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Noise is the main source that hinders us from fully exploiting quantum advantages in various quantum
informational tasks. However, characterizing and calibrating the effect of noise is not always feasible in practice.
Especially for quantum parameter estimation, an estimator constructed without precise knowledge of noise
entails an inevitable bias. Recently, virtual purification-based error mitigation (VPEM) has been proposed to
apply for quantum metrology to reduce such a bias occurring from unknown noise. While it was demonstrated
to work for particular cases, whether VPEM always reduces a bias for general estimation schemes is unclear.
For more general applications of VPEM to quantum metrology, we study factors determining whether VPEM
can reduce the bias. We find that the closeness between the dominant eigenvector of a noisy state and the ideal
quantum probe (without noise) with respect to an observable determines the reducible amount of bias by VPEM.
Next, we show that one should carefully choose the reference point of the target parameter, which gives a smaller
bias than others because the bias depends on the reference point. Otherwise, even if the dominant eigenvector
and the ideal quantum probe are close, the bias of the mitigated case could be larger than the nonmitigated
one. Finally, we analyze the error mitigation for a phase estimation scheme under various noises. Based on our
analysis, we predict whether VPEM can effectively reduce a bias and numerically verify our results.
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I. INTRODUCTION

Quantum metrology is a study of exploiting quantum prop-
erties to surpass the classical limit of estimation precision
[1–6]. For various cases, quantum resources such as entan-
glement or squeezing enable us to achieve a better estimation
precision that cannot be attained by classical means. Espe-
cially for a phase estimation scheme in an interferometer
system, which is one of the most important tasks in quantum
metrology, the quantum advantage using various nonclassical
states, such as the N00N state [7–9] and squeezed state [9–13],
have been studied and experimentally demonstrated [14–18].

To consider more practical situations, it is vital to study
the effect of noise on estimation performance. Many studies
investigated how the performance deteriorates due to noise,
mostly focusing on statistical error [19,20]. In practice, how-
ever, it is not always feasible to obtain complete information
about noise. Such a lack of knowledge of the noise in the
system results in a bias of the estimator, which cannot be re-
duced simply by increasing the number of samples, unlike the
statistical error. Especially, when there are sufficiently many
samples for an estimation where the bias becomes dominant
compared to the statistical error, the bias determines the order
of magnitude of the total estimation error. In addition, while
quantum error correction can recover the noisy state to its
original state [21–28], it requires many resources, such as
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midcircuit measurement, a low-noise threshold, and a larger
number of required qubits because of encoding, which may
not be practically accessible in the current era.

To address the above issues, Ref. [29] has recently pro-
posed applying virtual-purification-based error mitigation
(VPEM) [30,31] to quantum metrology to suppress the bias
occurring from unknown noise and has shown that it consid-
erably reduces the bias of an estimator of the phase estimation
with a GHZ state. The principle behind VPEM is that it puri-
fies the output state, which has undergone an unknown noise,
to its dominant eigenstate, so that it effectively enables one
to exploit the dominant eigenstate instead of the noisy state
[30,31]. While Ref. [29] presented a framework of VPEM for
quantum metrology and provided an example in which VPEM
effectively reduces a bias, the general applicability of VPEM
to quantum metrology has not been fully understood.

In this work we study when VPEM can effectively reduce
the bias from unknown noise. In particular, we identify two
crucial factors that determine whether VPEM can reduce the
bias. The first one is the closeness of the dominant eigenvector
of a noisy state and the (noiseless) ideal state with respect
to an observable. Because VPEM allows us to exploit only
the dominant eigenvector, not necessarily the ideal state, the
dominant eigenvector has to be guaranteed to be sufficiently
close to the ideal state. We find that the closeness between the
expectation values of an observable Â (used for estimation)
of the ideal quantum probe and the dominant eigenvector of
a noisy state determines how much bias can be reduced by
VPEM. More specifically, the closeness decides the leading
order of the reduced bias in the noise strength. In addition,
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we show that applying VPEM does not necessarily reduce the
bias compared to without VPEM. The second one is the refer-
ence point of a parameter that we want to estimate. Assuming
that the unknown parameter to be estimated is small (often
called local parameter estimation [32,33]), the reference point
is the one around which the unknown parameter varies.

In local parameter estimation, we show that one has to
carefully choose the reference point that gives a smaller bias
than others before applying VPEM to quantum parameter
estimation. Otherwise, even if the expectation values of Â over
the ideal quantum probe and the dominant eigenvector are the
same, the bias of the mitigated case could be larger than the
nonmitigated case. We emphasize that considering a reference
point is a unique feature of quantum metrology that has not
been considered in the previous study [29].

To elaborate on the effect of the two aforementioned fac-
tors on VPEM, we apply our analysis to the phase estimation
with the parity measurement in an interferometer system and
numerically verify our analysis. We consider a N00N state and
product of coherent and squeezed state as quantum probes
for the phase estimation in the presence of phase diffusion,
photon loss, and additive Gaussian noise. For the N00N state
with phase diffusion or photon loss and for the product of
a coherent and squeezed state in the presence of a special
type of additive Gaussian noise, we find that the bias can be
reduced by VPEM because the ideal quantum probe and the
dominant eigenvector of the noisy state are the same, which
is a similar case to the previous study [29]. In addition, we
also find that the bias of the mitigation case could be larger
than the nonmitigated case if one does not select a proper
reference point. In contrast, for the product of coherent and
squeezed state in the presence of photon loss, we find that
it cannot benefit from VPEM, i.e., the magnitude of bias of
the nonmitigated case and mitigated case is similar, even if
we adopt a good reference point that gives smaller bias than
others because the expectation values of the parity over the
ideal quantum probe and the dominant eigenvector are not
close enough. It indicates that VPEM does not always promise
to reduce the bias error.

This paper is organized as follows: In Sec. II we explain
how a bias occurs when one disregards unknown noise and
introduce VPEM. In Sec. III we show the reducible amount
of bias through VPEM. In particular, in Sec. III A we inspect
the relation between the dominant eigenvector and the leading
order of the bias with respect to noise strength. In Sec. III B we
show how the bias depends on the reference point, highlight-
ing the importance of the reference point when one applies
VPEM to parameter estimation. In Sec. IV we apply our
analysis to the phase estimation in the interferometer system.

