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Quantum nonlocality determined by fine-grained uncertainty relations
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Quantum nonlocality and the uncertainty principle are two fundamental cornerstones of quantum theory,
reflecting totally different aspects that distinguish it from classical theory. However, Oppenheim and Wehner
introduced fine-grained uncertainty relations (FGURs) to account for the degree of quantum nonlocality. In
the simplest Bell scenario, they showed that the quantum nonlocality measured by the maximal violation of
some Bell inequality was determined by the FGUR. Along this line of research, we first derive explicit FGURs
with general weights about probability distributions of two general projective measurements on local systems.
Then we split those joint probabilities of Bell inequalities into a single-party conditional probability and the
remaining joint probabilities so that the weighted FGURs can be applied straightforwardly to obtain the maximal
violation in various scenarios ranging from bipartite, tripartite, to a complete set of multipartite Bell inequalities.
Furthermore, in the bipartite scenario, the exact correlation boundary can be shown to be solely determined by
our weighted local FGURs.

DOI: 10.1103/PhysRevA.109.022408

I. INTRODUCTION

In the realm of quantum mechanics, the profound dis-
tinctions from classical mechanics are readily apparent, with
two key concepts standing out as the most distinguishing:
quantum nonlocality and the uncertainty principle. Quantum
nonlocality, often synonymous with Bell nonlocality, emerges
when examining correlations in multipartite scenarios, where
local measurements on space-like separated quantum systems
defy explanation within the confines of local realistic models
[1–5]. On the other hand, the uncertainty principle, initially
posited by Heisenberg [6–8], speaks to the fundamental limi-
tation that arises when attempting to simultaneously measure
incompatible physical quantities. It finds expression through
a range of uncertainty relations, revealing the tradeoffs be-
tween precision in incompatible measurements. While these
two distinctive features of quantum theory seemingly pertain
to different facets of the quantum world, an intriguing con-
nection emerges: the degree of quantum nonlocality is, in
fact, determined by the uncertainty relations governing local
subsystems.

Quantum nonlocality is also referred to Bell nonlocality
and was first discovered by Bell in his research [3] on the
Einstein—Podolsky—Rosen (EPR) paradox [1]. Bell showed
that the classical correlations, which are characterized by lo-
cality and realism, satisfy the so-called Bell inequalities. In
the simplest bipartite scenario, in which each of two observers
A, B performs two local dichotomic measurements A0,1 and
B0,1, the resulting correlations satisfy the well-known Clauser-
Horne-Shimony-Holt (CHSH) inequality [9]

BCHSH := 〈A0B0 + A0B1 + A1B0 − A1B1〉 � 2, (1)
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if the underlying theory is local and realistic. However, the
quantum correlations produced by suitable local measure-
ments on entangled states of space-like separated systems
can violate Bell inequalities, signaling a profound difference
between quantum and classical models. In fact, we have a
maximal violation of the CHSH inequality as large as 2

√
2 in

quantum theory, which is known as the Tsirelson bound [10]
defining the degree of quantum nonlocality in the given Bell
scenario. Interestingly, quantum correlations do not violate
the CHSH inequality to its largest possible value 4, and this
value can be attained by some nonsignaling box such as the
Popescu-Rohrlich (PR) box model [11] without superluminal
communication. A natural question arises as to which quan-
tum features determine the degree of quantum nonlocality or
even the boundaries of quantum correlations.

The challenge has been met from two different approaches,
for instance, one is the axiomatic approach [12–20], which
constructs an axiom to single out quantum correlations, how-
ever, most of them are based on bipartite information concepts
and not able to determine the set of quantum correlations [21].
The other one is a numerical approach, like semi-definite pro-
gramming (SDP) [22,23], which provides general numerical
nonlocality bounds at the cost of requiring the construction
of an infinite semi-definite matrix for an exact result. Un-
fortunately, neither of these approaches offers an analytical
and comprehensive solution, until Oppenheim and Wehner
provide yet another response to the above challenge: the un-
certainty principle as quantified by fine-grained uncertainty
relations (FGURs) [24].

Contrary to the coarse-grained uncertainty relation, which
means measuring uncertainty with some kinds of functions
of the probability distribution of measurement outcomes, like
entropic uncertainty relations [25–27], majorization [28,29],
as well as by measurement uncertainty relations [30–33],
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Oppenheim and Wehner first proposed a fine-grained uncer-
tainty relation involving the whole probability distributions of
measurement outcomes, trying to account for the degree of
quantum nonlocality. They offered a formalized fine-grained
uncertainty relation and established a general connection be-
tween uncertainty, steering, and nonlocality. Later on, some
explicit FGURs with equal weights were proposed and found
applications in contextuality [34] and nonlocality [35], and
some FGURs in different physical situations like FGUR under
relativistic motion [36] and quasi-FGUR [37] appropriate for
quantum memory were proposed. Based on these pioneering
works, we show that the Tsirelson bounds in various sce-
narios ranging from bipartite to tripartite to multipartite can
be determined by FGURS alone. Notably, in the simplest
Bell scenario, one can obtain the entire correlation boundary
due to Tsirelson, Landau, and Masanes (TLM) [38–40] from
FGURs.

We at first prove an explicit weighted FGUR for two
general observables and a weighted FGUR for multiple ob-
servables for a qubit system in Sec. II. Then we propose
a reformulation of Bell inequalities in such a way that our
FGUR can be readily applied to various Bell scenarios to
bound quantum nonlocality in Sec. III. To show the effective-
ness of our method, we apply our method to some different
Bell scenarios to obtain the exact Tsirelson bounds for Bell
inequalities. In Sec. IV we derive the Tsirelson bounds for a
general Bell inequality for correlations, which gives rise to
the exact TLM correlation boundary, and the chained Bell
inequality [41]. In Sec. V, we consider a tripartite scenario and
show that the Tsirelson bounds for 32 out of 46 tight tripartite
Bell inequalities [42,43] are determined by FGUR. We also
provide the quantum nonlocality bound for a general tripartite
Bell inequality for correlations. In Sec. VI we consider a
multipartite scenario and show the complete set of correlation
Bell inequalities due to Werner, Wolf, Żukowski, and Brukner
(WWZB) [44,45] is also determined by FGUR. We conclude
with some discussions in Sec. VII.

