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Tuning the initial phase to control the final state of a driven qubit
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A driven quantum system can experience Landau-Zener-Stückelberg-Majorana (LZSM) transitions between
its states when the respective energy levels quasicross. If this quasicrossing is traversed repeatedly under periodic
driving, the trajectories can interfere either constructively or destructively. In the latter case, known as coherent
destruction of tunneling, the transition between the energy states is suppressed. Even for the double-passage case,
the accumulated phase difference (also referred to as the Stückelberg phase) can lead to destructive interference,
resulting in no transition. In this paper, we discuss a similar process for the single-passage dynamics. We study
the LZSM single-passage problem starting from a superposition state. The phase difference of this initial state
results in interference. When this results in either a zero or a unit transition probability, such a situation can be
called single-passage complete localization in a target state. The phase can be chosen so that the occupation
probabilities do not change after the transition, which is analogous to the problem of transitionless driving. We
demonstrate how varying the system parameters (driving velocity, initial phase, initial detuning) can be used for
quantum coherent control.

DOI: 10.1103/PhysRevA.109.022409

I. INTRODUCTION

For quantum computing it is important to have different
methods on how to steer quantum systems to desired states,
see, e.g., Refs. [1–4]. The ability to predict the behavior of
the system opens the opportunity to use it either as a quantum
logic gate or to improve already existing gates. This means
to make the process faster or the errors smaller, or more
easily for an experimental realization. A dynamics that allows
the system to return to its original state can be useful for
quantum information. This can be realized by adiabatically
slow driving [5–9]. We could also consider the following
question: Is it possible to return to the original state using fast
processes? In some cases this is possible [10,11]. A number
of parameters exist that can drive the system. If the signal
is periodic, there are special values of the frequency and
amplitude which guide the system to its ground state [12–16].
Since this results from destructive interference [17–22], this
is known as coherent destruction of tunneling (CDT) and
dynamic localization [20,23].

In a different context, the problem of controlling a quantum
system can be formulated as how to correct a given drive so
that the system remains in one of the basis states. Such tran-
sitionless driving was studied in Ref. [24]; first for a generic
case and also for the particular situation of a two-level system
with linear drive. This last case corresponds to Landau-Zener-
Stückelberg-Majorana (LZSM) transitions [25–28]. LZSM
transitions are interesting in different aspects and processes,
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including: axion-photon conversion [29], interferometry in a
non-Hermitian N-body interacting boson system [30], inter-
ference effects in a qubit [31–35], Mach-Zehnder-type inter-
ferometry in a superconducting qubit [36,37], tunneling under
the effect of higher-order dispersion [38], and spin-flip in the
multistage Stern-Gerlach experiment [39]. LZSM transitions
can also be driven with intense laser pulses in the avoided-
crossing band structure of graphene’s Dirac cones [40–44];
the authors of these works demonstrated different transition
scenarios, including limiting cases such as CDT and the inter-
mediate case of returning to the initial occupation.

Here we study similar questions to the ones in
Refs. [13,24]. How do we steer the system to a given state?
Can the system remain in the same state as before the driving
(also known as transitionless driving)? What is needed to
direct and guide the system to its ground state or excited state,
which we call complete localization (CL), in a target state?

In our case, we consider the simplest linear driving
with velocity v and starting from a generic superposition
state, using the initial phase difference between the spinor
components as a tunable parameter. A phase measurement is
described in Ref. [45]. In our approach, considering the phase
as a controlling parameter, we follow the authors of Ref. [46].
What we mean is illustrated in Fig. 1, showing the dynamics
of a qubit, when starting from three different superposition
states, with the same initial occupation probability but
with three different phase differences between the spinor
components. The three respective curves show (from bottom
to top) (i) complete localization in a |1〉 state (destructive
interference, bottom curve), (ii) remaining at the same
position as the initial one (middle curve, transitionless
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FIG. 1. Dependence of the occupation probability on the dimensionless time τ = √
v/(2h̄)t in the diabatic basis. A graphical illustration

