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We consider quantum two-block group algebra (2BGA) codes, a family of smallest lifted-product (LP) codes.
These codes are related to generalized-bicycle codes, except a cyclic group is replaced with an arbitrary finite
group, generally non-Abelian. As special cases, 2BGA codes include a subset of square-matrix LP codes over
Abelian groups, including quasicyclic codes, and all square-matrix hypergraph-product codes constructed from a
pair of classical group codes. We establish criteria for permutation equivalence of 2BGA codes and give bounds
for their parameters, both explicit and in relation to other quantum and classical codes. We also enumerate the
optimal parameters of all inequivalent binary connected 2BGA codes with stabilizer generator weights W � 8,
of length n � 100 for Abelian groups, and n � 200 for non-Abelian groups.
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I. INTRODUCTION

Recent years have seen a substantial progress in theory
of quantum low-density parity-check (LDPC) codes [1–5].
Generally, any code family with bounded-weight stabilizer
generators and distance scaling logarithmically or faster with
the block length has a finite fault-tolerant threshold to scal-
able error correction [6–8]. Unlike in the case of classical
LDPC codes [9,10] where random matrices are commonly
used to define the code, due to a commutativity constraint,
an algebraic ansatz is required in the case of quantum LDPC
codes. For over a decade, no construction was known to give
distances larger than a square root of the block size n, up to
a polylogarithmic factor [1,6,11–18]. The barrier was broken
by Hastings, Haah, and O’Donnell [2] who demonstrated
a quantum LDPC code family with the distance scaling as
O(n3/5/ polylog n). Soon followed related constructions [3,4],
with Panteleev and Kalachev [5] finally proving the existence
of asymptotically good bounded-stabilizer-generator-weight
quantum LDPC codes, with nonzero asymptotic relative dis-
tances for any asymptotic rate R < 1. Unfortunately, the
constructions in Refs. [2–5] tend to give rather long codes, and
the lower bound [5] for the row weight to give asymptotically
good quantum codes is also very large.

In Ref. [19], in an attempt to construct shorter quantum
LDPC codes with large distances, one of us studied a class
of generalized-bicycle (GB) codes [14,20]. These are index-
two quantum quasicyclic (qQC) codes, a special case of qQC
codes [20–23] where the general upper distance bound related
to the number of blocks does not apply. Important advan-
tages of GB codes are overcomplete set of minimum-weight
stabilizer generators which may improve their performance
in the fault-tolerant setting, and their regular structure which
simplifies implementation and iterative decoding [20,24]. Fur-
thermore, GB codes include [19] codes with linear distance
scaling, unlike, e.g., the hypergraph-product (HP) codes [13],
where the distance can never exceed a square root of the
block length. However, the regular structure of the corre-
sponding matrices also implies [19] that a GB code with

row weight W can be mapped to a code local in dimen-
sion D � W − 1, which implies a power-law upper bound
on the distance, d � O(n1−1/D) (see Ref. [25]). Numeri-
cally, it appears that fixed-weight GB codes have distance
scaling as A(W )n1/2, where A(W ) is an increasing func-
tion of the weight W , although a power-law scaling d =
O(nα ) with α − 1/2 positive but close to zero cannot be
excluded [19].

The goal of this work is to explore parameters of a class
of codes similar to GB codes, where more general symmetry
groups are used instead of cyclic groups (some of the present
results have been announced previously, see Ref. [26]). These
codes are a special case of two-block Calderbank-Shor-Steane
(CSS) codes [14], and also are the smallest lifted-product (LP)
codes [5]. In fact, this work was inspired by the LP codes con-
struction, along with the related work by the same authors on
two-block codes based on Abelian group algebras [27]. Our
main reason to study these two-block group algebra (2BGA)
codes, especially in the non-Abelian case, is that general upper
distance bound [5] for LP codes does not apply in the two-
block case, and neither do the upper distance bounds [19] for
GB codes with row weight W since more general Abelian or
non-Abelian groups do not give matrices with structure as
regular as that of the circulant matrices. On the other hand,
most of the advantages of the GB codes remain. In particular,
these more general codes also have naturally overcomplete
sets of minimum-weight stabilizer generators, which is ex-
pected to improve their performance in the fault-tolerant
setting.

The outline of the rest of the paper is as follows. We
give some background information in Sec. II. In Sec. III, we
discuss general properties of quantum CSS codes constructed
from two square commuting matrices. In Sec. IV we give
the construction of 2BGA codes and analyze their proper-
ties, and in Sec. V discuss the parameters of 2BGA codes
constructed numerically. Finally, we give the conclusions in
Sec. VI. More technical proofs for Secs. III and IV are col-
lected in Appendixes A and B, respectively. Appendix C gives
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additional examples of index-4 qQC 2BGA codes constructed
from groups Cmh and Dm.

II. NOTATIONS AND KNOWN FACTS

A. Classical codes

A classical q-ary error-correcting code with parameters
(n, K, d )q is a set of K strings of length n in an alphabet with
q distinct characters, where any two strings differ in d or more
positions [28]. In a linear code C ⊂ F n using as the alphabet
a finite Galois field F ≡ Fq, where q = pm is a power of a
prime p, the field characteristic, the strings in the code form a
linear space of dimension k, so that K = qk . The parameters of
such a code are denoted [n, k, d]q, where the distance d is the
minimum Hamming weight of a nonzero vector in the code.
For a trivial code with k = 0 (empty set of nonzero vectors),
we set d equal to infinity.