II. MSE WITH BIAS

Before introducing our main results, let us explain a basic
quantum estimation scheme and how a bias occurs in the
presence of an unknown noise.

A. Ideal case

Let us consider a unitary process that encodes an
unknown parameter φ. To estimate the parameter φ, a

prepared quantum probe ρ̂
(0)
id = |ψ (0)

id 〉〈ψ (0)
id |, assumed to be

a pure state, encodes the parameter by a unitary oper-
ation Û (φ + φ0), which results in the ideal output state
ρ̂id(φ + φ0) = |ψid(φ + φ0)〉〈ψid(φ + φ0)|. Here φ0 is a refer-
ence point of φ that one can freely select on purpose. One then
measures the state in the eigenbasis of an observable Â for
Ns times, which renders the outcomes {Aid,k}Ns

k=1, where Aid,k

is the kth measurement outcome. Meanwhile, the expectation
value of Â over ρ̂id is written as

Tr[Âρ̂id(φ + φ0)] = 〈ψid(φ + φ0)|Â|ψid(φ + φ0)〉 (1)

= xid + yidφ + O(φ2), (2)

where the expectation value is linearized for small φ with the
coefficients xid and yid:

xid(φ0) ≡ Tr[Âρ̂id(φ0)], yid(φ0) ≡ ∂Tr[Âρ̂id(φ0 + φ)]

∂φ

∣∣∣∣
φ=0

.

(3)
Thus, the following estimator is unbiased for small φ,

φest
id = 1

yid
(Āid − xid), (4)

where Āid is the average of measurement outcomes∑Ns
k=1 Aid,k/Ns (see Fig. 1 for the schematic of the estimation).
The mean squared error (MSE) of the estimator is given by

δ2φid = 1

y2
id

V[Â]ρ̂id

Ns
, (5)

which depends only on the statistical error that originates
from the fluctuation of the average of the measurement out-
comes due to the finite sample size. Here V[Â]ρ̂ ≡ Tr[Â2ρ̂] −
Tr[Âρ̂]2 is the variance of Â over the quantum state. Therefore,
the MSE can be reduced by increasing the number of samples
Ns. It is worth emphasizing that the convergence rate is closely
related to Fisher information [32,34], which is the main focus
of many studies about quantum metrology [3,4]. Our interest
lies in the bias rather than the statistical error, which will be
introduced in the following section.

B. Error case

In a more practical scenario where noise occurs during
estimation, the ideal state ρ̂id is replaced by an error state ρ̂e,
which depends on the noise. As the ideal case, one prepares Ns

numbers of ρ̂e and obtains measurement outcomes {Ae,k}Ns
k=1,

where Ae,k is the kth measurement outcome from ρ̂e. When
one does not know that the noise occurs and exploits the
same theoretical value Tr[Âρ̂id(φ + φ0)] as the ideal case, the
estimator is then written as

φest
e = 1

yid
(Āe − xid ), (6)

where Āe is the average of measurement outcomes∑Ns
k=1 Ae,k/Ns.
Due to this choice, the estimator φest

e generally has a bias
[see Fig. 1(d) for the schematic of how bias occurs]

〈
φest

e

〉 − φ = xe − xid + (ye − yid )φ

yid
+ O(φ2) (7)

≡ Be(φ, φ0,�), (8)
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FIG. 1. Schematic diagram of quantum metrology and the effect of VPEM. We ignore the statistical error to focus on the bias such that
measurement outcomes Ā is equal to Tr[Âρ̂(φ)] (Ā and ρ̂ indicate ρ̂id/e/mit and Āid/e/mit) and set φ0 = 0 for simplicity. (a) The φ estimation
process of the ideal case. Let us assume that encoded parameter φ is φ∗ and one gets the average of measurement outcomes Āid(φ∗). One then
compares the average with the theoretical value Tr[Âρ̂id(φ∗)] and estimates the encoded parameter as φ∗; thus there is no bias. [See a© in (d).]
(b) The φ estimation process in the presence of an unknown noise which renders measurement outcomes Āe(φ∗). [See b© in (d).] Since one
still uses the ideal value Tr[Âρ̂id] for estimation, one estimates φ as φ∗

e , which satisfies Āe(φ∗) = Tr[Âρ̂id(φ∗
e )], which results in a bias φ∗

e − φ∗.
[See b©′ in (d).] (c) VPEM effectively replaces the error state ρ̂e(φ) with ρ̂mit(φ). We assume that the expectation value of Â over the mitigated
state, and the ideal state is close enough, i.e., Tr[Âρ̂mit(φ)] ≈ Tr[Âρ̂id(φ)]. Similar to the error case, one estimates the encoded parameter as
φ∗

mit whose bias is φ∗
mit − φ∗, which is smaller than the error case. Here φ∗

mit satisfies Āmit(φ∗) = Tr[Âρ̂id(φ∗
mit )]. [See c© and c©′ in (d).]

where xe and ye are defined by a similar relation to the ideal
case

Tr[Âρ̂e(φ + φ0)] = xe + yeφ + O(φ2), (9)

and 〈 · · · 〉 is an average over all possible measurement out-
comes of the quantum state. Suppose one can completely
characterize the noise and ρ̂e, which is a typical assumption
in many previous studies but may not always be feasible; one
can then construct an unbiased estimator using xe and ye as the
ideal case. Thus, the bias occurs from the lack of information
about the noise. For our case, since φest

e is a biased estimator,
the corresponding MSE δ2φe, contains an additional term due
to the bias:

δ2φe = (Be)2 + 1

Ns

V[Â]ρ̂e

y2
id

. (10)

For the rest of the paper, we call (Be)2 a bias error of error
case. Figure 1 presents the schematic of the occurrence of
the bias. In contrast to the statistical error, one cannot reduce
the bias by simply increasing the number of samples Ns. We
emphasize that especially when there are sufficiently many
samples (i.e., large Ns), the bias is more critical than the sta-
tistical error, in terms that the MSE is dominated by the bias.