of two possible bases is shown in the bottom left inset. The adiabatic basis |E±〉 refers to the eigenvalues of the energy levels (red and blue
hyperbolas). Diabatic basis {|0〉, |1〉} is the basis of eigenvalues of the Pauli matrices (orange and green dashed straight lines). The three curves
show three possible different occupation probabilities of state |0〉 starting from the same initial occupation probability P|0〉 and different initial
phases of the wave function. We are interested in the long-time occupation of the ground state to the right (which is P|0〉); for convenience, we
say “constructive interference” when this results in increasing P|0〉 and vice versa. So the maximum value of the occupation probability P|0〉
corresponds to constructive interference (dark blue curve). The phase in this case is defined in Eq. (23) and approximately equals φi ≈ 0.36.
The minimal value of the occupation probability corresponds to destructive interference (dark red curve). The phase, in this case, is defined
in Eq. (22) and approximately equals φi ≈ 1.53. Any occupation probability between these values, defined by the constructive and destructive
interferences, could be obtained by changing the initial phase. In particular, there are parameters which allow the system to return to its initial
state (gray dashed curve). The adiabaticity parameter must correspond to the condition defined in Eq. (31) and then the initial phase is equal to
the value in Eq. (32) (in the plot above this it approximately equals φi ≈ −2.78).

driving), and (iii) obtaining maximal occupation probability
(constructive interference) shown in the top curve. In general,
changing the initial phase gives the possibility to obtain
any probability between constructive and destructive ones.
Just for convenience, studying the long-time occupation
P|0〉 of the state |0〉, we call the interference constructive,
if its occupation P|0〉 increases; and we call the interference
destructive, if the population P|0〉 of the state |0〉 decreases.

The rest of the paper is organized as follows. In Sec. II
we describe the dynamics and introduce important aspects
of the adiabatic-impulse approximation (with details of the
adiabatic stage of the dynamics given in Appendix A). In
Sec. III we find the dependence of the final probability on the
system’s parameters, including the initial phase. In Sec. IV we
analyze the range of the possible values of the final occupation
probability. The eventual return of the system to its initial state
and single-passage CL are discussed in Sec. V. In Sec. VI
we describe how to control the qubit only by changing its
phase and linear perturbations. The adiabatic evolution in the
diabatic basis is described in Appendix B. The respective
results in the adiabatic basis are presented in Appendix C. In
Appendix D, we generalize the result for any type of dynamics
which could be described by the adiabatic impulse model.

II. DYNAMICS: ADIABATIC-IMPULSE APPROXIMATION

Consider the dynamics of a two-level system with a linear
perturbation. Such a system is described by the Schrödinger
equation in the diabatic basis

ih̄
∂

∂t
|ψ〉 = −1

2
[�σx + ε(t )σz]|ψ〉, (1)

where

ε(t ) = vt, (2)

|ψ〉 = α|0〉 + β|1〉 =
(

α

β

)
, (3)

� and v are constant values and σi stands for the Pauli matri-
ces. Such dynamics describes the Landau-Zener-Stückelberg-
Majorana (LZSM) transitions, with the excitation probability
(see Ref. [26] and references therein)

P = exp(−2πδ) (4)
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(if starting from the ground state), where

δ = �2/(4vh̄) (5)

is the adiabaticity parameter.
The dynamics with initial time ti and final time tf can be

described by the adiabatic-impulse approximation [47]. The
dynamics could be separated into three different stages [21]:
adiabatic evolution, transition, and adiabatic evolution again;

|ψf〉 = Uad(tf , 0)NUad(0, ti )|ψi〉, (6)

where |ψi,f〉 are the initial and final wave functions, Uad de-
scribes the adiabatic evolution, and N describes the LZSM
transition. The adiabatic-evolution matrix before the transition
is

Uad(0, ti ) =
(

exp (−iζ ) 0
0 exp (iζ )