Rows of a generator matrix G of a linear code C ≡ CG

are nonzero vectors in the code which include a complete
basis, so that any vector of the code can be written as a linear
combination of rows of G; evidently, rank G = k. The code
C⊥ dual to C is formed by all vectors in F n orthogonal to the
vectors in C. A generator matrix H of the code C⊥

G is called
a parity-check matrix of the original code CG, it satisfies the
duality relation

GHT = 0, rank G + rank H = n. (1)

Given a string c ∈ F n, denote V ≡ [n] ≡ {1, 2, . . . , n} the
set indexing the individual characters. For any index set I ⊆ V
of length |I| = r, let c[I] ∈ F r be a substring of c with the
characters in all positions i �∈ I dropped. We say that c[I] is
the string cpunctured outside I. Similarly, for an n-column
matrix G, the punctured matrix G[I] is formed by the rows of
G punctured outside I. If C = CG is an F -linear code with
the generating matrix G, then the code of length |I| with
the generating matrix G[I] is the code punctured outside I,
Cp(I ) ≡ {c[I] | c ∈ C}.

The shortened code Cs(I ) is formed similarly, except only
from the codewords supported inside I, Cs(I ) = {c[I] | c =
(c1, c2, . . . , cn) ∈ C and ci = 0 for each i �∈ I}. The dual of a
punctured code Cp(I ) is the shortened dual code [Cp(I )]⊥ =
(C⊥)s(I ). To express this relation in terms of matrices, con-
sider a pair of mutually dual matrices in Eq. (1) and a code
C ≡ CG = C⊥

H . Denote a generator matrix of the shortened
code Cs(I ) as GI . Duality between the punctured original
and the shortened dual codes implies that the corresponding
generator matrices GI and H[I] are also mutually dual [28],

H[I] GT
I = 0, rank GI + rank H[I] = |I|. (2)

Similarly, HI is a dual of the punctured matrix G[I].
Relevant for this work are left and right group codes con-

structed in a group algebra [29,30]. Namely, for a given finite
field F and a finite group G of order |G| = �, we consider the
group algebra (a ring) F [G] defined as an F -linear space of all
formal sums

x ≡
∑
g∈G

xgg, xg ∈ F (3)

where group elements g ∈ G serve as basis vectors, equipped
with the product naturally associated with the group opera-

tion,

ab =
∑
g∈G

( ∑
h∈G

ahbh−1g

)
g, a, b ∈ F [G]. (4)

Evidently, Eq. (3) defines a one-to-one map between any vec-
tor x ∈ F � with coefficients xg labeled by group elements and
a group algebra element x ∈ F [G], and a similar map between
sets of vectors and sets of group algebra elements. A left G
code in F � is such a map of a left ideal JL in the ring F [G],
defined as an F -linear space of elements of F [G] such that
for any x ∈ JL and any r ∈ F [G], rx ∈ JL. A right G code is
defined similarly in terms of a right ideal JR, with the opposite
order in the product, xr ∈ JR for any x ∈ JR and any r ∈ F [G].

The structure of ideals in F [G] is particularly simple if
characteristics of the field does not divide the group size
gcd(p, �) = 1. Then, according to Maschke’s theorem, the
group algebra is semisimple, and any ideal is a principal ideal
generated by an idempotent, e.g., JL = F [G] fJ for a left ideal,
with idempotent f 2

J = fJ ∈ JL, and similarly, JR = eJF [G] for
a right ideal, with idempotent e2

J = eJ ∈ JR (see, e.g., Corol-
lary 2.2.5 in Ref. [31]).

The usual inner product in F � is related to the group trace
with the help of a linear map [32] :̂ F [G] → F [G],

â ≡
∑
g∈G

ag−1 g =
∑
g∈G

agg−1. (5)

Namely, for any a, b ∈ F �, and the corresponding group alge-
bra elements a, b ∈ F [G],

a · b ≡
∑
g∈G

agbg = trG (̂ab) = trG(b̂a). (6)

As a reminder, the group trace is defined as the coefficient of
the group identity element 1 ∈ G: for any a ∈ F [G], trG(a) ≡
a1 ∈ F .

Given a right group code in a semisimple group algebra
F [G] equivalent to a right ideal JR ≡ â · F [G] generated by an
element â ∈ F [G], any group algebra element x correspond-
ing to a vector x in the orthogonal code satisfies [32] the
equation xa = 0. If we denote an idempotent e2

a = ea ∈ F [G]
such that eaa = a, the solution of the orthogonality equation is
the left ideal JL ≡ F [G](1 − ea).

B. Quantum CSS codes

A quantum Calderbank-Shor-Steane (CSS) code [33] Q =
CSS(HX , HZ ) with parameters [[n, k, d]]q over a Galois field
F is isomorphic to a direct sum of an X - and a Z-like code,

Q = QX ⊕ QZ = C⊥
HZ

/CHX ⊕ C⊥
HX

/CHZ , (7)

where each term in the right-hand side is a quotient of two lin-
ear spaces in F n, and rows of the stabilizer generator matrices
HX and HZ must be orthogonal:

HX HT
Z = 0. (8)

Explicitly, e.g., elements of QZ are equivalence classes of
vectors orthogonal to the rows of the matrix HX , with any two
vectors whose difference is a linear combination of the rows
of HZ identified. Vectors in the same class are called mutu-
ally degenerate, while vectors in the class of the zero vector
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are called trivial. The codes QX and QZ have qk degeneracy
classes each, where

k = n − rank HX − rank HZ (9)

is the quantum code dimension. The distance of the code is
d ≡ min(dX , dZ ), where the two CSS distances,

dX = min
c∈C⊥

HZ
\CHX

wgt c, dZ = min
c∈C⊥

HX
\CHZ

wgt c, (10)

are the minimum weights of nontrivial vectors (any represen-
tative) in C⊥

HZ
and C⊥

HX
, respectively. A set of logical operators’

representatives in QX and QZ can be chosen to form k canoni-
cally conjugate pairs. Equivalently, logical generator matrices
LX and LZ with k rows each can be constructed such that

LX HT
Z = 0, LZHT

X = 0, LX LT
Z = Ik, (11)

where Ik is a k × k identity matrix.
Physically, a quantum code operates in a Hilbert space H⊗n

q
associated with n quantum-mechanical systems, Galois qudits
[34], with q states each, and a well-defined basis of X and
Z operators acting in H⊗n

q [35]. Elements of the codes CHX

and CHZ correspond to X and Z operators in the stabilizer
group S acting in the Hilbert space. Generators of S must
be measured frequently during the operation of the code;
generating matrices HX and HZ with smaller row weights
result in codes which are easier to implement in practice.
Orthogonality condition (8) ensures that the stabilizer group is
Abelian. Nontrivial vectors in QX and QZ correspond to X and
Z logical operators, respectively. Codes with larger distances
have logical operators which involve more qudits; such codes
typically give better protection.