II. WEIGHTED FINE-GRAINED
UNCERTAINTY RELATIONS

Consider a fixed set of m measurements, labeled with x =
1, 2, . . . , m, performed on a given (local) quantum system
prepared in some state ρ according to a priori probability
distribution {px}. For each combination a = (a1, . . . , am) of
possible outcomes, the fine-grained uncertainty relation pro-
posed by Oppenheim and Wehner reads

m∑
x=1

px p(ax|x; ρ) � ζa := max
ρ

m∑
x=1

px p(ax|x; ρ), (2)

where p(ax|x; ρ) denotes the probability of obtaining outcome
ax by performing measurement x on the state ρ. Previously,
the probability distribution px is commonly taken to be com-
pletely random, i.e., independent of x, and here we shall
consider a weighted FGUR. When ranging over all possible
weights {px} FGUR gives exactly the numerical algebraic
range [46–48] of the given set of observables. The upper
bound ζa implies the tradeoff in their predictabilities of the

m probability distributions and the smaller ζa, the more pre-
dictable it is [49,50].

As the upper bound ζa involves the optimization over all
possible states, the fine-grained uncertainty relation cannot be
used directly to bound quantum nonlocality. In what follows,
we shall derive at first an explicit fine-grained uncertainty rela-
tion with general weights about two projective measurements
of arbitrary dimensions. Then we apply our fine-grained un-
certainty relation to some particular cases, and we will obtain
some specific fine-grained uncertainty relations. FGURs with
equal weights were derived in other articles [51].

Consider two von Neumann projective measurements
A = {|a j〉}d

j=1 and B = {|bk〉}d
k=1 corresponding to two or-

thonormal bases. Let pA and pB be the probabilities of
performing measurements A, B and the resulting probabilities
read p(ai|A) = 〈ai|ρ|ai〉 and p(b j |B) = 〈b j |ρ|b j〉 with i, j =
1, 2, . . . , d . For any combination of outcome i, j, our explicit
fine-grained uncertainty relation for A, B reads

ζi j = pA + pB + √
(pA − pB)2 + 4pA pB|〈ai|b j〉|2

2
. (3)

In fact, the weighted probability pA p(ai|A) + pB p(b j |B) can
be formulated as an expectation value Trρ�i j of some Her-
mitian operator �i j = pA|ai〉〈ai| + pB|b j〉〈b j | and thus the
nonlocality bound ζi j , i.e., the maximal value of the weighted
probability over all possible states, is the largest eigenvalue
of �i j as given in Eq. (3). In the two-dimensional subspace
spanned by |ai〉 and |b j〉, we can choose an orthogonal ba-
sis {|ai〉, |a⊥

i 〉} in which |b j〉 = |ai〉〈ai|b j〉 + |a⊥
i 〉〈a⊥

i |b j〉 with
|〈ai|b j〉|2 + |〈a⊥

i |b j〉|2 = 1. In this basis, we have

�i j =
(

pA + pB|〈ai|b j〉|2 pB〈ai|b j〉〈b j |a⊥
i 〉

pB〈a⊥
i |b j〉〈b j |ai〉 pB|〈a⊥

i |b j〉|2
)

whose largest eigenvalue is given by the right-hand side
(r.h.s.) of Eq. (3). We note here that the coefficients pA and pB

can be arbitrary, not necessarily normalized. As an example,
we consider two mutually unbiased bases (MUBs) [52,53] sat-
isfying |〈ai|b j〉| = 1/

√
d for all i, j. By setting pA = pB = 1,

we reproduce the FGUR for MUBs:

p(ai|A) + p(b j |B) � 1 + 1√
d

. (4)

Now we consider a qubit and perform m measurements
specified by Bloch vectors {rx} according to a priori proba-
bility {px}, which needs not to be normalized and we denote
p = ∑

x px. Let {p(ax|x, ρ) = 〈ax|ρ|ax〉 be the probability
distribution for the xth observable and the weighted probabil-
ity

∑
x px p(ax|x, ρ) is the expectation value of the following

Hermitian operator:

∑
x

px
I + (−1)ax �rx · �σ

2
= p

2
+ �σ

2

∑
x

px(−1)ax �rx

whose maximal eigenvalue gives the following FGUR:

ζa = p

2
+ 1

2

√∑
x p2

x + ∑
x �=y px py(−1)ai+a j cos θxy, (5)

where cos θxy = rxry. Specifically, in the case of two qubit
observables, we have only one independent probability each
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and the explicit fine-grained uncertainty relation reads

ζab =
pA + pB +

√
p2

A + 2pA pB(−1)a+b cos θ + p2
B

2
.

(6)

We note that all the fine-grained uncertainty relations above
are tight as the corresponding maximums are attainable.

III. QUANTUM NONLOCALITY BOUNDS FROM FGUR

We consider a general Bell scenario (n, m, 2) of n
space-like parties labeled with N = {1, . . . , n} with each ob-
server performing m dichotomic measurements labeled with
M = {1, . . . , m}. We denote by M = ∪α⊆N Mα all possible
measurement settings and by A = ∪α⊆N {0, 1}α the corre-
sponding possible outcomes with resulting joint probability
being p(a|x) = pn(a1, a2, . . . , an|x1, x2, . . . , xn). The super-
script represents the number of variates. A most general Bell
inequality reads

B =
∑

x

(−1)ωx sxEx =
∑
a,x

(−1)|a|+ωx sx p(a|x), (7)

where |a| = ∑
i ai, sx � 0, ωx ∈ {0, 1}, and the summation

is over all possible measurement settings x ∈ M and corre-
sponding outcomes a ∈ A. In addition, the outcomes a depend
on measurement settings x. We note that, commonly for di-
chotomic measurements, the Bell inequalities are given in
terms of correlations Ex = ∑

a(−1)|a| p(a|x) and it is clear that
the above form is the most general in this Bell scenario.