C. Error-mitigated quantum metrology

In this section we introduce the scheme of VPEM quan-
tum metrology, recently proposed in Ref. [29]. The scheme
employs Ns,mit copies of a so-called A circuit and I circuit,
each of which exploits n copies of an error state [30] (see
Fig. 2). Although one might iterate each circuit for different

FIG. 2. Error mitigation circuits. After a Hadamard gate on the
ancilla qubit, one applies a sequence of n controlled swap gates,
followed by a controlled-Â (Î) and another Hadamard gate, and
measures in Ẑ basis.
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numbers, we equally set Ns,mit as the number of iterations for
each circuit for simplicity. The details of the dynamics are
described in Refs. [29–31].

By implementing the circuits with an error state with its
diagonal form being

ρ̂e(φ + φ0) = λ|ψ〉〈ψ | + (1 − λ)
∑
k=1

pk|ψk〉〈ψk|, (11)

one obtains measurement outcomes {zA
k }Ns,mit

k=1 and {zI
k}Ns,mit

k=1
from each circuit, where zA

k , zI
k ∈ {1,−1} for all k′s. Here∑

k=1 pk = 1 and λ is the largest eigenvalue and |ψ〉 is the
corresponding eigenvector, which may be different from the
ideal state |ψid〉. Also, the relevant parameters in Eq. (11)
are functions of (φ + φ0) and noise strength �. After an
experiment, we obtain the average values as

Z̄A ≡ 1

Ns,mit

Ns,mit∑
k=1

zA
k , Z̄ I ≡ 1

Ns,mit

Ns,mit∑
k=1

zI
k, (12)

whose averages over all possible measurement outcomes are
given by [31]

〈Z̄A〉 = λn〈ψ |Â|ψ〉 + (1 − λ)n
∑
k=1

pn
k〈ψk|Â|ψk〉, (13)

〈Z̄ I〉 = λn + (1 − λ)n
∑
k=1

pn
k . (14)

One can find that the average of Z̄A/Z̄ I can be approximated
by 〈

Z̄A

Z̄I

〉
≈ Tr

[
Âρ̂n

e

]
Tr

[
ρ̂n

e

] ≡ Tr[Âρ̂mit(φ + φ0)] (15)

= xmit + ymitφ + O(φ2), (16)

where ρ̂n
e is the nth power of ρ̂e and

ρ̂mit ≡ λ′|ψ〉〈ψ | + (1 − λ′)
∑
k=1

p′
k|ψk〉〈ψk|, (17)

with

λ′ ≡ 1

1 + (
1−λ
λ

)n ∑
k=1 pn

k

, p′
k ≡ pn

k∑
l=1 pn

l

. (18)

Note that λ′ is the dominant eigenvalue of a mitigated state
ρ̂mit. We now set an estimator as

φest
mit = 1

yid
(Āmit − xid ), (19)

where Āmit ≡ Z̄A/Z̄ I , and we again used the ideal coefficients
xid and yid in Eq. (3) because we do not know xmit and ymit for
an unknown noise. φest

mit is then still a biased estimator, whose
bias is given by (see Fig. 1)

〈
φest

mit

〉 − φ = xmit − xid + (ymit − yid)φ

yid
+ O(φ2) (20)

≡ Bmit(φ, φ0,�), (21)

and the corresponding MSE is [31]

δ2φmit ≈ (Bmit)
2 (22)

+ 1

Ns,mity2
id

[
1 − Tr

[
Âρ̂n

e

]2

Tr
[
ρ̂n

e

]2 + Tr
[
Âρ̂n

e

]2(
1 − Tr

[
ρ̂n

e

]2)
Tr

[
ρ̂n

e

]4

]
.

(23)

In Eq. (23) the first term (Bmit)2 is the bias error and the second
term is the statistical error. We consider 2nNs,mit number of
samples for the mitigation case. For a fair comparison between
the error case and the mitigation case, we will exploit the same
number of samples for an estimation, such that Ns = 2nNs,mit.

To summarize, the effect of VPEM is to replace the error
state ρ̂e with the purified state ρ̂mit = ρ̂n

e /Tr[ρ̂n
e ] for the order

n. Since λ is the largest eigenvalue, the λn term becomes dom-
inant. In contrast, the coefficient (1 − λ)n pn

k , associated with
the orthogonal subspace to the dominant eigenvector, is sup-
pressed as n increases. Therefore, the mitigated state ρ̂mit in
Eq. (17) converges to the dominant eigenvector |ψ〉〈ψ |, which
results in Tr[Âρ̂mit] ≈ 〈ψ |Â|ψ〉. Hence, if yid is not too small
and the dominant eigenvector |ψ〉 and the ideal state |ψid〉 are
close enough, such that (〈ψ |Â|ψ〉 − 〈ψid|Â|ψid〉)/yid ≈ 0, the
bias error of the mitigation case (Bmit)2 would be smaller than
that of the error case (Be)2. Figure 1 illustrates how VPEM
reduces the bias.

III. CRUCIAL FACTORS FOR REDUCING BIAS VIA VPEM

In the previous section, we observed that VPEM effectively
purifies an error state to its dominant eigenvector. In this
section we further analyze the efficiency of VPEM concerning
the distance between the dominant eigenvector and the ideal
state with respect to an observable. Furthermore, we show that
when VPEM is applied to quantum metrology, an additional
factor must be necessarily considered, which is the reference
point.

A. Expectation value of Â over the dominant eigenvector

We analyze how the difference of the expectation values of
the observable Â over the dominant eigenvector of ρ̂e and the
ideal state affects the efficacy of VPEM. To this end, we find
an expression of a bias in the error case:

Be(φ, φ0,�) = xe(φ0) − xid(φ0) + φ[ye(φ0) − yid(φ0)]

yid(φ0)

(24)

= 1

yid(φ0)

n−1∑
k=1

[
fk (φ0) + φ

∂ fk (φ)

∂φ

∣∣∣∣
φ=φ0

]
�k + O(�n),

(25)

where we defined

f1(φ) ≡ a1(φ) − λ1(φ)b0(φ), (26)

fk (φ) ≡ ak (φ) +
k−1∑
l=1

λl (φ)ak−l (φ) −
k∑

l=1

λl (φ)bk−l (φ),

(27)
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for k � 2. Here λk , ak , and bk are coefficients from the follow-
ing expansions:

λ = 1 −
∞∑

k=1

λk (φ + φ0)�k, (28)

〈ψ |Â|ψ〉 − 〈ψid|Â|ψid〉 =
∞∑

k=1

ak (φ + φ0)�k, (29)

∑
k=1

pk〈ψk|Â|ψk〉 − 〈ψid|Â|ψid〉 =
∞∑

k=0

bk (φ + φ0)�k . (30)

Equation (25) shows that the bias of error case consists of
three distinct terms: (1) the difference between the expectation
value of Â over the dominant eigenvector and the ideal state
〈ψ |Â|ψ〉 − 〈ψid|Â|ψid〉, characterized by ak , (2) the difference
between the dominant eigenvalue λ and 1, identified by λk ,
and (3) the difference between the expectation value of Â over
the tail terms

∑
k=1 pk〈ψk|Â|ψk〉 − 〈ψid|Â|ψid〉, expressed by

bk . After applying VPEM, the bias becomes

Bmit(φ, φ0,�)

= xmit(φ0) − xid(φ0) + φ[ymit(φ0) − yid(φ0)]

yid(φ0)
(31)

= 1

yid(φ0)

n−1∑
k=1

[
ak (φ0) + φ

∂ak (φ)

∂φ

∣∣∣∣
φ=φ0

]
�k + O(�n).

(32)

One can easily show Eq. (32) using the definition of mitigated
state ρ̂mit in Eq. (17) and the expansions in Eqs. (29) and (30).

A crucial difference from the error case is that the bias
Bmit up to the order of �n−1 consists only of ak which
comes from the difference between the expectation value of Â
over the dominant eigenvector and the ideal state 〈ψ |Â|ψ〉 −
〈ψid|Â|ψid〉. Therefore, 〈ψ |Â|ψ〉 − 〈ψid|Â|ψid〉 dictates the
leading order in � of the bias while other contributions from
bk and λk are suppressed by VPEM. As a consequence, if
〈ψ |Â|ψ〉 − 〈ψid|Â|ψid〉 = 0, Bmit = O(�n) while Be = O(�),
which clearly shows that in the small regime of �, the bias
can be reduced by applying VPEM. However, if the dominant
eigenvector and the ideal state are not close enough, especially
when a1(φ0) �= 0, we emphasize that VPEM cannot even
guarantee the constant factor reduction of the bias even for
small noise. More specifically, for the case when a1(φ0) �= 0,
the leading orders of the biases are given by

|Be| ≈
∣∣∣∣a1(φ0) − λ1(φ)b0(φ0)

yid(φ0)

∣∣∣∣�, (33)

|Bmit| ≈
∣∣∣∣ a1(φ0)

yid(φ0)

∣∣∣∣�. (34)

Note that since λ is the eigenvalue of the error state, it should
be less than 1 for any given �, which means the λ1 in Eq. (28)
should be positive for small �. In contrast, we emphasize that
a1 and b0, in Eqs. (29) and (30), can be either positive or
negative; as a result, there could be a case where |Be| < |Bmit|.
Especially, in Sec. IV B, we study the case where the magni-
tude of a bias increases even if one applies VPEM.

We note that there have been analyses about the efficiency
of VPEM [30,31,35]. However, their analysis may not be

FIG. 3. Schematic diagram of how the reference point affects the
bias. Here ρ̂ indicates ρ̂e/mit. We consider local parameter estimation
where the parameter is in the range [−ε, ε]. The left red and blue
regions correspond to the estimation when the reference point is
φ∗

0 , which is not an optimal reference point. The three horizontal
black right-headed arrows 1©, 2©, and 3© are the bias when the true
parameter φ is −ε, 0, and ε each. In contrast, the right red and
blue regions correspond to the estimation when the optimal reference
φ

opt
0 is chosen. When the parameter is 0, there is no bias. The two

horizontal black arrows 1©′ and 3©′ are the bias when the parameter
is −ε and ε each. One can find that 1©′ and 3©′ are shorter than 1©, 2©,
and 3©, which shows reduced bias by optimal reference point.

directly applicable to VPEM-assisted quantum metrology. In
Refs. [30,31,35] they showed that the efficacy of VPEM is of-
ten guaranteed in practice, mainly focusing on random states,
while quantum metrology often exploits highly structured
states.

B. Reference point of the parameter

We now introduce another important factor that plays a
crucial role in VPEM for quantum metrology, which is the
reference point. Recall that, according to Eqs. (8) and (21), the
bias of both error case and mitigation case can be expressed
as

B(φ, φ0,�) ≈ x(φ0) − xid(φ0) + [y(φ0) − yid(φ0)]φ

yid(φ0)
. (35)

Here B(φ, φ0,�), x, y, and ρ̂ stand for Be/mit, xe/mit, ye/mit, and
ρ̂e/mit. We note that reference points for a mitigation case and
an error case could be different. Because both biases depend
on the reference point φ0, one might be able to reduce the
bias by simply controlling φ0. In other words, there might
be regions or points of φ0 that give a smaller bias than oth-
ers (see Fig. 3). Therefore, one should consider a reference
point when adopting error mitigation to quantum metrology,
unlike expectation value estimation [30,31]. Otherwise, even
if 〈ψ |Â|ψ〉 = 〈ψid|Â|ψid〉, (Bmit)2 can be larger than (Be)2

because of an inadequate reference point instead of the failure
of error mitigation. We will show corresponding examples
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in Sec. IV. Here we suggest several ways to choose a good
reference point that gives a smaller bias than others to study
the importance of a reference point. The reference points
that we suggest below are examples that effectively show the
importance of a reference point when one applies VPEM to
quantum metrology.