More generally, a CSS subsystem code [36,37]

CSS(GX , GZ ) = QX ⊕ QZ (12)

can be defined by two n-column gauge generator matrices
GX and GZ whose rows are not necessarily orthogonal. Such
a code can be constructed from a regular CSS code (7)
of dimension korig = k + p� by selecting p� � korig logical
operator pairs and adding the corresponding rows [forming
matrices L′

X , L′
Z such that L′

X (L′
Z )T = Ip�

] to the rows of the
CSS generator matrices,

GX = UX

(
HX

L′
X

)
, GZ = UZ

(
HZ

L′
Z

)
, (13)

where UX and UZ are invertible matrices corresponding to
arbitrary row transformations, and the subscript in p� is to
disambiguate with the field characteristic p. Respectively, for
a CSS subsystem code,

k = n − rank GX − rank GZ + rank
(
GX GT

Z

)
, (14)

and its distance, e.g., for the subcode QZ ,

dZ = min
c∈C⊥

HX
\CGZ

wgt c = min
c∈C⊥

GX
\CGZ

wgt c. (15)

Prominent examples of subsystem codes are erasure codes
obtained when matching sets of columns are removed from
the stabilizer generator matrices HX and HZ . Equivalently,
with I the index set of the remaining columns, a subsystem
erasure code has the punctured stabilizer group Sp(I ).

III. TWO-BLOCK CSS CODES

Here we discuss general properties of two-block CSS codes
[14] with generator matrices in the form

HX = (A, B), HT
Z =

(
B

−A

)
, (16)

where A, B ∈ M�(F ) are square commuting matrices of size
� × � with elements in a Galois field F . The commutativity is
important since it guarantees the CSS orthogonality condition
(8).

An important tool in analyzing the parameters of such
codes will be the subsystem block-erasure code CSS(A, BT )
and its CSS dual, obtained by erasing the qudits in the right
and left blocks, respectively. We will denote the common
parameters of these codes as

[[�, kS, dS]]q, and p� ≡ rank(AB), (17)

with p� the number of gauge qudits [cf. Eqs. (13) and (14)].

A. Code dimension

Given a square matrix A ∈ M�(F ) of size � with elements
in the Galois field F , consider size-� idempotent matrices EA

and FA of the same rank as A, such that

E2
A = EA, F 2

A = FA, EAA = AFA = A. (18)

While such matrices are not unique, they can always be
constructed from the Smith normal form decomposition A =
UADAVA, where UA,VA ∈ M�(F ) are square invertible matri-
ces, and DA = diag(1, . . . , 1, 0, . . . , 0) ∈ M�(F ) has exactly
rank -A nonzero elements along the diagonal. Namely, we may
choose

EA ≡ UADAU −1
A , FA ≡ V −1

A DAVA. (19)

With idempotent matrices (18), it is now easy to calculate
the ranks of matrices (16). Indeed, row and column trans-
formations give (this is a simplified version of more general
expressions in Refs. [38,39])

rank HX = rank

(
A EAB

0 (I − EA)B

)
= rank(A) + rank(I − EA)B,

= rank A + rank B − rank(EAB), (20)

where we also expressed rank B with the help of a similar
decomposition, rank B = rank(EAB) + rank(I − EA)B. Simi-
larly, for the other matrix we get

rank HZ = rank A + rank B − rank(BFA). (21)

We have, e.g., rank EAB � rank EABA = rank AB = p�. For a
given set of idempotent matrices (18), introduce non-negative
rank-defect parameters δX � 0 and δZ � 0,

rank EAB ≡ p� + δX , rank BFA ≡ p� + δZ , (22)

where p� ≡ rank AB is the number of gauge qudits in the sub-
system code CSS(A, BT ) [see Eq. (17)]. While rank defects
are introduced with respect to a specific set of idempotents
EA and FA, Eqs. (20) and (21) guarantee that they are, in fact,
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independent of the choice of idempotents in Eq. (18). More-
over, the same parameters can be also introduced in terms
of similarly defined idempotent matrices associated with the
matrix B:

rank EBA = p� + δX , rank AFB = p� + δZ . (23)

Physically, δX and δZ are the numbers of rows in HX and
HZ , respectively, which give nontrivial linearly independent
contributions to the centers of both S[IL] and S[IR], the
stabilizer group punctured to individual blocks. Combining
the obtained expressions (20) and (21) with Eq. (14) and the
definitions (22), we have

rank HX = � − kS − δX , rank HZ = � − kS − δZ , (24)

which gives for the original two-block code (16),

k = 2kS + δX + δZ . (25)

Most generally, δX �= δZ , and these parameters are non-
negative. However, a rank defect is guaranteed to vanish with
an additional commutativity condition (see Appendix A for
the proofs).

Statement 1. If EA commutes with B, then δX = 0. Simi-
larly, if FA commutes with B, then δZ = 0.

A similar statement is also valid in terms of the idempo-
tents EB and FB, e.g., δX = 0 if EBA = AEB.

Another special case is when there exists an invertible
matrix S which can simultaneously transform both matrices
A and B into their transpose

SAS−1 = AT , SBS−1 = BT . (26)

Here, with any choice of EA, we can take F T
A = SEAS−1,

which, with Eq. (22), immediately gives δX = δZ , not neces-
sarily zero. This gives the following:

Statement 2. If both matrices A and B can be simul-
taneously transformed into their respective transpose [see
Eq. (26)], then δX = δZ .