In a realistic and local model, the Bell inequality is
bounded from above by some real value, and quantum corre-
lations may give rise to some larger values and the Tsirelson
bound is the maximal violation allowed by quantum theory.
The boundary of quantum correlation is therefore delineated
by all the Tsirelson bounds of all possible Bell inequalities in
the given scenario. The search for the maximal violation of
Bell inequality over all the quantum states and measurements
is, however, a hard problem [54] as there are too many free pa-
rameters. Some other more efficient numerical methods such
as SDP can reach the exact value only in the asymptotic limit.
Here, we propose a general method to derive the Tsirelson
bounds of various kinds of Bell inequalities of dichotomic
measurements by using FGUR.

We note that, in its original formulation Eq. (7), half of the
coefficients are negative. To apply our FGUR with positive
weights, our first step is to reformulate the given Bell inequal-
ity in terms of positive coefficients. This is always possible
as there are only two outcomes for each local measurement
and the probabilities are normalized for all measurement set-
tings. In fact, by denoting Hx = {a ∈ A | |a| = ωx} for each
measurement setting x ∈ M, we can rewrite

B =
∑

x

sx
(∑

a∈Hx
p(a|x) − ∑

a�∈Hx
p(a|x)

)
= 2

∑
x

∑
a∈Hx

sx p(a|x) −
∑

x

sx

:= 2b − c, (8)

where for a specific Bell inequality coefficients sx are given
so that the second term c is a constant. One has only to bound

b, and as all coefficients are nonnegative, we can apply our
weighted FGUR.

The joint probabilities in b can be split into two parts: the
kth party and the remaining k̄ parties. Then, we can recast
b as

b =
∑

x

∑
a∈Hx

sx p(a|x)

=
∑

xk̄

m∑
xk=1

∑
a∈Hx

sx pk̄ (ak|xk )p(ak̄|xk̄ )

=
∑
xk̄ ,ak̄

⎛
⎝ m∑

xk=1

sx pk̄ (|ak̄| + ωx|xk )

⎞
⎠p(ak̄|xk̄ ). (9)

First, we can rewrite p(a|x) = pk̄ (ak|xk )p(ak̄|xk̄ ) as a
product of the kth conditional probablity pk̄ (ak|xk ) =
p1(ak|xk, x1 = a . . . xk−1 = ak−1, xk+1 = ak+1, . . . , xn =
an) = p(a|x)/p(ak̄|xk̄ ), which, measuring xk on the kth
conditional state that produced after the remaining parties
measured, and the remaining k̄ joint probability p(ak̄|xk̄ ) =
pn−1(a1, . . . , ak−1, ak+1, . . . , an|x1, . . . , xk−1, xk+1, . . . , xn)
= ∑

ak
p(a|x), which is the probabilities that measuring xk̄ on

the original state ρ and obtaining outcome ak̄ . Because of the
nonsignaling condition of the n space-like parties, the split
is always possible, and we can always sum the kth party and
the k̄ parties separately. Second, in the third line, we split ak

from
∑

a∈Hx
. On account of a ∈ Hx, for any ak̄ , we can solve

ak = |ak̄| + ωx from the condition in Hx.
Then, we bound the sum of the kth probability in the round

bracket with FGUR,

b �
∑
xk̄ ,ak̄

ζak ({sx}xk , {θi j})p(ak̄|xk̄ )

�
∑

xk̄

max
ak̄

ζak ({sx}xk , {θi j})

� max
{θi j}

∑
xk̄

max
ak̄

ζak ({sx}xk , {θi j}) := ζsup. (10)

The first inequality comes from weighted FGUR Eq. (5) with
ζak ({sx}xk , {θi j}) being the upper bound showing explicitly its
dependence on the weights {sx = sxk̄ xk }xk and angles among
measurements of the kth party. We use the subscript ak = {ak}
to denote the outcome vector of measuring xk . For different xk ,
we have different ak which depends on ak̄ and all the ak form
a vector ak = {ak}. For most canonical Bell inequalities, the
ζak are equal for all the p(ak̄|xk̄ ). However, for the very few
extremely special Bell inequalities, the ζak are unequal, so we
relax it with the maximal ζak in the second inequality. Then,
we only need to solve the maximum ζsup about the function
of {θi j} in the last line. Finally, we get a nonlocality bound
B � 2ζsup − c.

Some remarks are in order. First, for a canonical Bell in-
equality of n parties, it may contain correlations with less than
n like Es,s+1,...,t−1,t and 1 < s < t < n. While the split choice
of party k is arbitrary, we assume that party k belongs to the
support of all correlations in the above derivation. If there
are correlations not involving k, for instance, k > t or k < s,
we can choose another party s < k1 < t and bound similarly
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the rest terms in B with Eqs. (9) and (10). This process can go
on until we can cover all the correlations. Second, we might
obtain the boundary of quantum correlation by ranging over
all possible coefficients sx. In the next section, we will derive
the boundary of the (2,2,2) scenario for demonstration. Third,
our method above can be generalized to scenarios involving
measurements with three or more outcomes, provided that we
have as effective FGURs as qubit case. However, reaching
the exact upper bound is challenging for the high-dimensional
Bell inequalities because the fine-grained uncertainty relations
of high-dimensional systems might not be tight. Our method is
general, in principle, only if you can replace the ζak in different
scenarios.