First, we can consider a reference point that minimizes the
zeroth order of φ of a bias. Note that Eq. (35) consists of the
zeroth order of φ which is (x − xid )/yid and the first order of φ

which is (y − yid)/yid. Since we are considering small φ, one
can alleviate the bias by choosing the reference point φ0 such
that

φ
opt
0 (�0) = arg min

φ0

[
x(φ0) − xid(φ0)

yid(φ0)

]2

. (36)

Especially, if there exists φ
opt
0 that makes (x(φopt

0 ) −
xid(φopt

0 ))/yid(φopt
0 ) = 0, the zeroth order of φ in Eq. (35)

vanishes and the bias contains only φ order; equivalently, the
bias error has only the φ2 order term. When the φ

opt
0 (�0) in

Eq. (36) does not depend on �, one can choose φ
opt
0 (�0) as

a reference point regardless of noise strength. However, con-
sidering more general cases, the φ

opt
0 (�0) depends on noise

strength. In that case, a possible and practical choice of a good
reference point is to consider a reference point that minimizes
the average of zeroth order of the bias over the noise strength
using some prior knowledge, in such a way that

φ
opt
0 = arg min

φ0

∫ �2

�1

p(�)

[
x(φ0) − xid(φ0)

yid(φ0)

]2

d�, (37)

where p(�) is a prior distribution of noise strength �. For
the remainder of this paper, we call both reference points
that satisfy Eqs. (36) and (37) an optimal reference point
(optimal in terms that it minimizes the zeroth order of φ)
without confusion; all the examples we suggest clearly show
which reference point that we choose. We denote the optimal
reference point for an error case as φ

opt
0,e and a mitigation case

as φ
opt
0,mit.

Last, we present three different cases and compare Be and
Bmit when one chooses the optimal reference points for each
case. For simplicity, we assume that there exist optimal ref-
erence points φ

opt
0,e and φ

opt
0,mit which make the zeroth order of

bias in φ vanish.
Case 1. The dominant eigenvector is the same as the ideal

state, which renders 〈ψ |Â|ψ〉 − 〈ψid|Â|ψid〉 = 0. In this case,
if one applies VPEM, the leading order of a bias of mitigation
case Bmit in the noise strength is �n. In addition, by choosing
φ

opt
0,mit as a reference point, Bmit can be reduced up to O(φ�n),

which shows the efficacy of VPEM. This case corresponds
to the phase estimation in the interferometer system with the
N00N state in the presence of phase diffusion or photon loss,
studied in Sec. IV A, and with the product of the coherent and
squeezed state as a quantum probe in the presence of additive
Gaussian noise, which is studied in Sec. IV B.

Case 2. The dominant eigenvector is not close enough to
the ideal state such that 〈ψ |Â|ψ〉 − 〈ψid|Â|ψid〉 = O(φ�). In
this case Be and Bmit have the same order of bias O(φ�),
i.e., VPEM cannot effectively reduce the bias. The phase
estimation exploiting the product of a coherent and squeezed

FIG. 4. Interferometer system. See the discussion for more details.

state which suffers from photon loss corresponds to Case 2,
which is investigated in Sec. IV B.

Case 3. 〈ψ |Â|ψ〉 − 〈ψid|Â|ψid〉 = O(φ�n′
) for n′ � 2. In

this case a bias cannot be suppressed beyond O(φ�n′
), no

matter how large the order of VPEM n is. Hence, choosing
n > n′ does not further reduce the leading order of � in the
bias.

A previous study of phase estimation exploiting the GHZ
state in the presence of amplitude-damping noise [29] can
be classified as Case 1, where the dominant eigenvector is
the same as the ideal state; therefore, the bias of mitigation
case Bmit is the order of �n, where one can benefit from error
mitigation. However, we emphasize that this is a special case
of our analysis, and we will investigate other cases in the
following sections. In addition, we also note that there is a
study that is relevant to our Case 3. In Ref. [36] they study a
case that shows increasing mitigation order higher than n = 2
does not offer a further enhancement.

IV. NUMERICAL SIMULATION OF VPEM FOR PHASE
ESTIMATION SCHEME

In this section we apply VPEM to phase estimation in an
interferometer, which is one of the most extensively studied
quantum metrological tasks. We exploit a N00N state or the
product of a coherent and squeezed state as a quantum probe,
which are well-known quantum states that enable quantum-
enhanced estimation [8,11]. Based on our analytic study in
Sec. III, we inspect whether the phase estimation scheme
can benefit from VPEM in the presence of various types of
noises. Let us recall a phase estimation in an interferometer
system, which is illustrated in Fig. 4. First, one encodes an
unknown phase φ by a phase shift operator 
̂(φ) = ein̂2φ

onto a prepared two-mode quantum state |ψ (0)
id 〉, where n̂i

is the number operator in the ith mode. After a two-mode
balanced beam splitter ÛBS, which renders an ideal output
state |ψid(φ + φ0)〉 ≡ ÛBS
̂(φ + φ0)|ψ (0)

id 〉, one measures the
state and estimates the φ using the measurement outcomes.
Here we choose the parity operator Â = (−1)n̂1 as a measure-
ment operator. This is a crucial property to apply the error
mitigation scheme because the parity operator is both unitary
and Hermitian.

In addition, the parity measurement is known to render
Heisenberg scaling precision with appropriate input states
[37–41].
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We will consider three kinds of noise: phase diffusion,
photon loss, and additive Gaussian noise, which are dominant
noises in phase estimation.

Phase diffusion happens when a random phase x occurs
during a phase φ encoding. Assuming that x follows the
Gaussian distribution, the ideal state then transforms as

ρ̂id → ρ̂e = 1√
2π�

∫ ∞

−∞
e− x2

2� ρ̂id(φ0 + φ + x)dx, (38)

where � is a noise strength that characterizes the degree of
the phase diffusion.

Photon loss transforms an annihilation operator as â →√
ηâ + √

1 − ηê, where â and ê correspond to the annihilation
operator for the system and the environment, respectively. The
loss rate 0 � (1 − η) ≡ � � 1 corresponds to noise strength.
Since a photon-loss channel occurring on both modes with the
same strength commutes with beam splitter and phase shift
operation, our analysis covers a photon loss occurring from
state preparation to before the measurement.

Finally, additive Gaussian noise is that a random dis-
placement �x = (x, p) occurs following Gaussian distribution,
which transforms a state ρ̂ as

1

2π

1√
�x�p

∫ ∞

−∞

∫ ∞

−∞
e− x2

2�x e− p2

2�p D̂(�x)ρ̂D̂†(�x) dx d p, (39)

where D̂(�x) = e(x+ip)â†−(x−ip)â is a displacement operator.
Here �x and �p are noise strength. We consider an additive
Gaussian noise occurring on the second mode of the initial
quantum state |ψ (0)

id 〉.