While the condition may appear unnatural, as we discuss
below, it is satisfied for Abelian 2BGA codes [27].

To summarize this section, most generally, δX �= δZ , and
rank HX �= rank HZ , so that the dimension of a two-block code
does not have a particular parity. However, under conditions
of Statement 1 or Statement 2, we get rank HX = rank HZ ,
and code dimension k even. Furthermore, under conditions of
Statement 1 we have δX = δZ = 0, so that k = 2kS, exactly
twice the dimension of the block-erasure subsystem code
CSS(A, BT ).

B. Upper distance bounds

The same idempotent matrices can be used to analyze the
structure of the codewords. Most generally, one can expect a
given nontrivial codeword cZ ≡ (u

v

)
either to be equivalent to

such a codeword with only one of the components nonzero,
or not, in which case any equivalent codeword has both u and
v nonzero. Unlike the cases of HP or GB codes [13,19], for
two-block codes with δX > 0 or δZ > 0, it is not possible to
choose a full set of mutually nondegenerate and independent
codewords in the former class. Nevertheless, the correspond-
ing projections can be used to construct upper bounds on the
distances. Specifically, consider two reduced-dimension codes

Q′
μ ≡ CSS(H (μ)

X , HZ ), μ ∈ {L, R}, with

H (L)
X =

(
A B

0 I − EA

)
, H (R)

X =
(

A B

I − EB 0

)
, (27)

where additional rows guarantee that Z-logical operators can
be chosen to be supported on one block only, two single-
block Z-shortened codes, Q′′

L ≡ CSS (A, (HZ )L ) and Q′′
R ≡

CSS (B, (HZ )R), with

(HZ )T
L = B(I − FA), (HZ )T

R = A(I − FB), (28)

and two classical codes CL, CR with parity-check matrices,
respectively,

HL ≡
(

A

EB

)
, HR ≡

(
B

EA

)
. (29)

As detailed in Appendix A, for a chosen μ ∈ {L, R}, these
definitions correspond to a series of subsequent restrictions
on Z codewords, and we get the following:

Statement 3. For a given two-block code Q and a chosen
μ ∈ {L, R}, consider quantum codes Q′

μ and Q′′
μ, and a classi-

cal code Cμ. Distances of these codes satisfy

dZ ≡ dZ (Q)
(a)
� dZ (Q′

μ)
(b)
� dZ (Q′′

μ)
(c)
� d (Cμ). (30)

This implies the inequality dZ � dZ (Q′′
μ), a special case of

Z-shortening lemma from Ref. [17].
A particularly simple upper bound for the distance dZ (Q′′

L ),
and thus for the distance of the original two-block code (16),
is obtained when matrix A is block diagonal (see the proof in
Appendix A):

Statement 4. Suppose matrix A is block diagonal with
the maximum block size m, and the code Q′′

L is nontrivial,
k(Q′′

L ) > 0. Then the distance dZ (Q′′
L ) � m.

Evidently, when matrix B is block diagonal, a similar
bound also exists for dZ (Q′′

R).

C. Lower distance bounds

Best known are the usual CSS bounds [33]

dZ � d (C⊥
HX

), dX � d (C⊥
HZ

). (31)

However, since the rows of HX and HZ are mutually orthog-
onal, we have, e.g., d (C⊥

HX
) � d (CHZ ) � WZ , the minimum

row weight of the matrix HZ . Since our main interest is in
highly degenerate quantum LDPC codes with bounded stabi-
lizer weights and diverging distances, the CSS bounds (31) are
not very useful.

Here we construct lower bounds for the distance in terms
of the distances of single-block codes. It is easy to see that the
Z-punctured stabilizer codes

CSS ((1 − EB)A, BT ) and CSS ((1 − EA)B, AT ) (32)

both have the dimension kS + δX . In the special case δX = 0,
this is the same as for single-block erasure subsystem codes
(17), and the Z distances are also the same as dZ (A, BT ) and
dZ (B, AT ), respectively. The condition δX = 0 also guarantees
that any nontrivial Z codeword in one of these codes becomes
a nontrivial codeword in the original two-block code after it
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is padded with zeros. The additional condition δZ = 0 guar-
antees that the full set of linearly independent Z codewords
of the two-block code can be constructed this way, which
coincides with the condition of Z-puncturing lemma from
Ref. [17]. With the help of the fact that the two single-block
erasure codes with parameters (17) are related by CSS conju-
gation, we obtain a simple lower distance bound:

Statement 5. Suppose both rank defects in Eq. (22) are
zero, δX = δZ = 0. Then,

d � dS, dS ≡ d (A, BT ). (33)

We notice that under the conditions of Statement 5, e.g.,
the Z-shortened code Q′′

L in Statement 3 can also be seen
as a gauge-fixed subsystem code CSS(A, BT ). However, this
particular gauge fixing may result in the increased dZ . There-
fore, we should not necessarily expect the lower bound (33)
to saturate, except when p� = 0, or, equivalently, xAB = 0, in
which case the erasure code CSS(A, BT ) is also a stabilizer
code.

We finish this section with two more general expressions
relating the distance dZ of a two-block code with those of
auxiliary quantum codes of smaller dimension. Namely, any
nontrivial vector cZ = (u

v

)
is either degenerate to a solution

with u nonzero and v = 0, or to a solution with any u and
v � 0, but not both. This and an equivalent construction with
u and v interchanged give two generalizations of Statement 1
from Ref. [19],

dZ = min
{
dZ (H (μ)

X , HZ ), dZ (HX , H (μ)
Z )

}
, (34)

with a μ ∈ {L, R}, and matrices in Eqs. (16) and (27), and

H (L)
Z =

(
B I − FA

−A 0

)T

, H (R)
Z =

(
B 0

−A I − FB

)T

. (35)

Even though Eq. (34) relates the distance of the original quan-
tum code to those of two other quantum codes with the same
block size, it may still be useful since the two codes have half
as many basis vectors and exponentially fewer vectors at large
k, qk/2 � qk .