IV. BIPARTITE SCENARIO

As the first application, we consider the simplest Bell
scenario (2,2,2) in which two observers A, B performing two
local dichotomic measurements A0,1, B0,1, respectively. Al-
though CHSH inequalities are complete in this scenario, other
Bell inequalities such as tilted CHSH inequality [55] found
important applications. Here we consider the following gen-
eralized Bell inequality:

Bs = s00A0B0 + s01A0B1 + s10A1B0 − A1B1, (11)

with sxy > 0. We note that the relevant measurement settings
are {AxBy} and the corresponding coefficients are sx = {sxy}
and, for convenience, we denote s11 = 1 together with signs
ωx = xy. To apply FGUR to the party A, we at first rewrite
Bs = 2bs − cs according to Eq. (8) with cs = ∑

xy sxy and we
can bound

bs =
∑
b,y

∑
x

sxy p(b + xy, b|xy)

=
∑
b,y

p(b|y)
∑

x

sxy pb|y(b + xy|x)

�
∑
b,y

p(b|y)ζ(b,b+y)({s0y, s1y}, θ )

=
∑

y

ζ(0,y)({s0y, s1y}, θ )

= cs

2
+ 1

2

∑
y

√
s2

0y + s2
1y + 2s0ys1y(−1)y cos θ

= cs

2
+ 1

2

∑
y

√
s0ys1y

√
s2

0y+s2
1y

s0ys1y
+ 2(−1)y cos θ

� cs

2
+ 1

2

√∑
y s0ys1y

√∑
y

s2
0y+s2

1y

s0ys1y

:= cs + Ts

2
,

where the first inequality is due to FGUR on local system
A while the second inequality is due to the Cauchy-Schwarz
inequality. As a result, we have nonlocality bound Bs = 2bs −
cs � Ts with

Ts :=
√∑

xy s2
xy + (∏

xy sxy
)(∑

xy s−2
xy

)
(12)

being exactly the Tsirelson bound in this case, i.e., the largest
possible eigenvalue of the corresponding Bell operator (see
Appendix A). In the case of s10 = 1 and s01 = s00 = α we
reproduce the Tsirelson bound Ts = 2

√
1 + α2 for a family of

tilted Bell inequalities [55].
In the above derivation, we note that, for the Cauchy-

Schwarz inequality to be saturated, there should be some θ

such that

2 cos θ
s00s10 + s01s11

s00s10s01s11
= 1

s2
01

+ 1

s2
11

− 1

s2
00

− 1

s2
10

.

As | cos θ | � 1 we see that Ts is the Tsirelson bound for the
generalized Bell inequality iff

min
x,y

sxy

∑
xy

1

sxy
� 2. (13)

Otherwise, the maximal value of bs is attained at compatible
measurements, i.e., θ = 0, π , which means that the corre-
sponding Bell inequality has no quantum advantages (see
Appendix B).

Bipartite full correlations in the (2,2,2) scenario are com-
pletely characterized by the TLM inequality. In what follows
we shall show that the joint numerical range of four cor-
relations Exy = 〈AxBy〉 will result in exactly the same TLM
boundary. In the four-dimensional parametric space with four
correlations Exy as coordinates, the Tsirelson bound max Bs =
Ts are hyperplanes touching the correlation boundary. The
envelope of the these hyperplanes reads

E◦
xy = ∂Ts

∂sxy
= 1

Ts

⎛
⎝sxy − s

s3
xy

+ s

2sxy

∑
x′y′

1

s2
x′y′

⎞
⎠,

which s := ∏
xy sxy. Moreover, for a nontrivial Bell inequality,

the condition Eq. (13) must hold and therefore there exist four
angles 0 < θxy < π with

∑
xy θxy = 2θ11 and a constant λ such

that sxy = λ/ sin θxy. In this case, the correlation boundary
become E◦

xy = (−1)xy cos θxy, which coincides with the TLM
boundary.

As the next application, we consider a generalization of
the CHSH inequality to the Bell scenario (2, m, 2) with two
parties measuring m dichotomic observables each, denoted by
Ak, Bk . In this case, the chained Bell inequality reads

Bm =
m∑

i=1

AiBi +
m−1∑
i=1

Ai+1Bi − A1Bm. (14)

Wehner generalized the CHSH inequality to the multimea-
surement inequality and derived its Tsirelson bound Tm =
2m cos π

2m with semi-definite programming [41]. As the first
step, we rewrite Bm = 2bm − cm with cm = 2m and for the
chained Bell inequality, we have

bm =
m−1∑
i=1

∑
a

[(aa|ii) + p(aa|i + 1, i)]

+
∑

a

p(aa|mm) + p(aā|1m)

=
m−1∑
i=1

1∑
a=0

[pa|i(a|i) + pa|i(a|i + 1)]pB(a|i)
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+
1∑

a=0

[pa|m(a|1) + pa|m(ā|n)]pB(a|m)

� m +
n−1∑
i=1

√
(1 + cos θi )/2 +

√
(1 − cos θm)/2

� m + Tm

2
. (15)

According to Eqs. (9) and (10), the first step is the expression
of the bm. Then, we split the joint probabilities and regroup
them in the second step. Finally, we use the weighted FGUR
to constrain the conditional probabilities in the round brackets.
It is worth noting that θi is the angle between Ai and Ai+1

actually, and we assume that all measurement directions are
in a plane and the angle between A1 and Am is θm = ∑n−1

i=1 θi.
In this multimeasurement scenario, bm is a function of m
different angles θi as we have m different measurements, and
its maximal values over all possible angles can be found
analytically (see Appendix C) to reach the Tsirelson bound
Bm � Tm in the case of all the θi = π/m being equal.