A. N00N state

1. Ideal case

It is known that a N00N state is one of the representative
quantum probes which enables a quantum-enhanced phase
estimation [7–9]. In the ideal case, one exploits |ψ (0)

id 〉 =
(|N〉1|0〉2 + |0〉1|N〉2)/

√
2 as a quantum probe, and the ex-

pectation value of parity over |ψid(φ + φ0)〉 = ÛBS
̂(φ +
φ0)|ψ (0)

id 〉 is

Tr[Âρ̂id] = (−i)N eiN (φ+φ0 ) + iN e−iN (φ+φ0 )

2
. (40)

Therefore, Tr[Âρ̂id] is either sin N (φ + φ0) or cos N (φ + φ0)
with different signs. Since we assume that we can control the
reference point, as a consequence we can always find φ′

0 that
satisfies sin N (φ + φ0) = cos N (φ + φ′

0). Thus, without loss
of generality, we consider it as sin N (φ + φ0). The MSE for
the ideal case is given by

δ2φid = 1

y2
id

V[Â]ρ̂id

Ns
= 1

NsN2
, (41)

which shows the Heisenberg scaling.

2. Phase diffusion

In the presence of phase diffusion, the ideal state
transforms to an error state [which can be found using

Eq. (38)],

ρ̂e =
(

1 + e− �
2 N2

2

)
|ψid〉〈ψid| +

(
1 − e− �

2 N2

2

)
|ψ⊥〉〈ψ⊥|

(42)

≡ λ|ψid〉〈ψid| + λ⊥|ψ⊥〉〈ψ⊥|, (43)

where |ψid〉 = |ψid(φ + φ0)〉 and |ψ⊥〉 ≡ ÛBS
̂(φ +
φ0)[(|N〉1|0〉2 − |0〉1|N〉2)/

√
2], which is orthogonal to

|ψid〉. In this case the dominant eigenvector is the same as
the ideal state, which implies that 〈ψ |Â|ψ〉 = 〈ψid|Â|ψid〉.
Therefore, according to the analysis in Sec. III, one can
expect that VPEM can effectively reduce the bias error. Let
us demonstrate this by inspecting the expectation values of Â:

Tr[Âρ̂id] = sin N (φ + φ0) (44)

= sin Nφ0 + (N cos Nφ0)φ + O(φ2), (45)

Tr[Âρ̂e] = (λ − λ⊥) sin N (φ + φ0) (46)

= (λ − λ⊥)[sin Nφ0 + (N cos Nφ0)φ] + O(φ2),

(47)

Tr[Âρ̂mit] =
(

λn − λn
⊥

λn + λn
⊥

)
sin N (φ + φ0) (48)

=
(

λn − λn
⊥

λn + λn
⊥

)
[sin Nφ0 + (N cos Nφ0)φ] + O(φ2).

(49)

First, we find that Tr[Âρ̂id(0)] = Tr[Âρ̂e(0)] = Tr[Âρ̂mit(0)],
and arg maxφ0 yid(φ0) = 0, which show that the optimal refer-
ence points satisfying Eq. (36) are φ

opt
0,e = φ

opt
0,mit = 0, for both

error and mitigation cases regardless of the noise strength �

and mitigation order n. Second, once we choose the optimal
reference point, the biases are given by

Be =
(

−N2

2
�

)
φ + O(�2), (50)

Bmit = −2

(
N2

4
�

)n

φ + O(�n+1), (51)

which shows that VPEM reduces the bias in the small range
of � that satisfies N2

4 � � ( N2

4 �)n.
We support our results with numerical simulations.

Figure 5 exhibits a simulation result of bias errors with
the N00N state in the presence of phase diffusion. We
show that under the optimal reference point, VPEM can
always effectively reduce the bias regardless of noise
strength and the value of φ. We find that Be(φ, φ

opt
0,e,�)2 �

Bmit(φ, φ
opt
0,mit,�, n = 2)2 � Bmit(φ, φ

opt
0,mit,�, n = 3)2 as we

expected through our analysis since the dominant eigenvector
is equal to the ideal state. Here we emphasize that since
φ

opt
0,e = 0 and φ

opt
0,mit = 0, both biases disappear at φ = 0. In

addition, Fig. 5 also shows the importance of the reference
point. It shows that if one does not carefully choose a
reference point, an error case could have a smaller bias
than a mitigation case even though 〈ψ |Â|ψ〉 = 〈ψid|Â|ψid〉.
We find that Be(φ, φ

opt
0,e ,�)2 � Bmit(φ, π

12 ,�, n = 3)2 �
Bmit(φ, π

12 ,�, n = 2)2 when the dominant eigenvalue in the
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FIG. 5. (a)–(c) Bias errors (with log scale) of the φ estimation where φ ∈ [−0.01, 0.01], exploiting the N00N state (N = 5) as a quantum
probe in the presence of phase diffusion with different noise strengths (namely, different dominant eigenvalues). Solid and dashed lines are
theoretical values of bias errors. Circle, square, and up-triangle denote squares of the difference between estimated value and real value from
simulations, which are (φest − φ)2 where φest ′s are estimators of φ [defined in Eqs. (6) and (19)] with Ns = 109 number of samples. We
emphasize that since we exploit a large number of samples which reduces fluctuations of φest ′s, (φest − φ)2 ′s can be considered as bias errors
from simulation. Here we denote the error case as n = 1 which corresponds to the red solid lines and red squares.

range 0.8 � λ � 0.9, regardless of φ. We emphasize that
π/12 is not an optimal reference point.