IV. 2BGA CODES: CONSTRUCTION
AND GENERAL PROPERTIES

A. Definition

2BGA codes are a special case of two-block codes (16)
where the commuting matrices are constructed with the help
of a group algebra. Alternatively, 2BGA codes are a version
of GB codes where a cyclic group is replaced with a general
group G. They can also be thought of as the smallest LP codes.

Given two elements a, b ∈ F [G] of the group algebra F [G]
[see Eq. (3)], with the group size � ≡ |G|, the � × � matrices
A ≡ L(a) and B ≡ R(b), respectively, are defined by the left
and right action on group elements,

[L(a)]α,β ≡
∑
g∈G

agδα,gβ, [R(b)]α,β ≡
∑
g∈G

bgδα,βg, (36)

where group elements α, β ∈ G are used to index rows and
columns, and δα,β = 1 if α = β and 0 otherwise is the Kro-
necker delta. It is easy to verify that for group elements

g ∈ G, matrices L(g) form the regular F -linear representa-
tion of G. Further, for any a, b ∈ F [G], L(a) L(b) = L(ab),
R(a) R(b) = R(ba), while any two matrices from different
sets commute with each other [5], L(a) R(b) = R(b) L(a); it is
the latter property that gives the CSS orthogonality condition
(8). The map between L(a) and R(b) can be given in terms
of the permutation matrix P with components Pα,β ≡ δα,β−1 ,
α, β ∈ G,

L(a) = P[R(a)]T P, (37)

where [ · ]T denotes matrix transposition. The symmetric per-
mutation operator P acting in F � is equivalent to the map
:̂ F [G] → F [G] in Eq. (5), Pa = â. It is also easy to verify

that for all a ∈ F [G],

[L(a)]T = L(̂a), [R(a)]T = R(̂a). (38)

In the following, LP[a, b] denotes the 2BGA code con-
structed from group algebra elements a, b ∈ F [G], the CSS
code (16) with A ≡ L(a) and B ≡ R(b) given by Eq. (36). This
notation refers to more general LP codes [5], defined in terms
of a pair of matrices with elements in F [G]. Namely, 2BGA
codes are a degenerate case of LP codes with both matrices of
dimension 1 × 1. Previously considered special cases are GB
codes [14,19,20], with G a cyclic group, and Abelian 2BGA
codes [27], with G an Abelian group.

B. Code equivalence

The complexity of enumerating 2BGA codes can be sig-
nificantly reduced by excluding permutation-equivalent codes
(the proof is given in Appendix B):

Theorem 1. For any a, b ∈ F [G], the 2BGA code LP[a, b]
is equivalent to

(i) LP[ϕ(a), ϕ(b)], for any automorphism ϕ : G → G;
(ii) LP[α−1aα, β−1bβ], for any α, β ∈ G;
(iii) LP[xa, yb], for any nonzero x, y ∈ F .
(iv) LP[aα, βb], for any α, β ∈ G;
(v) LP[̂b, â];
(vi) in addition, the code CSS dual to LP[a, b], with in-

terchanged HX and HZ matrices, is permutation equivalent to
LP[̂a,−b̂] ∼= LP[b, a].

Notice that with α = β, Theorem 1(ii) is a special case of
(i) for inner automorphisms. These, and, more generally, item
(ii), would be trivial for an Abelian group. On the other hand,
with an Abelian group G, for any a ∈ F [G], L(a) = R(a),
which also gives LP[a, b] ∼= LP[b, a], and an immediate con-
sequence, dX = dZ . These properties need not to be true with
a non-Abelian group G.

C. Connectivity of 2BGA codes

It is convenient to rewrite the CSS equations, e.g., defin-
ing a nontrivial codeword cZ = (u

v

) ∈ C⊥
HX

\ CHZ ⊂ F 2� in a
2BGA code LP[a, b], in terms of the corresponding pair of
group algebra elements u, v ∈ F [G]. Direct calculation gives

au + vb = 0, (39)

[u + wb, v − aw] �= [0, 0], ∀ w ∈ F [G], (40)

where Eq. (40) enumerates the degeneracy class.
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For a given a ∈ F [G], consider the subgroup

Ga ≡ 〈{g ∈ G : ag �= 0}〉, (41)

the support group [40] generated by group elements with
nonzero coefficients in a [cf. Eq. (3)]. Evidently, if we start
with any group element x ∈ G, repeated left multiplication
by a can only generate group algebra elements ax, a2x, ...,
supported on the left coset Gax of x. Sizes of left cosets being
equal, we have that the matrix L(a) is block diagonal, with
ma blocks of size |Ga|, where ma is the index of the support
group Ga in G, ma ≡ [G : Ga]. The same is true for R(b),
except in this case we are dealing with the right cosets xGb

[cf. Eq. (39)], and we may need to order group elements
differently.

Overall, Eq. (39) implies the block structure of the code:
the row of matrix HX labeled by the group element x ∈ G is
in the block associated with the double coset GaxGb. Since
matrix transposition does not change the support group, Gâ =
Ga, the same is true for the xth row of matrix HZ . Therefore,
if the product of the two subgroups (the double coset associ-
ated with the group identity element 1 ∈ G) does not contain
all group elements, GaGb � G (as sets), the code LP[a, b]
is decomposed into smaller mutually disconnected subcodes
associated with different double cosets in Ga\G/Gb. It is well
known that double cosets do not necessarily have the same
sizes [41], so the individual double-coset subcodes are not
expected to be equivalent.