V. TRIPARTITE SCENARIO

In the Bell scenario (3,2,2), three parties A, B,C measure
two dichotomic measurements each and the local correlations
are completely characterized by 46 tight Bell inequalities as
documented by Śliwa [42], with their maximum quantum vi-
olation found numerically in [43]. Regarding the applications
of FGUR, all the 46 inequalities can be divided into three
classes. The first class includes six Bell inequalities num-
bered {3, 9, 11, 13, 14, 17} for which the Tsirelson bounds are
determined by FGUR using our analytical approach. As an
example of the first class, we consider the 17th Bell inequality
in [43]

B17 = A0 + A1 + A0B0 + A1B0 + A0C0 + A1C0

− A0B0C0 − A1B0C0 + 2A0B1C1 − 2A1B1C1. (16)

In this case the relevant measurement settings are {Ax},
{AxB0, AxC0}, and {AxByCy} and coefficients sx and signs ωx

can be read off straightforwardly. To apply FGUR on party A
we at first rewrite B17 = 2b17 − c17 with c17 = 12 and we can
bound

b17 =
1∑

x,b,c=0

p(0bc|x00) + p(bbc|x00) + p(cbc|x00)

+ p(b + c + 1, b, c|x00) + 2p(x + b + c, b, c|x11)

= 2 + 2
1∑

b,c=0

(
pĀ(bc|0) + pĀ(bc|1)

)
p(bc|00)

+ 2
1∑

b,c=0

(pĀ(b + c|0) + pĀ(1 + b + c|1))p(bc|11)

� 6 + 2(
√

(1 + cos θA)/2 +
√

(1 − cos θA)/2)

� 6 + 2
√

2. (17)

In b17, there are two group of joint probablities which are∑
a,b,c p(abc|000) and

∑
a,b,c p(abc|100) and they can be

summed to 1. Thus we have accounted for the Tsirelson bound
B17 � 4

√
2 as shown numerically in [43] by using FGUR.

Some remarks are in order. For the measurement settings
with support 1, e.g., A0, one can have the freedom of choos-
ing which observables are measured alongside, e.g., p(a|x) =∑

bc p(abc|xyz) with y, z being arbitrary due to the nonsignal-
ing condition and for the measurement setting with support on
two parties we still have the freedom to choose the measure-
ment setting of the rest party, e.g., p(ab|xy) = ∑

c p(abc|xyz)
with z being arbitrary. Different choices may lead to different
upper bounds for quantum nonlocality. For example, we can
also expand the probabilities with a different measurement
setting, such as

b17 =
1∑

x,b,c=0

p(0bc|x11) + p(bbc|x01) + p(|bcb|x10)

+ p(b, c, 1 + b + c|x00) + 2p(b, c, x + b + c|x11)

� 6 + (2
√

(1 + cos θA)/2 +
√

(1 − cos θA)/2)

� 6 + 2
√

5, (18)

giving rise to the upper bound 4
√

5, which is greater than
the Tsirelson bound 4

√
2. As a result, we need to explore

different possible expansions and we should select the optimal
expansion for a better nonlocality bound.

FGURs are able to determine the exact Tsirelson bounds
for many more tight tripartite Bell inequalities beyond the
general and analytical approach proposed in Sec. III. With the
help of numerical search, e.g., the sequential quadratic pro-
gramming (SQP), we can numerically calculate the Tsirelson
bounds with the constraints given by the fine-grained un-
certainty relations. The second class includes those tight
tripartite Bell inequalities numbered {4–6,8,12,15,16,18–
20,22,24,26,28–30,33,36–39,42,44,45}. A typical example is
the eighth inequality, which reads

B8 = A0B0 + A1B0 + A0B1 + A1B1 + 2A0B0C0

− 2A1B1C0 + A0B0C1 − A0B1C0 − A0B1C1

+ A1B1C1. (19)

In this case, we cannot pair off all the items with one parti-
tion and a direct application of the method proposed in this
section fails to give the optimal result 20/3.

There are still 14 untight tripartite Bell inequalities left,
{7, 10, 21, 23, 25, 27, 31, 32, 34, 35, 40, 41, 43, 46}. In this
class, even aided with the numerical method, the fine-grained
uncertainty relations alone are insufficient to determine the
Tsirelson bound. A typical example is the seventh inequality

B7 = 3A0B0C0 + A1B0C0 + A0B1C0 − A1B1C0

+ A0B0C1 − A1B0C1 − A0B1C1 + A1B1C1. (20)

A direct application of the FGUR method will lead to
the bound b7 � √

(5 + 3 cos θ )/2 + 3
√

(1 − cos θ )/2 + 5 �
9 and c7 = 10. Thus we have B7 � 8 with the actual Tsirelson
bound being 20/3. The optimal upper bound by the numer-
ical search via SQP is 7.21. This is because that quantum
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correlation cannot saturate the upper bound of each fine-
grained uncertainty relation in this case since each uncertainty
relation constraints on a conditional state and all the condi-
tional states originated from a specific original quantum state
|ψ〉. Only parts of the fine-grained uncertainty relations can
reach the upper bound.

To explore the boundary of tripartite quantum correlations,
we consider the following most general Bell inequality for
correlations:

Bp =
1∑

x,y,z=0

sxyz(−1)ωxyz AxByCz. (21)

When the coefficients sxyz range over all possible values, we
might reproduce the partial boundary of tripartite quantum
correlation by finding their Tsirelson bounds.

For ease of calculation, we can set sxyz = sxyz+100. Based on
the symmetry of signs and the cyclic permutational symmetry
of A, B,C, we only need to consider four different cases about
{ωxyz} depending on how many 1’s are there. The first case is
ωxyz = 0 for all x, y, z, which is equivalent to all the ωxyz = 1
based on symmetry. This case is trivial as both the quantum
bound and classical bound are equal to

∑
x,y,z sxyz.