)
, (7)

and after the transition the adiabatic-evolution matrix is

Uad(tf , 0) =
(

exp (iζ ) 0
0 exp (−iζ )

)
. (8)

Here the phase ζ and its asymptotic expressions at large times,
i.e., at

t = ±τa

√
2h̄

v
, (9)

with τa � 1, are the following [47]:

ζ (±τa ) = 1

2h̄

∫ ±τa

0

√
�2 + 2h̄vτ 2dτ (10)

≈ ±
[
τ 2

a

2
+ δ

2
− δ

2
ln δ + δ ln

√
2τa

]
. (11)

A nonadiabatic transition is described by the transfer
matrix N , which is associated with a scattering matrix in
scattering theory [48]. The components of the transfer matrix
are related to the amplitudes of the respective states of the
system in energy space. The diagonal elements of N [25,26]
correspond to the square root of the reflection coefficient R,
and the off-diagonal elements correspond to the square root
of the transmission coefficient T and its complex conjugate

N =
( √

R
√

T
−(

√
T )∗

√
R

)
. (12)

In our problem, these elements are

R = P and T = (1 − P ) exp (i2ϕS), (13)

where ϕS is the Stokes phase

ϕS = π

4
+ Arg[�(1 − iδ)] + δ(ln δ − 1), (14)

where � denotes the Gamma special function. In what follows
we will use the formalism summarized in this section (and
explained at length in Refs. [25,47]) to describe the system dy-
namics when starting from a superposition state. Using these
results it is possible to describe not only a single passage, but
also the multiple-passages case using the adiabatic-impulse
model.

III. DEPENDENCE OF THE FINAL STATE
ON THE INITIAL PHASE

Consider the dependence of the final occupation probabil-
ity on the initial phase of the wave function. For this, we take
the wave function in the diabatic basis Eq. (3).

Then, taking the initial wave function |ψi〉 with the com-
ponent αi real for the initial condition, we introduce the phase
difference in βi:

βi =
√

1 − α2
i exp (iφi ). (15)

The single-passage evolution is described by the
Hermitian matrix

Ñ = Uad(τf , 0)NUad(0, τi ). (16)

Taking for simplicity τf = τa and τi = −τa, we obtain the
components of this matrix(

Ñ11 Ñ12

Ñ21 Ñ22

)
=

( √
R

√
T e2iζ (τa )

−√
T

∗
e−2iζ (τa )

√
R

)
. (17)

For a more general case τf �= −τi, see Appendix A. The wave
function after the transition can be derived from Eq. (6). Then
the first component of the spinor becomes

αf = αiÑ11 +
√

1 + α2
i eiφi Ñ12. (18)

The final occupation probability of the |0〉 state is P|0〉f =
|αf |2. Then using Eqs. (11) and (14), we can write the di-
rect dependence of the occupation probability on the system
parameters

P|0〉f = α2
i e−2πδ + (

1 − α2
i

)
(1 − e−2πδ )

+ 2αi

√
1 − α2

i e−πδ
√

1 − e−2πδ cos θ, (19)

where

θ (δ, τa, φi ) = π

4
+ Arg[�(1 − iδ)] + τ 2

a + 2δ ln (
√

2τa ) + φi.

(20)
It is important to note that the final occupation probability
does not depend on the final time; for a more general treatment
see Appendix A. The final result will be the same as Eq. (19),
with −τa → τi.

IV. HOW THE INITIAL PARAMETERS AFFECT
THE FINAL PROBABILITIES

The final probability P|0〉 depends on the following param-
eters: δ, αi, φi, τi. We are now interested in studying the
contribution of the third term in Eq. (19). This term is the
result of interference and (for convenience) we will designate
it as α2

int

α2
int = 2αi

√
1 − α2

i e−πδ
√

1 − e−2πδ cos θ. (21)