3. Photon loss

In the presence of the photon loss, a single-mode number
state |N〉〈N | transforms to

∑N
k=0(N

k )ηk (1 − η)N−k|k〉〈k|, and

the component |N〉〈0| becomes
√

η
N |N〉〈0|, where (1 − η) is

the loss rate and we denote it as noise strength �. Since we
assume that photon loss occurs on each mode independently
with the same noise strength and the loss channel commutes
with the beam splitter and phase shift operations, one can
easily find that the error state is

ρ̂e = ηN |ψid〉〈ψid| + (1 − ηN )
2N∑

k=1

pk|ψk〉〈ψk|. (52)

Here notice that the dominant eigenvector is equal to the ideal
state. In addition,

pk = pN+k =
(

N

k − 1

)(
ηk−1(1 − η)N−k+1

2(1 − ηN )

)
, (53)

|ψk〉 = ÛBS
̂(φ + φ0)|k − 1, 0〉1,2, (54)

|ψk+N 〉 = ÛBS
̂(φ + φ0)|0, k − 1〉1,2, (55)

for k ∈ {1, 2, . . . , N}. Note that 〈ψk|Â|ψk〉 = 0 for all k. The
corresponding expectation values are given by

Tr[Âρ̂id] = sin N (φ + φ0) (56)

= sin Nφ0 + (N cos Nφ0)φ + O(φ2), (57)

Tr[Âρ̂e] = (1 − �)N sin N (φ + φ0) (58)

= (1 − �)N [sin Nφ0 + (N cos Nφ0)φ] + O(φ2),

(59)

Tr[Âρ̂mit] =
(

(1 − �)nN∑N
k=0

(N
k

)n
(1 − �)nk�n(N−k)

)
sin N (φ + φ0)

(60)

=
(

(1 − �)nN∑N
k=0

(N
k

)n
(1 − �)nk�n(N−k)

)

× [sin Nφ0 + (N cos Nφ0)φ] + O(φ2). (61)

Again, one can find that the optimal reference points satis-
fying Eq. (36) are φ

opt
0,e = φ

opt
0,mit = 0. and the corresponding

biases are

Be = (−N�)φ + O(�2), (62)

Bmit = −(N�)nφ + O(�3), (63)

which clearly shows that the bias is reduced by error mitiga-
tion. We also numerically demonstrate that error mitigation
can reduce bias in the presence of photon loss and the impor-
tance of a reference point, which is shown in Fig. 6. Similarly
to the previous case, the VPEM reduces the bias error sig-
nificantly because the dominant eigenvector is the same as
the ideal state. However, if one does not carefully choose a
reference point, the bias error of the mitigation case can be
larger than the error case.

B. Product of coherent and squeezed states

1. Ideal case

We prepare a coherent state |α0〉1 and a squeezed vac-
uum state |r, 0〉2, and inject the states into a beam splitter
which makes the entanglement between the modes. We ex-
ploit the state ÛBS|α0〉1|r, 0〉2 as a quantum probe |ψ (0)

id 〉
which is a two-mode input state in Fig. 4, the ideal state is
then |ψid〉 = ÛBS
̂(φ + φ0)|ψ (0)

id 〉. For the product of coher-
ent state and squeezed state case, we study the effectiveness
of error mitigation in the presence of photon loss and additive
Gaussian noise. We consider Nc = Nr = 2.5. Unlike the pre-
vious case, the optimal reference point varies with the noise
strength �. To choose an appropriate reference point, we set
p(�) in Eq. (37) to be uniform 1/(�2 − �1), in the range
[�1,�2] such that λ(�1) = 1 and λ(�2) = 0.8.

2. Photon loss

In the presence of photon loss, the coherent state
|α0〉〈α0| remains as a coherent state with reduced am-
plitude coherent state |ᾱ0〉〈ᾱ0|, where ᾱ0 = √

(1 − �)α0.
The squeezed vacuum state |r, 0〉〈r, 0|, where the r
is a squeezing parameter, transforms to a squeezed
thermal state [42]

∑∞
k=0

N̄k

(N̄+1)k+1 |r̄, k〉〈r̄, k|2 where N̄ ≡
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FIG. 6. (a)–(c) Bias errors (with log scale) from simulation, exploiting the N00N state (N = 5) as a quantum probe in the presence of
photon loss with different noise strengths. Other features of the figure are the same as in Fig. 5.

−1+
√

1−4Nr{(1−�)2−(1−�)}
2 and r̄ ≡ 1

4 ln[
(1−�)(2Nr+2

√
N2

r +Nr )+1

(1−�)(2Nr−2
√

N2
r +Nr )+1

].

Here |r̄, k〉 is a squeezed number state with squeezing param-
eter r̄. Again, because we assume that the photon loss occurs
on both modes with the same loss rate and the loss channel
commutes with linear optical operations which are phase shift
and beam splitters, the error state is

ρ̂e =
∞∑

k=0

N̄k

(N̄ + 1)k+1
(Û |ᾱ0〉〈ᾱ0|1 ⊗ |r̄, k〉〈r̄, k|2Û†), (64)

where Û ≡ ÛBS
̂(φ + φ0)ÛBS.
We emphasize that the dominant eigenvector |ψ〉 =

Û |ᾱ0〉1|r̄, k = 0〉2 is different from the ideal state. According
to our analysis in Sec. III A, we can expect that VPEM will
not be beneficial since the dominant eigenvector and the ideal
state are different.

We numerically show the inefficacy of VPEM. For the
numerical simulations, we consider the noise strength in the
range [�1 = 0,�2 = 0.146] and assume that � follows uni-
form distribution in the range. Here �2 satisfies λ(�2) = 0.8
where λ is the dominant eigenvalue of the error state. The
optimal reference point φ

opt
0 satisfying Eq. (36) depends on

a given � for both error and mitigation cases. The relation
between � and φ

opt
0

′s for the error case and the mitigation
case with n = 2 and n = 3 is provided in Fig. 7. Therefore,
we consider an averaged optimal reference point that satisfies

Eq. (37), which are φ
opt
0,e ≈ 0.2, φ

opt
0,mit ≈ 0.087 for n = 2, and

φ
opt
0,mit ≈ 0.037 for n = 3. Under the chosen optimal refer-

ence points, we numerically simulate the bias errors of the
φ estimation exploiting the product of the coherent and the
squeezed state in the presence of photon loss. Figure 8 shows
the noneffectiveness of VPEM-based quantum metrology as
implied by our analysis because of the difference between the
dominant eigenvector and the ideal state. For the most of the
regions of φ, Be(φ, φ

opt
0,e,�)2, Bmit(φ, φ

opt
0,mit,�, n = 2)2, and

Bmit(φ, φ
opt
0,mit,�, n = 3)2 are similar in magnitude. Moreover,

there are combinations of � and φ where Be(φ, φ
opt
0,e,�)2 is

smaller than the others.