For the last three cases, we set (i) ω011 = 1; (ii) ω010 =
ω011 = 1; (iii) ω001 = ω010 = ω011 = 1 with all the other
ωxyz = 0. For convenience, we set sxyz = syz to be independent

of the measurement setting x of A. Then we have

Bp �
∑
±

S±

√
1 ± cos θ

2
�

√
S2+ + S2−, (22)

with S± = ∑
yz[1 + (−1)ω0yz ]syz which is attained by tan θ

2 =
S−/S+.

VI. WWZB INEQUALITY

Now we consider the quantum correlations in a gen-
eral Bell scenario (n, 2, 2) where there are n observers
labeled with N = {1, 2, . . . , n} and measure two alternative
dichotomic observables each. The set of all correlations in this
scenario is completely characterized by a complete set of Bell
inequalities [44]

BWWZB =
∑
a,x

∑
y

Sy(−1)x·y+|a| p(a|x), (23)

with 2n given independent signs Sy = ±1 as parameters,
where x, y, a ∈ {0, 1}n are n-dimensional binary vectors with
addition modular 2 and |a| = ∑

i∈N ai. For later use we in-
troduce the Fourier transformation S̃x = ∑

y Sy(−1)x·y of Sx

and denote S̃x = |S̃x|(−1)ωx . By rewriting the Bell inequality
BWWZB = 2b − c according to Eq. (8) with c = ∑

x |S̃x| and

bWWZB =
∑

x

|S̃x|
∑

|a|+ωx=0

p(a|x) =
∑
x1,x′

|S̃x1x′ |
∑

a′
p(|a′| + ωx1x′ , a′|x1, x′)

=
∑
a′,x′

p(a′|x′)
∑

x1

|S̃x1x′ | pa′ |x′ (|a′| + ωx1x′ |x1)

�
∑
a′,x′

p(a′|x′)
|S̃0x′ | + |S̃1x′ | +

√
S̃2

0x′ + S̃2
1x′ + 2S̃0x′ S̃1x′ cos θ

2

=
∑

x′

|S̃0x′ | + |S̃1x′ | +
√

S̃2
0x′ + S̃2

1x′ + 2S̃0x′ S̃1x′ cos θ

2

� 1

2

∑
x

|S̃x| + 1

2

√∑
x′ 1

√∑
x S̃2

x = c

2
+ 1

2
× 2

3n−1
2 . (24)

Here, we choose the first subsystem on which FGUR will be
applied and write x = (x1, x′) with x′ being the measurement
setting for the rest parties with the corresponding outcome
denoted by a′. In the first inequality, we apply weighted FGUR
on the first subsystem with weights {|S̃0,x′ |, |S̃1,x′ |} and out-
comes {|a′| + ω0x′ , |a′| + ω1x′ } with the upper bounds being
independent of a′ for all measurement settings x′. The second
inequality is due to the Cauchy-Schwarz inequality and we
take into the orthogonality

∑
x′

S̃0x′ S̃1x′ =
∑
x′,y,z

Sy1y′Sz1z′ (−1)z1+x′(y′+z′ )

= 2n−1
∑

y′
(S0y′ + S1y′ )(S0y′ − S1y′ ) = 0.

Thus we obtain the Tsirelson bound BWWZB � 2
3n−1

2 in this
general scenario.

VII. CONCLUSION

In this work, we at first prove an analytical weighted fine-
grained uncertainty relation and propose a reformulation of
Bell inequalities involving dichotomic observables in such a
way that the FGURs can be readily applied. As applications,
we show that the Tsirelson bounds in various Bell scenar-
ios are completely determined by the uncertainty principle.
These scenarios include the most general Bell inequality for
correlations as well as a chained Bell inequality in bipartite
systems, 32 out 46 tight Bell inequalities in tripartite systems,
and a complete set of Bell inequalities for correlations. Our
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proposed method is also applicable in determining the
boundary of quantum correlation, e.g., the TLM correlation
boundary. It should be emphasized that all the Tsirelson
bounds obtained here, although we consider only FGURs for
incompatible qubit measurements, are actually device inde-
pendent. This is because, in the (n, 2, 2) scenario, all quantum
extreme points are achievable by measuring n-qubit pure
states with projective measurements [56] and the maximal
violation of multipartite Bell inequalities can self-test the cor-
responding quantum states and measurements [57].

Conceptually, two main assumptions in our derivations of
Tsirelson bounds are local fine-grained uncertainty relations
with general weight and nonsignaling condition, which is
implicitly used in our reformulation of Bell inequalities and
numerical search based on FGURs. In the bipartite scenario,
not only the Tsirelson bound, but also the exact boundary can
be obtained based on these two assumptions. Although in the
tripartite scenarios, the Tsirelson bounds for most of the tight
Bell inequalities, there are 14 tight Bell inequalities whose
largest violations remain unaccounted for. This might call for
some genuine multipartite quantum features to account for the
degree of quantum nonlocality in all cases.

Finally, we emphasize that our approach can be readily
applied to high-dimensional scenarios. We first use proba-
bilities to reexpress the high-dimensional Bell inequalities
and then replace the weighted FGUR Eq. (5) with a specific
high-dimensional FGUR, e.g., as proposed in [34]. However,
exact Tsirelson bounds might not follow from this approach
as the existing high-dimensional FGURs are not tight. This
presents us with the challenge of finding more effective high-
dimensional FGURs.
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APPENDIX A: QUANTUM BOUND OF BELL
INEQUALITY EQ. (11)

In this Appendix, we shall find the maximal eigenvalue of
the Bell operator Eq. (11) of a most general Bell inequality for
correlations. More generally, we consider the following Bell
expression:

B̂s = Â0(s00B̂0 + s01B̂1) + Â1(s10B̂0 + s11B̂1),

by assuming s11 = −1. For convenience we denote

X± = s00s01 ∓ s10s11, Y± = s00s10 ∓ s01s11,

Z± = −s00s11 ± s01s10, s = s00s11s01s10,

and consider a two-qubit system on which two local qubit
measurements Âi = �ai · �σA and B̂ j = �b j · �σB are performed,
with a = �a0 · �a1 and b = �b0 · �b1 as well as ā = √