Figure 2 shows the contribution of this interference term. If
the initial probability |αi|2 is fixed and the phase difference φi

between the components of the wave function is varied, we
can obtain the final probabilities |αf |2 in a wide range.
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FIG. 2. Impact of the initial phase φi on the final occupation
probability P|0〉. If the value of the interference term in Eq. (21) is
maximal, the final occupation probability is also maximal and cor-
responds to the constructive interference case. However, if Eq. (21)
is minimal, the final occupation probability P|0〉 is also minimal, and
this corresponds to the destructive interference case. (a) The tem-
poral dependence of both of these occupation probabilities. (b) The
dynamics on the Bloch sphere for the constructive interference case
shown in panel (a). (c) The dynamics on the Bloch sphere for the
destructive interference case shown in panel (a). The initial occu-
pation probability is P|0〉i = 0.36 and the adiabaticity parameter is
δ = ln 2/2π .

Having obtained interference term we analyze the depen-

dence on αi is proportional to the factor 2αi

√
1 − α2

i , so there

is a maximum at αi = 1/
√

2.

The dependence on τi and φi is via the argument of cos θ .
Since the parameters φi and τi both contribute to the final
result only in the argument of cos θ in Eq. (19), then their
contribution is similar.

The phase before the transition is the sum of the initial
phase φi and the phase which was collected during the adia-
batic evolution before the transition. The later phase is defined
with the initial time. There are minimum and maximum values
of this interference term, which correspond to cos θ = ±1.
We describe the occupation probabilities in the diabatic basis.
In our problem, we consider the system without relaxations,
which means that these two levels are equivalent. Accord-
ingly, we use the terms constructive or destructive for the final
occupation probability P|0〉. We define the maximum value of
the occupation probability of the state |0〉 as the constructive
interference case. The minimum value corresponds to the de-
structive interference case. These respective cases will occur
if the initial phase difference is

φdestr
i = φi0 + π

2
, (22)

and

φconstr
i = φi0 − π

2
, (23)

where φi0 corresponds to the zero contribution from the
interference and equals

φi0 = 2πn + π

4
− Arg[�(1 − iδ)] − τ 2

i − 2δ ln(
√

2τi ),

(24)
with n being an integer.

We can obtain any value of the interference term be-
tween the constructive- and destructive-interference values.
The minimum and maximum values of the occupation
probability are

P|0〉max/min = (
αie

−πδ ±
√

1 − α2
i

√
1 − e−2πδ

)2
. (25)

The width of this region (between destructive and constructive
interference) is

�P(αi, δ) = 4αi

√
1 − α2

i e−πδ
√

1 − e−2πδ. (26)

The maximum value of the width, at αi = 1√
2
, is

�P(δ)max = 2e−πδ
√

1 − e−2πδ. (27)

Alternatively, the width could be changed by the adiabatic-
ity parameter δ. In particular, if δ = ln

√
2/π , then the width

becomes

�P(αi )max = 2αi

√
1 − α2

i . (28)

If we take

αi = 1√
2

and δ = ln
√

2

π
(29)

at the same time, the width will be 1, which means that any
final probability could be obtained.

Figure 3 shows the dependence of the width between
constructive and destructive interference on the adiabaticity
parameter δ as well as on the single-passage probability P (δ)
in two cases of the initial occupation probability. The dark
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FIG. 3. Visualization of the difference (or width) between constructive and destructive interference in the dependence of the occupation
probability P|0〉 on the adiabaticity parameter δ (upper panels) and on the single-passage probability P (δ) (lower panels). Panels (a,c) correspond
to the case when αi = 0.3, while panels (b,d) are for αi = 0.8. The dark green curve shows the constructive case and the dark red curve shows
the destructive interference case. The light blue background region shows the values of the adiabaticity parameter where returning to the initial
occupation probability is possible, that is, when δ < δst . The points that correspond to the long-time complete localization of the initial state
are indicated: The destructive complete localization (DCL) is shown with an X, and the constructive complete localization (CCL) is indicated
by the symbol +. The values of the adiabaticity parameter in these cases correspond to Eqs. (33) and (34), respectively.

green line shows the maximal value of Eq. (21) and the
dark red line shows the minimal value. The impact of the
interference term α2

int depends on the adiabaticity parameter.
When δ � 1 or δ 	 1, the impact of the interference term
tends to zero. Values of the adiabaticity parameter, when the
interference impact is not negligible, correspond to the fast
processes which are not adiabatic.