To analyze the structure of the matrices in more detail, let
us fix an ordering so that elements of the subgroup Ga =
{1, g2, g3, . . .} go first in this order, followed by elements
of each right coset Gax, with elements of Ga taken in the
same order, {x, g2x, g3x, . . .}, and x ∈ A, a transversal set
of elements from Ga\G of size ma. With this choice, it is
easy to see from Eq. (36) that the ma blocks of the matrix
A associated with different cosets are identical A = A1 ⊗ Ima ,
where A1 ≡ LGa (a), and the subscript indicates the subgroup
that row and column indices are restricted to. The same is true
for the matrix B, except to reveal the block structure, we may
need to take group elements in a different order. Denoting the
corresponding permutation matrix as S, we have

B = S(Imb ⊗ B1)S−1, B1 ≡ RGb (b). (42)

With the ordering of the group Ga fixed, the only remaining
freedom is to order the elements of A; we can ensure that
elements of each double coset come together, so that decom-
position of the 2BGA code into a direct sum of individual
double-coset subcodes be evident.

In general, a (double) coset is not a subgroup of G; most
of cosets do not even contain the group identity element.
However, different double cosets are related to each other by
conjugation. In the case of support subgroups, we can write
GaxGb = Ga1Gxbx−1 , which allows to map any double coset
to a double coset containing the group identity element. The
corresponding double-coset subcodes of 2BGA codes are also
related:

Statement 6. A subcode of a disconnected 2BGA code
LP[a, b], with some a, b ∈ F [G], supported in the dou-
ble coset GaxGb, x ∈ G, is equivalent to a subcode of
LP[a, xbx−1] supported in the double coset Ga1Gxbx−1 .

In particular, this implies that in the case of an Abelian
group G, a code equivalent to any double-coset subcode of a
2BGA code LP[a, b] over F [G] can be constructed as a 2BGA
code over a subgroup of G. A bit more generally, note the
following:

Statement 7. If the intersection subgroup N ≡ Ga ∩ Gb is
Abelian and normal in both support groups, the subcode of
LP[a, b] supported in the double coset Ga1Gb is equivalent to
a 2BGA code over a group G′ of rank |Ga1Gb|.

In particular, with disjoint subgroups Ga ∩ Gb = {1}, the
group in Statement 7 is just a direct product of the two
subgroups G′ = Ga × Gb. In this case we can independently
choose the order of elements in each subgroup, and both
matrices may simultaneously have the form of Kronecker
products, A = A1 ⊗ Inb , B = Ina ⊗ B1, with nb ≡ |Gb| = ma

and na ≡ |Ga| = mb. This is exactly the block structure of
an HP code [13], constructed from square matrices A1 and
B1. If we denote the parameters of classical linear codes with
parity-check matrices A1 and B1, respectively, as [na, ka, da]q

and [nb, kb, db]q (these parameters remain the same when the
transposed matrices are used), the parameters of the quantum
HP code are known explicitly [[2nanb, 2kakb, min(da, db)]]q.
Additional lower and upper distance bounds on more gen-
eral codes under conditions of Statement 7 are discussed in
Sec. IV F.

D. Symmetry group of a 2BGA code

With Eqs. (39) and (40), it is easy to check the symmetry of
a given 2BGA code. Indeed, for any g ∈ CG(Ga), the central-
izer of the subgroup Ga in G, if a pair [u, v] is in the code, then
the corresponding left-multiplied pair [gu, gv] is also in the
code. The same is true for the right-multiplied pairs [uh, vh],
∀ h ∈ CG(Gb).

For an Abelian group G, we obtain G-symmetric analogs
of index-two qQC codes, quasi-Abelian codes [3,27]. With a
non-Abelian G, the overall symmetry group of a 2BGA code
is generally smaller than G. In any case, it includes Z(G), the
center of G.

E. Code dimension and related codes

Since 2BGA codes are a subset of general two-block codes,
all general properties from Sec. III apply. The case of GB
codes [14,19,20] is recovered when G is a cyclic group,

C� ≡ 〈r|r� = 1〉 = {1, r, r2, . . . , r�−1},

where r� = 1 is implicit in the set notation. There is
an obvious one-to-one map between the group algebra
F [C�] and the ring of modular polynomials F [x]/(x� − 1).
Then, a 2BGA code LP[a, b] is also a generalized-bicycle
code GB[a(x), b(x)] specified by polynomials a(x), b(x) ∈
F [x]/(x� − 1), and the square blocks in Eq. (16) are just the
circulant matrices A = a(P) and B = b(P), where

P =

⎛⎜⎜⎝
0 . . . 0 1
1 0

. . .
...

1 0

⎞⎟⎟⎠ (43)
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is an � × � cyclic permutation matrix. A simple expression for
the dimension of a code GB[a, b] was given in Ref. [20]. In
this case, rank HX = rank HZ = � − deg h(x), and

k = 2 deg h(x), h(x) ≡ gcd(a(x), b(x), x� − 1). (44)

In fact, deg h(x) also coincides with the dimension kS of the
quantum cyclic code CSS(A, BT ), the single-block subsystem
erasure code (17), and Eq. (25) guarantees that for any cyclic
group G, δX = δZ = 0.

More generally, for an Abelian group G, it is known that
rank HX = rank HZ , and the code dimension is even [27]. An
equivalent statement, δX = δZ , also follows from Statement 2
and Eq. (37), if we remember that in the case of an Abelian
group G, for any a ∈ F [G], L(a) = R(a). A stronger state-
ment can be made whenever a 2BGA code can be decomposed
as a direct sum of GB or HP codes, e.g., under conditions of
Statement 7:

Statement 8. Consider a code LP[a, b] with a, b ∈ F [G]. If
the intersection subgroup N ≡ Ga ∩ Gb is Abelian and normal
in both support groups, the rank defects of the corresponding
CSS matrices vanish, δX = δZ = 0.