1 − a2 and
b̄ = √

1 − b2. Let ŶA and ŶB be the ideal qubit observable
along the directions orthogonal to �a0,1 and �b0,1 respectively,
and it holds Â0Â1 = a + iāŶA and B̂0B̂1 = b + ib̄ŶB. To calcu-
late the eigenvalues of the Bell expression B̂s we consider its

square

B̂2
s = Â2

0B2
s+ + A2

1B2
s− + A0A1Bs+Bs− + A1A0Bs−Bs+

=
∑

i j

s2
i j + 2X+b + a{Bs+, Bs−} + iāŶA[Bs+, Bs−]

=
∑

i j

s2
i j + 2X+b + 2a(Y+ + Z+b) − 2āb̄Z−ŶAŶB

�
∑

i j

s2
i j + 2X+b + 2a(Y+ − Z+b) + 2āb̄|Z−|

as operators ŶA, ŶB are commuting and have eigenvalues ±1.
Applications of Cauchy inequality lead to

B̂2
s �

∑
i j

s2
i j + 2X+b + 2

√
(Y+ + Z+b)2 + b̄2Z2−

=
∑

i j

s2
i j + X+Y+Z+

2s
+ X+√

s

(
2b

√
s − Y+Z+

2
√

s

)

+ 2

√
Y 2−Z2−

4s
−

(
2b

√
s − Y+Z+

2
√

s

)2

�
∑

i j

s2
i j + X+Y+Z+

2s
+

√
4 + X 2+

s
× |Y−Z−|

2
√

s

=
∑

i j

s2
i j + X+Y+Z+

2s
+ |X−Y−Z−|

2s

=
∑

i j

s2
i j + s

s2
i j

= T 2
s .

That is, the maximal eigenvalue of B̂s over all possible states
and local measurements is Ts.

APPENDIX B: CONDITION FOR QUANTUM ADVANTAGES

Lemma. For a set of four positive numbers {sxy} there exists
positive λ and four angles θxy satisfying∑

xy

(−1)xyθxy = 0, 0 < θxy < π,

such that sxy = λ/ sin θxy iff

min
x,y

sxy

∑
xy

1

sxy
> 2. (B1)

Proof. Obviously we can define three angles

sin θxy = λ

sxy
, (x, y) �= (1, 1)

for some suitably chosen λ. Then the condition θ11 = θ00 +
θ01 + θ10 imposes a constraint on possible λ

sin(θ00 + θ01 + θ10) = sin θ11 = λ

s11
, (B2)
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which reads

sin θ00 cos θ01 cos θ10 + sin θ01 cos θ00 cos θ10

+ sin θ10 cos θ00 cos θ01 − sin θ00 sin θ01 sin θ10 = λ
s11

,

with cos θxy = (−1)ωxy

√
1 − λ2

s2
xy

for some ωxy = 0, 1 for
(x, y) �= (1, 1). Taking into account λ �= 0 and by squaring the
constraint above, we have(

1 − λ2

s2
10

)⎛
⎝1 − λ2

s2
01

s2
00

+
1 − λ2

s2
00

s2
01

+ 2 cos θ00 cos θ01

s00s01

⎞
⎠

=
(

1

s11
+ λ2

s01s10s00

)2

+ 1

s2
10

(
1 − λ2

s2
00

)(
1 − λ2

s2
01

)

− 2

(
1

s11
+ λ2

s01s10s00

)
cos θ00 cos θ01

s10
,

which simplifies into

2

(
1

s11s10
+ 1

s01s00

)
cos θ00 cos θ01

= 1

s2
11

+ 1

s2
10

− 1

s2
00

− 1

s2
01

+ 2λ2

s00s01

(
1

s11s10
+ 1

s01s00

)

from which it follows, by squaring again,

4

(
1

s11s10
+ 1

s01s00

)2(
1 − λ2

s2
00

− λ2

s2
01

)

=
(

1

s2
11

+ 1

s2
10

− 1

s2
00

− 1

s2
01

)2

+ 4λ2

s00s01

(
1

s11s10
+ 1

s01s00

)(
1

s2
11

+ 1

s2
10

− 1

s2
00

− 1

s2
01

)
,

giving rise to possible λ as

λ2 = s2

4T 2
s

1∏
u,v=0

∑
x,y

(−1)(u+x)(v+y)

sxy
. (B3)

As λ2 must be greater than 0, we have equivalently∑
xy

1

sxy
� max

x,y

2

sxy
, (B4)

which is exactly condition Eq. (B1). One can also check

s2
xy − λ2 = s3

4T 2
s

⎛
⎝∑

u,v

1

s2
uv

− 2

s2
xy

+ 2s2
xy

s

⎞
⎠

2

� 0

for all x, y = 0, 1, i.e., |λ| � minx,y sxy. However, if we start
with condition Eq. (B1) then we can introduce a positive λ as
defined in Eq. (B3) from which four angles 0 < θxy < π are
well defined by sin θxy = λ/sxy with x, y = 0, 1. By working
backward from the process giving rise to Eq. (B3), we can
obtain Eq. (B2) with suitably chosen ωxy.

APPENDIX C: CHAINED BELL INEQUALITY Bm

In this Appendix, we solve the analytical Tsirelson bound
of Bm. For the chained Bell inequality

Bm =
m∑

i=1

AiBi +
m−1∑
i=1

Ai+1Bi − A1Bm

we have, as previously derived in Eq. (15),

bm − m �
m−1∑
i=1

√
1 + cos θi

2
+

√
1 − cos θm

2
:= tm(θ).