V. CONDITION FOR RETURNING TO THE SAME
OCCUPATION PROBABILITY AS THE INITIAL

ONE AFTER THE TRANSITION

The condition for returning to the same state as the initial
one after the transition could be found from Eq. (19) if we

require P|0〉 = α2
i , which determines the value of cos θ :

cos θ =
(
2α2

i − 1
)√

1 − exp(−2πδ)

2αi

√
1 − α2

i exp(−πδ)
. (30)

This condition can be satisfied when the value of | cos θ | � 1,
which requires

δ � δst ≡ 1

2π
ln

1(
2α2

i − 1
) = − 1

2π
ln

(
2α2

i − 1
)
. (31)

Then the phase difference between αi and βi should be

φi = arccos

(
2α2

i − 1
)√

1 − e−2πδ

2αi

√
1 − α2

i e−πδ

+ φi0 − π

2
. (32)
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FIG. 4. Multiple-passage dynamics. The plots in the first row show the dynamics for two passages on a diabatic basis. The left column plots
show the dynamics of the single LZSM transition with δ = ln

√
2

π
starting with an initial occupation probability P|0〉i = 0.01. The final states are

between the dark green curve (constructive interference) and the dark red curve (destructive interference). The right column shows the second
passage with the same adiabaticity parameter δ as in the first transition starting from one of the possible final stages after one transition. After
the second transition, the final occupation probability could be chosen between 0 and 1 using as a tunable parameter the phase of the wave
function before the second transition. The same dynamics is shown in the second row.

TABLE I. Summary of the main results. If the adiabaticity parameter δ can have any value, we do not show it in the second column, like
in the first three lines.

Initial phase ϕi

and Final occupation probability
Type of the dynamics adiabaticity parameter δ P|0〉f

Zero interference case φi0 = 2πn + π

4 − Arg[�(1 − iδ)] α2
i e−2πδ + (

1 − α2
i

)
(1 − e−2πδ )

−τ 2
i − 2δ ln(

√
2τi )

Destructive interference φdestr
i = φi0 + π

2

(
αie−πδ − √

1 − α2
i

√
1 − e−2πδ

)2

Constructive interference φconstr
i = φi0 − π

2

(
αie−πδ + √

1 − α2
i

√
1 − e−2πδ

)2

φi = arccos

(
2α2

i −1
)√

1−e−2πδ

2αi

√
1−α2

i e−πδ
+ φi0 − π

2

Returning to initial occupation probability and Initial occupation probability P|0〉i

δ � − 1
2π

ln
(
2α2

i − 1
)

φi = φdestr
i

Destructive complete localization in a target state and 0

δDCL = − 1
2π

ln
(
1 − α2

i

)
φi = φconstr

i

Constructive complete localization in a target state and 1

δCCL = − 1
π

ln αi
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In Fig. 3 the region where there could be a return to the
initial occupation probability is shown as a light blue region.
In the diabatic basis, it corresponds to the small values of
the adiabaticity parameter δ. In these cases the processes are
nonadiabatic.

Consider now reaching the ground and excited states,
which correspond to CLs. In Fig. 3 we indicate the points
where it is possible to obtain the system in the ground state.
If the final occupation probability is equal to 1 this means
that the final state is |0〉. In the opposite case, if the final
occupation probability is equal to 0, the state is |1〉.

These cases are present for any initial occupation proba-
bility and correspond to the minimum and maximum of the
destructive and constructive interference occupation probabil-
ities. From Eq. (25) the values of the adiabaticity parameter
δ for these cases could be found. For destructive CL, the
adiabaticity parameter is

δDCL = − 1

2π
ln

(
1 − α2

i

)
, (33)

and for constructive CL, the adiabaticity parameter becomes

δCCL = − 1

π
ln αi. (34)

The results of this section might appear to be surprising
because these indicate that it is possible for the occupation
probability to return to its initial value by only using phase
control. For any initial occupation probability, it is possible to
steer the state to a desired final long-time target state.