3. Additive Gaussian noise

For pedagogical purposes, we consider an additive Gaus-
sian noise, which might not be directly relevant to ex-
periments. Let us assume that the additive Gaussian noise
occurs only on the second mode of the initial quantum probe
|α0〉1|r, 0〉2. Furthermore, we assume that �x and �p in
Eq. (39) are

�x =
√

�

2
e−r, �p =

√
�

2
er, (65)

where r is a squeezing parameter in |r, 0〉2 and � is a
noise strength. We note that the additive Gaussian noise
is a Gaussian error such that a Gaussian state remains as

FIG. 7. Contour plots of [(x(φ0) − xid(φ0))/yid(φ0)]2 with log scale, in the presence of photon loss. Here n = 2. Panel (a) is for the error
case, and (b) is for the mitigation case. The horizontal axis is φ0 and the vertical axis is �. The darkest line, where [(x(φ0) − xid(φ0)/yid(φ0)]2 =
0, shows the relation between φ

opt
0,e (φopt

0,mit) that satisfies Eq. (36) and �.
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FIG. 8. (a)–(c) Bias errors (with log scale) from simulation using the product of the coherent state (Nc = 2.5) and squeezed vacuum state
(Nr = 2.5) in the presence of photon loss with different noise strengths. The red regions are where the bias of the error case is smaller than the
mitigation one, and the blue regions are the opposite. Other features of the figure are the same as in Fig. 5.

a Gaussian state after suffering from the noise. Similar to
the photon loss case, the additive Gaussian noise makes a
single-mode squeezed state to squeezed thermal state [42]∑∞

k=0
�k

(�+1)k+1 |r, k〉〈r, k|. Since we consider the additive Gaus-
sian noise only on the second mode of the quantum probe
at the state preparation stage (before passing the first beam
splitter), as a consequence, the error state is

ρ̂e =
∞∑

k=0

�k

(� + 1)k+1
[Û |α0〉〈α0|1 ⊗ |r, k〉〈r, k|2Û†], (66)

whose dominant eigenvector is the same as the ideal state,
which means 〈ψ |Â|ψ〉 = 〈ψid|Â|ψid〉. In this case, a1(φ) and
∂a1(φ)

∂φ
are always 0 regardless of φ, therefore, one can expect

that error mitigation can efficiently reduce bias error.
We numerically show the efficiency of VPEM. For the

numerical simulations, we consider the noise strength in the
range [�1 = 0,�2 = 0.25] and again assume that p(�) =
1/(�2 − �1). Here �2 satisfies λ(�2) = 0.8. In an additive
Gaussian noise case again, the optimal reference point that
satisfies Eq. (36) depends on noise strength (see Fig. 9), and
we consider an averaged optimal reference point that satisfies
Eq. (37), which is φ

opt
0,e ≈ 0.338 and φ

opt
0,mit ≈ 0.318. Figure 10

is a simulation result with the product of the coherent and
squeezed state in the presence of additive Gaussian noise. In
Fig. 10 we show that even though one adopts the reference
points that satisfy Eq. (37), VPEM can effectively reduce the
bias because the additive Gaussian noise lets the dominant
eigenvector be the ideal state. For most φ′s, one can clearly
find that Be(φ, φ

opt
0,e,�)2 � Bmit(φ, φ

opt
0,mit,�)2. In addition, we

FIG. 9. Contour plots of [(x(φ0) − xid(φ0))/yid(φ0)]2 with log
scale, in the presence of additive Gaussian noise. Other features of
the figure are similar to those in Fig. 7.

can also find the importance of the reference point in Fig. 10.
We find that Be(φ, φ

opt
0,e,�)2 � Bmit(φ, π

30 ,�)2 even though
〈ψ |Â|ψ〉 = 〈ψid|Â|ψid〉.

V. DISCUSSION

We have investigated crucial factors that dictate the effi-
ciency of VPEM when one applies the method to quantum
metrology. We find that the dominant eigenvector has to be
close to the ideal state, with respect to an observable, to
reduce the bias by VPEM successfully. More specifically,
〈ψ |Â|ψ〉 − 〈ψid|Â|ψid〉 determines the reducible amount of
bias. In addition, we argue that one should carefully choose an
optimal reference point that minimizes bias error. Otherwise,
the bias error of the mitigation case could be larger than the
error case even if the dominant eigenvector is equal to the
ideal state, because of the inadequate reference point. We
emphasize that many of the practical estimation scenarios
giving an additional parameter for the reference point have
already been implemented experimentally, such as phase esti-
mation schemes [17]. Based on the analysis, we analytically
and numerically inspect the phase estimation scheme in the
interferometer system. We consider the N00N state and the
product of the coherent and the squeezed state as quantum
probes in the presence of phase diffusion, photon loss, and
additive Gaussian noise. We maintain that all the phase esti-
mation schemes that we mentioned above can be explained by
our analysis.

Finally, we point out the differences from the recent study
[29]. First, while Ref. [29] analyzes bias up to the zeroth
order of φ, we consider up to the first order of φ, which is
essential because according to our optimal reference point
strategy, the zeroth order of φ can vanish for both the error
case and mitigation case. Second, we study the cases where
VPEM cannot effectively reduce the bias, which has not been
studied before, to the best of our knowledge. Last, we finally
present the importance of the reference point. In the previous
study, because the optimal reference point is fixed for the error
case and mitigated case, the role of the reference point was
not considered. It would be interesting future work to find a
strategy for choosing an optimal reference point other than
Eq. (37). For example, one can develop an adaptive strat-
egy that exploits measurement outcomes to estimate a noise
strength and updates a reference point using the estimated
noise strength. This method may give a tailored reference
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FIG. 10. (a)–(c) The simulations of the bias errors (with log scale) correspond to the product of the coherent state (Nc = 2.5) and squeezed
vacuum state (Nr = 2.5) in the presence of additive Gaussian noise with different noise strengths. Other features of the figure are the same as
in Fig. 5.

point for a given noise which results in a more reduced bias
than the reference point in Eq. (37).
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