi-
mate optimization algorithm, arXiv:1411.4028.

[3] A. Peruzzo, J. McClean, P. Shadbolt, M. H. Yung, X. Q. Zhou,
P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, A varia-
tional eigenvalue solver on a photonic quantum processor, Nat.
Commun. 5, 4213 (2014).

[4] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik,
The theory of variational hybrid quantum-classical algorithms,
New J. Phys. 18, 023023 (2016).

[5] D. Wecker, M. B. Hastings, and M. Troyer, Progress towards
practical quantum variational algorithms, Phys. Rev. A 92,
042303 (2015).

[6] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink,
J. M. Chow, and J. M. Gambetta, Hardware-efficient variational
quantum eigensolver for small molecules and quantum mag-
nets, Nature (London) 549, 242 (2017).

[7] E. Farhi and H. Neven, Classification with quantum neural
networks on near term processors, arXiv:1802.06002.

[8] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, Parame-
terized quantum circuits as machine learning models, Quantum
Sci. Technol. 4, 043001 (2019).

[9] S. Y.-C. Chen, C.-H. H. Yang, J. Qi, P.-Y. Chen, X. Ma, and H.-
S. Goan, Variational quantum circuits for deep reinforcement
learning, IEEE Access 8, 141007 (2020).

[10] L. Banchi, Robust quantum classifiers via NISQ adversarial
learning, Nat. Comput. Sci. 2, 699 (2022).

[11] L. Buffoni and F. Caruso, New trends in quantum machine
learning, Europhys. Lett. 132, 60004 (2020).

[12] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and
H. Neven, Barren plateaus in quantum neural network training
landscapes, Nat. Commun. 9, 4812 (2018).

[13] E. R. Anschuetz and B. T. Kiani, Quantum variational al-
gorithms are swamped with traps, Nat. Commun. 13, 7760
(2022).

[14] X. Sun and Y. Zheng, Hybrid decision trees: Longer quantum
time is strictly more powerful, arXiv:1911.13091.

[15] S. Aaronson and A. Ambainis, Forrelation: A problem that
optimally separates quantum from classical computing, SIAM
J. Comput. 47, 982 (2018).

[16] D. Wang, O. Higgott, and S. Brierley, Accelerated variational
quantum eigensolver, Phys. Rev. Lett. 122, 140504 (2019).

[17] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, Quantum singular
value transformation and beyond: Exponential improvements
for quantum matrix arithmetics, in Proceedings of the 51st An-
nual ACM SIGACT Symposium on Theory of Computing (ACM,
New York, 2019).

[18] L. Lin, Lecture notes on quantum algorithms for scientific com-
putation, arXiv:2201.08309.

[19] D. Deutsch and R. Jozsa, Rapid solution of problems by quan-
tum computation, Proc. R. Soc. London A 439, 553 (1992).

[20] P. Shor, Algorithms for quantum computation: Discrete log-
arithms and factoring, in Proceedings of the 35th Annual
Symposium on Foundations of Computer Science (IEEE Com-
put. Soc. Press, Santa Fe, NM, USA, 1994).

[21] A. Pérez-Salinas, R. Draškić, J. Tura, and V. Dunjko, Shallow
circuits for deeper problems, Phys. Rev. A 108, 062423 (2023).

[22] C. Zalka, Grover’s quantum searching algorithm is optimal,
Phys. Rev. A 60, 2746 (1999).

[23] L. K. Grover and J. Radhakrishnan, Quantum search for multi-
ple items using parallel queries, arXiv:quant-ph/0407217.

[24] G. Wang, D. E. Koh, P. D. Johnson, and Y. Cao, Minimizing es-
timation runtime on noisy quantum computers, PRX Quantum
2, 010346 (2021).

[25] T. Giurgica-Tiron, I. Kerenidis, F. Labib, A. Prakash, and W.
Zeng, Low depth algorithms for quantum amplitude estimation,
Quantum 6, 745 (2022).

[26] D. Magano and M. Murça, Simplifying a classical-quantum
algorithm interpolation with quantum singular value transfor-
mations, Phys. Rev. A 106, 062419 (2022).

[27] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf,
Quantum lower bounds by polynomials, J. ACM 48, 778
(2001).

[28] A. M. Childs, R. Cleve, S. P. Jordan, and D. Yonge-Mallo,
Discrete-query quantum algorithm for NAND trees, Theory of
Computing 5, 119 (2009).

[29] A. Ambainis, A. M. Childs, B. W. Reichardt, R. Špalek, and
S. Zhang, Any AND-OR formula of size N can be evaluated in
time N1/2+o(1) on a quantum computer, SIAM J. Comput. 39,
2513 (2010).

[30] A. Ambainis, Understanding algorithms via query complexity,
in Proceedings of the International Congress of Mathe-
maticians (ICM 2018) (World Scientific, Singapore, 2019),
pp. 3265–3285.