VI. PREPARING A DESIRED TARGET STATE BY ONLY
CHANGING ITS INITIAL PHASE

We now consider how to control qubits by changing
their initial phase. We describe a qubit undergoing adiabatic
evolution under the constant offset

ε(t ) = const = ε0 (35)

in Eq. (1). If we apply a constant drive, the evolution of the
wave function consists in changing the phase. In the Bloch
sphere, this corresponds to a rotation around the z axis. The
phase which appears after this evolution during the time twait is

φad = −sgn(ε0)

√
�2 + ε2

0

h̄
twait. (36)

The sign of the phase depends on the sign of the drive ε0,
see details in Appendix B. This means that using this type of
signal we can change the phase of the wave function without
changing the occupation probability. We can use it to control
the phase to prepare the desired initial state before the LZSM
transition.

As was discussed in the previous section, for any initial
occupation probability P|0〉, it is possible to obtain the ground
state. This means that, by changing the adiabaticity parameter
δ and the initial phase φi, it is possible to obtain any desired
final state.

If the initial state is close to the ground state, an infinite
adiabaticity parameter δ is needed to obtain another ground
state. To overcome this difficulty, we can apply multiple
passages. Thus, two or more LZSM transitions allow to
obtain the final occupation probability with experimentally
realizable parameters.

For illustration, Fig. 4 demonstrates two passages (in the
diabatic basis see the panels in the first row). The first pas-
sage starts with an initial occupation probability P|0〉i = 0.01.
This state is close to the ground state |1〉. After the first
LZSM transition (left panel) with the adiabaticity parame-
ter δ = ln

√
2/π , the final occupation probability could be

P|0〉f ≈ 0.5 ± 0.1. Applying the second LZSM transition with
the same adiabaticity parameter as one of the possible final
states after the first transition, the final occupation probability
is now in the range between 0 and 1. Thus, changing the
phase of the wave function after the first transition gives the
possibility to choose the final state after the next transition.

This process can be also considered on the adiabatic basis
which is the eigenenergy levels basis. All these formulas could
be obtained by the relation between diabatic and adiabatic ba-
sis; see details in Appendix C. The example of the double pas-
sage in the adiabatic basis is shown in the second row in Fig. 4.

After the single LZSM passage, any final state could be
obtained using as the tunable parameters the initial phase and
adiabaticity parameter δ. The multipassage dynamics with
finite adiabaticity parameter could be applied in cases when
obtaining some final stages of the infinite adiabaticity param-
eter is required for the single-passage case.

VII. CONCLUSION

We analyzed the single-passage qubit dynamics with a
linear drive ε(t ) = vt . The initial phase of the wave function
was considered as a parameter. We derived several results,
including how to recover the initial occupation probabil-
ity (analog of transitionless driving), as well as steering
the final state into either the ground or the excited states
(CL). These are summarized in Table I. We obtained vari-
ous target occupation probabilities using phase control. Also,
multiple passages were considered to obtain desired qubit
states for a given value of the adiabaticity parameter δ. The
results are shown in Table I.
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APPENDIX A: DIFFERENT INITIAL AND FINAL TIMES

The values of the initial and final times are not the same
in the general case. In this Appendix, we will show the gener-
alization of the transfer matrix, Eq. (17). Different initial and
final times correspond to the value of phase which will occur
due to adiabatic evolution. We use the following notations for
values of the initial and final times, respectively, τi and τf .
Following Ref. [47] the adiabatic evolution matrix before the
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transition is

τ < 0 : Uad(0, τi ) =
(

exp [−iζ (τi )] 0
0 exp [iζ (τi )]

)
(A1)

and after the transition

τ > 0 : Uad(τf , 0) =
(

exp [iζ (τf )] 0
0 exp [−iζ (τf )]

)
.