Here θi is the angle between Ai and Ai+1 and the angle between
A1 and Am is θm = ∑m−1

i=1 θi as all measurements are assumed
to be in the same plane. The partial derivative with respect to
θi gives

∂tm
∂θi

= − sin θi

2
√

2(1 + cos θi )
+ sin θm

2
√

2(1 − cos θm)
= 0 (C1)

from which it follows that

− sin θi

2
√

2(1 + cos θi )
= − sin θ j

2
√

2(1 + cos θ j )

for any i �= j. As a result all the θi must be equal. Then, we
can set θ = θi and plug it into Eq. (C1) and solve the equation,
we can get θ = π

m , tm( π
m ) = m cos π

2m , and Bm � 2m cos π
2m .

[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
(1935).

[2] E. Schrödinger, Naturwissenschaften 23, 844 (1935).
[3] J. S. Bell, Phys. 1, 195 (1964).
[4] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.

Wehner, Rev. Mod. Phys. 86, 419 (2014).
[5] D. Rosset, J.-D. Bancal, and N. Gisin, J. Phys. A: Math. Theor.

47, 424022 (2014).
[6] W. Heisenberg, Über den Anschaulichen Inhalt der Quantenthe-

oretischen Kinematik und Mechanik (Springer, Berlin, 1985).
[7] H. P. Robertson, Phys. Rev. 34, 163 (1929).
[8] E. Schrödinger, Bulg. J. Phys. 26, 193 (1999); Sitzungsber.

Preuss. Akad. Wiss. Berlin (Math. Phys.) 19, 296 (1930).
[9] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys.

Rev. Lett. 23, 880 (1969).

[10] B. S. Cirel’son, Lett. Math. Phys. 4, 93 (1980).
[11] S. Popescu and D. Rohrlich, Found. Phys. 24, 379 (1994).
[12] M. Pawłowski, T. Paterek, D. Kaszlikowski, V. Scarani,

A. Winter, and M. Żukowski, Nature (London) 461, 1101
(2009).

[13] J. Allcock, N. Brunner, M. Pawlowski, and V. Scarani, Phys.
Rev. A 80, 040103(R) (2009).

[14] T. H. Yang, D. Cavalcanti, M. L. Almeida, C. Teo, and V.
Scarani, New J. Phys. 14, 013061 (2012).

[15] M. Navascués and H. Wunderlich, Proc. R. Soc. A 466, 881
(2009).

[16] T. Fritz, A. B. Sainz, R. Augusiak, J. B. Brask, R. Chaves, A.
Leverrier, and A. Acín, Nat. Commun. 4, 2263 (2013).

[17] G. Brassard, H. Buhrman, N. Linden, A. A. Méthot, A. Tapp,
and F. Unger, Phys. Rev. Lett. 96, 250401 (2006).

022408-8

https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1007/BF01491987
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1088/1751-8113/47/42/424022
https://doi.org/10.1103/PhysRev.34.163
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1007/BF00417500
https://doi.org/10.1007/BF02058098
https://doi.org/10.1038/nature08400
https://doi.org/10.1103/PhysRevA.80.040103
https://doi.org/10.1088/1367-2630/14/1/013061
https://doi.org/10.1098/rspa.2009.0453
https://doi.org/10.1038/ncomms3263
https://doi.org/10.1103/PhysRevLett.96.250401


QUANTUM NONLOCALITY DETERMINED BY … PHYSICAL REVIEW A 109, 022408 (2024)

[18] N. Linden, S. Popescu, A. J. Short, and A. Winter, Phys. Rev.
Lett. 99, 180502 (2007).

[19] H. Barnum, S. Beigi, S. Boixo, M. B. Elliott, and S. Wehner,
Phys. Rev. Lett. 104, 140401 (2010).

[20] A. Cabello, Phys. Rev. Lett. 110, 060402 (2013).
[21] R. Gallego, L. E. Würflinger, A. Acín, and M. Navascués, Phys.

Rev. Lett. 107, 210403 (2011).
[22] M. Navascués, S. Pironio, and A. Acín, Phys. Rev. Lett. 98,

010401 (2007).
[23] M. Navascués, S. Pironio, and A. Acín, New J. Phys. 10, 073013

(2008).
[24] J. Oppenheim and S. Wehner, Science 330, 1072 (2010).
[25] D. Deutsch, Phys. Rev. Lett. 50, 631 (1983).
[26] K. Kraus, Phys. Rev. D 35, 3070 (1987).
[27] H. Maassen and J. B. M. Uffink, Phys. Rev. Lett. 60, 1103

(1988).
[28] M. H. Partovi, Phys. Rev. A 84, 052117 (2011).
[29] S. Friedland, V. Gheorghiu, and G. Gour, Phys. Rev. Lett. 111,

230401 (2013).
[30] M. Ozawa, Phys. Rev. A 67, 042105 (2003).
[31] M. Ozawa, Phys. Lett. A 320, 367 (2004).
[32] J. Erhart, S. Sponar, G. Sulyok, G. Badurek, M. Ozawa, and Y.

Hasegawa, Nat. Phys. 8, 185 (2012).
[33] P. Busch, P. Lahti, and R. F. Werner, Phys. Rev. Lett. 111,

160405 (2013).
[34] G. Sharma, S. Sazim, and S. Mal, Phys. Rev. A 104, 032424

(2021).
[35] T. Pramanik and A. S. Majumdar, Phys. Rev. A 85, 024103

(2012).
[36] J. Feng, Y.-Z. Zhang, M. D. Gould, and H. Fan, Europhys. Lett.

122, 60001 (2018).
[37] Y. Xiao, Y. Xiang, Q. He, and B. C. Sanders, New J. Phys. 22,

073063 (2020).

[38] B. S. Tsirel’son, J. Sov. Math. 36, 557 (1987).
[39] L. J. Landau, Found. Phys. 18, 449 (1988).
[40] L. Masanes, arXiv:quant-ph/0309137.
[41] S. Wehner, Phys. Rev. A 73, 022110 (2006).
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