In particular, δX = δZ = 0 for any Abelian 2BGA code.
An alternative sufficient condition follows from Statement

1 in the special case of a semisimple group algebra F [G], i.e.,
when the field characteristic p and the group rank � are mutu-
ally prime. Indeed, any ideal in a semisimple group algebra is
a summand, and for any a ∈ F [G], there exist idempotent ele-
ments ea, fa ∈ F [G] such that e2

a = ea, f 2
a = fa, and eaa = a,

a fa = a. In this case, we can choose EA = L(ea), FA = L( fa),
which are guaranteed to commute with B ≡ R(b). A bit of
thought gives a more general sufficient condition:

Statement 9. Consider a code LP[a, b] over group algebra
R ≡ F [G] such that the ideals aR and Ra (or the two ideals
generated by b) be semisimple. Then, rank defects of the
corresponding CSS matrices vanish, δX = δZ = 0.

A somewhat less general but easier to apply condition is,
e.g., that the group algebra F [Ga] be semisimple, i.e., rank
of the support group Ga be mutually prime with the field
characteristic p.

The semi-Abelian 2BGA codes whose CSS generator
matrices have the property δX = δZ = 0 are special: their
codeword basis can be chosen so that each codeword is sup-
ported on only one block, similarly to GB codes [14,19,20]
and HP codes [13,16,17]. In particular, this gives a lower
distance bound (33) in terms of the single-block erasure code,
and guarantees the condition of Statement 4, giving a simple
upper bound on the distance in terms of matrix block sizes
d � min(|Ga|, |Gb|).

However, not all 2BGA codes have this property. In partic-
ular, there exist essentially non-Abelian 2BGA codes where
δX �= δZ or δX = δZ �= 0.

Example 1. Consider the alternating group A4, also known
as the rotation group T of a regular tetrahedron,

T = 〈x, y|x3 = (yx)3 = y2 = 1〉, |T | = 12

and the binary algebra F2[T ]. Select a = 1 + x + y + x−1yx
and b = 1 + x + y + yx to get a 2BGA code LP[a, b] with
parameters [[24, 5, 3]]2.

F. The case of quasi-Abelian lifted-product codes

Here we consider in more detail the special case of codes in
Statements 7 and 8, 2BGA codes LP[a, b], with a, b ∈ F [G]
such that the support groups Ga and Gb have Abelian inter-
section group N ≡ Ga ∩ Gb normal both in Ga and Gb. As
discussed, such codes can be seen as F -linear quasi-Abelian
LP codes or, equivalently, as HP codes over the Abelian group
algebra F [N]. Their structure and parameters can be analyzed
using the techniques specific to such codes.

The following lower and upper bounds are constructed by
analogy with the corresponding theorems from Ref. [14]:

Statement 10 (Version of Theorem 5 from Ref. [14]).
Given elements a, b ∈ F [G] such that the intersection sub-
group N ≡ Ga ∩ Gb of rank c is Abelian and normal in both
support groups, let d⊥

A and d⊥
B be the distances of classical

F -linear group algebra codes with parity-check matrices A =
L(a) and B = R(b). Then the distance dZ of the code LP[a, b]
satisfies dZ � d0 ≡ �min(d⊥

A , d⊥
B )/c�.

To get a matching upper bound, we need an additional con-
dition to ensure that, e.g., vectors in C⊥

A have vectors matching
by symmetry in C⊥

B to form nontrivial GB codes [see Eq. (B2)
in the proof of Statement 8]. It is implicit in the decomposition
(B2) that we can characterize the symmetry by ideals of F [N].

Let J be a maximal ideal in F [N], and J = 〈Ga J Gb〉 its
extension to the subspace associated with the coset Ga1Gb.
Namely, if A and B, respectively, are transversal sets of repre-
sentatives from Ga/N and N\Gb, every element x ∈ J can be
uniquely written as

x =
∑
α∈A

∑
β∈B

α xα,β β, xα,β ∈ J. (45)

The corresponding code CJ , the two-sided coset code gen-
erated by J , is simply a set of vectors in F � corresponding
to elements of J . The proof of the following upper bound is
based on the fact that the product of any two nonzero elements
in a maximum ideal is nonzero.

Statement 11 (Version of Theorem 6 from Ref. [14]). Let
J be a maximal ideal in F [N], CJ the two-sided coset code
generated by J , and ĈJ ≡ PCJ its image under the linear map
(5). Denote d ′ the distance of the subcode C⊥

A ∩ CJ . Then,
if C⊥

BT ∩ ĈJ �= {0}, the distance of the 2BGA code LP[a, b]
satisfies the upper bound dZ � d ′.

Evidently, there is also an upper bound in terms of the
distance of the subcode C⊥

B ∩ CJ .
If we denote the indices of N in the two support groups as

�a ≡ [Ga : N] and �b ≡ [Gb : N], as discussed in Sec. IV C,
matrices A and B have blocks of size c�a and c�b, respectively.
Then, for a nontrivial 2BGA code, the parameter d0 in State-
ment 10 satisfies d0 � min(�a, �b), while the upper bounds
guarantee dZ � c min(�a, �b), as would also be expected from
Statement 4.

The upper and the lower bounds on dZ coincide when
c = 1: in this case the subgroup N = {1} is trivial so that F [N]
is just the field F , and the auxiliary codes in statements 10
and 11 coincide, which gives dZ = min(d⊥

A , d⊥
B ). Of course,

the same result for the distance can be also obtained from
the map to a hypergraph-product code constructed from the
single-block classical group algebra codes with groups Ga

and Gb.
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It is known [32] that classical group algebra codes include
good codes with finite rates and finite relative distances. This
guarantees the existence of finite-rate 2BGA codes with dis-
tance scaling as a square root of block length.

G. 2BGA codes with row weights W � 4

Let us discuss 2BGA codes with small row weights W ≡
wgt (a) + wgt (b). Evidently, a code LP[a, b] with, e.g., a = 0
has one block zero, which immediately gives dX = dZ = 1, as
long as the code is nontrivial. Similarly, according to Theo-
rem 1, any group algebra element with wgt (a) = 1 can be
equivalently replaced with a = 1, giving A = I�, the identity
matrix, which gives rank HX = rank HZ = �, and thus a trivial
code with k = 0. Thus, to get a useful code with row weight
W � 4, we must have wgt (a) = wgt (b) = 2.