(A2)

Now we consider a bias which is linear in time ε(t ) = vt . The asymptotic expressions for ζ at large times, i.e., at
t = ±τa

√
2h̄/v, with τa � 1 defined in Eq. (11).

In general, Eq. (17) becomes

Ñ =
(

exp [iζ (τf ) − iζ (τi )]
√
P exp [iζ (τf ) + iζ (τi ) + i2ϕS]

√
1 − P

− exp [−iζ (τf ) − iζ (τi ) − i2ϕS]
√

1 − P exp [−iζ (τf ) + iζ (τi )]
√
P

)
. (A3)

The final components of the wave function then become

αf = exp [iζ (τf ) − iζ (τi )]
√
Pαi + exp [iζ (τf ) + iζ (τi ) + i2ϕS + iφi]

√
1 − P

√
1 − α2

i , (A4)

βf = − exp [−iζ (τf ) − iζ (τi ) − i2ϕS]
√

1 − Pαi + exp [−iζ (τf ) + iζ (τi ) + iφi]
√
P

√
1 − α2

i . (A5)

This gives the final state depending on the initial phase
difference between the spinor components. Knowing this de-
pendence is important when we want to describe the dynamics
with multiple passages. If we are interested in the occupation
probability, the final time does not matter when it is large
enough for applying the adiabatic-impulse model. It is under-
standable that, after the transition (when the energy levels are
far from each other), the final time enters only at the phase
that was collected during the adiabatic evolution.

APPENDIX B: ADIABATIC EVOLUTION
IN THE DIABATIC BASIS

If we want to prepare the state with some special phase we
can use the adiabatic evolution. This evolution is described by
the following matrix in the adiabatic basis:

Uad(tf , ti ) =
(

exp (−iζ ) 0
0 exp (iζ )

)
, (B1)

where

ζ (tf , ti ) = 1

2h̄

∫ tf

ti

√
�2 + ε(t )2dt . (B2)

If the drive is constant ε(t ) = ε0, the evolution is described by

Uad(tf , ti ) =
(

exp [−iωtwait] 0
0 exp [iωtwait]

)
, (B3)

where we introduce the following notation twait = tf − ti and

ω =
√

�2 + ε2
0

2h̄
. (B4)

The adiabatic and diabatic bases are related in the following
way:

|ϕ±〉 = γ∓|ψ−〉 ∓ γ±|ψ+〉, (B5)

where

γ± = 1√
2

√
1 ± ε(t )√

�2 + ε(t )2
. (B6)

The matrix which describes the transition from the diabatic
basis to the adiabatic one is

M =
(

γ− −γ+
γ+ γ−

)
. (B7)

The matrix M is unitary, so the adiabatic evolution in the
diabatic basis is described by the matrix

U diab
ad (tf , ti ) = MT Uad(tf , ti )M, (B8)

U diab
ad (tf , ti ) =

(
γ 2

−e−iωtwait + γ 2
+eiωtwait γ−γ+(exp [iωtwait] − exp [−iωtwait])

γ−γ+(exp [iωtwait] − exp [−iωtwait]) γ 2
+ exp [−iωtwait] + γ 2

− exp [iωtwait]

)
. (B9)

The same result could be obtained by directly solving the Schrödinger equation in the diabatic basis.
If the adiabatic evolution is far from the crossing-energy levels region, |ε0| � �, the adiabatic evolution will be

ε0 < 0 : U diab
ad (tf , ti ) =

(
exp [−iωtwait] 0

0 exp [iωtwait]

)
, (B10)

ε0 > 0 : U diab
ad (tf , ti ) =

(
exp [iωtwait] 0

0 exp [−iωtwait]

)
. (B11)
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FIG. 5. Adiabatic evolution on the Bloch sphere. The red curve
shows that, when the drive is constant and ε0 > 0, the evolution
corresponds to a clockwise (seeing from the top) rotation around the
z axis accumulating the phase φad, which is defined in Eq. (36). If the
bias is ε0 < 0, the rotation turns counterclockwise, shown in blue.