022412-12

https://doi.org/10.1103/RevModPhys.94.015004
https://arxiv.org/abs/1411.4028
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1103/PhysRevA.92.042303
https://doi.org/10.1038/nature23879
https://arxiv.org/abs/1802.06002
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1109/ACCESS.2020.3010470
https://doi.org/10.1038/s43588-022-00359-1
https://doi.org/10.1209/0295-5075/132/60004
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-022-35364-5
https://arxiv.org/abs/1911.13091
https://doi.org/10.1137/15M1050902
https://doi.org/10.1103/physrevlett.122.140504
https://arxiv.org/abs/2201.08309
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1103/PhysRevA.108.062423
https://doi.org/10.1103/PhysRevA.60.2746
https://arxiv.org/abs/quant-ph/0407217
https://doi.org/10.1103/PRXQuantum.2.010346
https://doi.org/10.22331/q-2022-06-27-745
https://doi.org/10.1103/PhysRevA.106.062419
https://doi.org/10.1145/502090.502097
https://doi.org/10.4086/toc.2009.v005a005
https://doi.org/10.1137/080712167

TWO METHODS FOR BREAKING DOWN A QUANTUM … PHYSICAL REVIEW A 109, 022412 (2024)

[31] H. Buhrman and R. de Wolf, Complexity measures and decision
tree complexity: A survey, Theor. Comput. Sci. 288, 21 (2002).

[32] L. K. Grover, Quantum mechanics helps in searching for a
needle in a haystack, Phys. Rev. Lett. 79, 325 (1997).

[33] A. Ambainis, Quantum walk algorithm for element distinctness,
SIAM J. Comput. 37, 210 (2007).

[34] A. Ambainis, Quantum lower bounds by quantum arguments,
J. Comput. Syst. Sci. 64, 750 (2002).

[35] J. M. Martyn, Z. M. Rossi, A. K. Tan, and I. L. Chuang, Grand
unification of quantum algorithms, PRX Quantum 2, 040203
(2021).

[36] G. H. Low and I. L. Chuang, Hamiltonian simulation by qubiti-
zation, Quantum 3, 163 (2019).

[37] S. Chakraborty, A. Gilyén, and S. Jeffery, The power of
block-encoded matrix powers: Improved regression techniques
via faster Hamiltonian simulation, in Proceedings of the 46th
International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2019) (Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, Dagstuhl, Germany, 2019), pp. 33:1–33:14.

[38] By �-controlled-NOT we mean an operation that acts as a NOT
gate controlled on a given state being in the image of �/�̃.

[39] G. H. Low, Quantum signal processing by single-qubit dynam-
ics, Ph.D. thesis, Massachusetts Institute of Technology, 2017.

[40] S. Jeffery, F. Magniez, and R. Wolf, Optimal parallel quantum
query algorithms, Algorithmica 79, 509 (2017).

[41] W. M. Kirby and P. J. Love, Variational quantum eigen-
solvers for sparse Hamiltonians, Phys. Rev. Lett. 127, 110503
(2021).

[42] S. Bravyi, G. Smith, and J. A. Smolin, Trading classical and
quantum computational resources, Phys. Rev. X 6, 021043
(2016).

[43] T. Peng, A. W. Harrow, M. Ozols, and X. Wu, Simulating large
quantum circuits on a small quantum computer, Phys. Rev. Lett.
125, 150504 (2020).

[44] G. Brassard, P. Høyer, M. Mosca, and A. Tapp, Quantum ampli-
tude amplification and estimation, Quantum Inf. Comput. 305,
53 (2002).

[45] M. Raab and A. Steger, ‘Balls into bins” — A simple and tight
analysis, in Randomization and Approximation Techniques in
Computer Science, edited by M. Luby, J. D. P. Rolim, and M.
Serna (Springer, Berlin, Heidelberg, 1998), pp. 159–170.

[46] E. Farhi, J. Goldstone, and S. Gutmann, A quantum algorithm
for the Hamiltonian NAND tree, Theory of Computing 4, 169
(2008).

[47] N. H. Bshouty, R. Cleve, and W. Eberly, Size-depth tradeoffs
for algebraic formulas, SIAM J. Comput. 24, 682 (1995).

[48] M. L. Bonet and S. R. Buss, Size-depth tradeoffs for Boolean
formulae, Inf. Process. Lett. 49, 151 (1994).

[49] G. H. Low and I. L. Chuang, Hamiltonian simulation by uni-
form spectral amplification, arXiv:1707.05391.

022412-13

https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1006/jcss.2002.1826
https://doi.org/10.1103/PRXQuantum.2.040203
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1007/s00453-016-0206-z
https://doi.org/10.1103/PhysRevLett.127.110503
https://doi.org/10.1103/PhysRevX.6.021043
https://doi.org/10.1103/physrevlett.125.150504
https://doi.org/10.1090/conm/305
https://doi.org/10.4086/toc.2008.v004a008
https://doi.org/10.1137/S0097539792232586
https://doi.org/10.1016/0020-0190(94)90093-0
https://arxiv.org/abs/1707.05391