It shows that (for the different signs of ε0) the rotations along
the z axis are in different directions and the visualization is
presented in Fig. 5.

APPENDIX C: ADIABATIC BASIS

The matrix which describes the transition from a diabatic
basis to the adiabatic one is Eq. (B7). Using this relation and
assuming that we are far from the quasicrossing region, we
obtain the transition matrix in the adiabatic basis

Ñad =
((√

T
)∗

e−2iζ (τa ) −√
R√

R
√

T e2iζ (τa )

)
. (C1)

The wave function in the adiabatic basis is

∣∣ψad
〉 =

(
b1

b2

)
. (C2)

Then, if b1i and b2i are the initial components of the spinor,
the final components become

b1f = √
1 − P exp [−i(2ζ (τa + ϕS)]b1i −

√
Pb2i, (C3)

b1f =
√
Pb1i + √

1 − P exp [i(2ζ (τa + ϕS)]b2i. (C4)

Then the occupation probability becomes

P+ = |b1f |2 = (1 − P )b2
1i+ Pb2

2i+ 2
√
P (1 − P )b1ib2i cos θ,

(C5)
where θ is defined in Eq. (20) and the initial components of

the spinor satisfy the following relation b2i =
√

1 − b2
1ie

iφi .

FIG. 6. Dependence of the occupation probability on time in cases of constructive or destructive interference for different adiabaticity
parameters δ and for different initial occupation probabilities P+i in the adiabatic basis. The three columns correspond to three values of the
adiabaticity parameter δ. Each panel shows the dynamics of the occupation probability P+ versus the dimensionless time τ . These dynamical
evolutions show that the impact of the interference is smaller when δ is larger. Maximal width is when the initial occupation probability is
equal to 0.5 (see the second row).
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The condition for staying in the same state as the initial one
after the transition is given by

cos θ =
(
2b2

1i − 1
)√

P

2b1i

√
1 − b2

1i

√
1 − P

. (C6)

The condition of the existence of cos θ becomes

δ > δad
st ≡ − 1

2π
ln

[
4b2

1i

(
1 − b2

1i

)]
. (C7)

APPENDIX D: GENERALIZATION OF THE PROBLEM

If we consider a nonlinear perturbation which could be
described by the adiabatic-impulse model, then all the above
formulas could be generalized. According to the adiabatic-
impulse model, the dynamics will be separated on three
stages: adiabatic

Uad =
(

exp(−iζ1) 0
0 exp(iζ1)

)
; (D1)

transition

N =
(

N11 N12

N21 N22

)
; (D2)

and adiabatic again

Uad =
(

exp(iζ2) 0
0 exp(−iζ2)

)
, (D3)

where ζ is defined in Eq. (B2). The initial state is the same as
Eq. (15). Then the components of the wave function are

αf = N11αi exp [i(ζ2 − ζ1)] + N12βi exp [i(ζ1 + ζ2)], (D4)

βf = N21αi exp [−i(ζ1 + ζ2)] + N22βi exp [i(ζ1 − ζ2)]. (D5)

Then the occupation probability of |0〉 becomes

|αf |2 = |N11|2α2
i + |N12|2

(
1 − α2

i

)
+ 2αi

√
1 − α2

i |N11||N12| cos (2ζ1 + φi + ϕ11 − ϕ12),

(D6)

where the components of the transfer matrix are rewritten
as N11 = |N11|eiϕ11 and N12 = |N12|eiϕ12 . As a result, we see
that all the dependence on phase is in the cosine at the one
term which is associated with interference. It shows that all
results are applicable not only for the linear perturbation, but
also for any perturbation which could be approximated by the
adiabatic-impulse model [47].

In Fig. 6 we show the dependence of the constructive
and destructive interference versus time for different initial
occupation probabilities and different adiabaticity parameters
δ in the adiabatic basis.
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