In this case, up to code equivalence, we can choose a =
1 + λ f , b = 1 + μh, with nonzero λ,μ ∈ F and nonidentity
group elements f , h ∈ G, so that the support groups Ga = 〈 f 〉
and Gb = 〈h〉 be cyclic. Thus, according to Statement 7, all
nontrivial 2BGA codes with row weight W = 4 are equivalent
to direct sums of Abelian-group codes. Similarly to GB codes
with row weight 4, these codes can be mapped to rotated
surface codes [19].

Indeed, given a group element g0,0 ≡ g ∈ G, the double
coset GagGb can be parametrized as gx,y = f xghy, with the
positions (x, y) ∈ Z2 on the integer plane corresponding to
the same group elements identified. In particular, (x, y) �
(x + ord f , y) � (x, y + ord h), where ord f is the order of
the group element f . Positive displacements along horizontal
and vertical edges correspond to multiplication by λg and
μh, respectively. This way, we obtain a finite locally planar
graph covered by the infinite square lattice. It is easy to check
that the local structure of the CSS code associated with the
double coset GagGb is exactly that of a square-lattice surface
code, so that the corresponding codewords are homologically
nontrivial chains (or co-chains) connecting pairs of identified
vertices (faces) on the integer plane.

The nature of the resulting double-coset subcodes depends
on the homology group associated with the covering map
ϕ : Z2 → {gx,y|x, y ∈ Z}. For example, with g = 1, we get a
toric code if 〈 f 〉 ∩ 〈h〉 = {1}. More generally, we get a surface
code on a finite transitive graph which locally looks like a
square lattice. The hand-shaking lemma guarantees that every
connected component with V vertices has 2V edges, and its
dual version gives V faces, which gives a k = 2 surface code
for any connected component.

Further, a counting argument identical to that used in the
proof of Statement 14 from Ref. [19] gives an upper bound
for the W = 4 double-coset subcode distances d (g)

X and d (g)
Z in

terms of its length n(g) = 2|GagGb|,(
d (g)

μ

)2 � n(g), μ ∈ {X, Z}, (46)

which also gives d2 � n(g) − 1 when d ≡ d (g) is odd. For both
inequalities, we found many cases of saturation.

V. NUMERICAL RESULTS

In this section, we present optimal parameters of short
qubit-based connected 2BGA codes found numerically.

Namely, we computed the parameters of all inequivalent non-
trivial connected binary 2BGA codes LP[a, b] with wgt (a) +
wgt (b) � 8, for all non-Abelian groups G of orders � � 100,
and all Abelian groups of orders � � 50, for each group keep-
ing only the first found code with a given dimension k and
distance d .

We should point out that the double-coset subcodes could,
potentially, have better parameters than connected 2BGA
codes of equal size. Nevertheless, for a given block length n,
we do not have a way to limit the group sizes which would
result in subcodes of length n. Therefore, to speed up the
calculation, we decided to only consider the connected codes.

We used the Small Groups library distributed with GAP
[42] to enumerate inequivalent groups, and the GAP package
QDISTRND [43] to calculate the code distances. The calcula-
tions were performed at the UCR High Performance Com-
puting Center. The resulting data and the scripts to generate
the code matrices and calculate the distances are available for
download at the GitHub repository QEC-pages/2BGA-codes
[44].

Specifically, to eliminate permutation-equivalent codes for
a given group G, we used the default order of group elements
in GAP to establish the alphabetical order of subsets of G,
which also gives an ordering for elements of F2[G]. In the
following, we write a < b if a goes before b in this order.
Given the weights Wa and Wb, for each pair (a, b) gener-
ated consecutively with wgt (a) = Wa, wgt (b) = Wb, and also
a < b if Wa = Wb, we discarded all pairs where αaβ < a or
αbβ < b for any α, β ∈ G. Indeed, according to Theorem 1,
these inequalities indicate that a permutation-equivalent code
has already been encountered. Since the identity group ele-
ment 1 is always the first in the list, we only needed to consider
group algebra elements with a1 = b1 = 1. In addition, with
Wa = Wb, we discarded the pairs with b̂ < a [see Theorem 1

FIG. 1. Distance d of connected 2BGA codes encoding k = 2
qubits, with weights Wa = 2 and Wb as indicated, plotted as a function
of the square root of the block size n. Red upside-down triangles �,
green diamonds �, blue triangles �, brown squares �, and purple
circles ©, respectively, correspond to total weights W = 4, 5, 6, 7,
and 8. Open symbols correspond to Abelian groups, filled symbols
to non-Abelian groups. Only the shortest codes with each k and d
found are shown. The solid and dashed lines, respectively, are the fits
using d = g + f n1/2 and d = anb + c; the coefficients are listed in
the captions.
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FIG. 2. As in Fig. 1 but for codes encoding k = 4 qubits. In
agreement with the results in Sec. IV G, there are no connected codes
with k > 2 and Wa = Wb = 2.

(v)]. After constructing the matrices, we also made sure to
drop all disconnected codes.

We note that for even-even codes, with both Wa and Wb

even, rows and columns of the matrices (36) have even num-
bers of elements. For the binary field F2, this guarantees
that the rows of the matrices A, B, and thus of the stabilizer
generator matrices HX , HZ add to zero; Eq. (9) guarantees that
we get nontrivial codes with k � 2. In comparison, with one
or both weights odd, there are many trivial codes with k = 0.

The computed distances d for codes with Wa = 2 are plot-
ted as a function of the square root of the block size n in Figs. 1
and 2 for codes with k = 2 and 4, respectively. Different sym-
bols and colors correspond to row weights W ∈ {4, 5, 6, 7, 8}
as indicated in the caption of Fig. 1, with open and closed
symbols corresponding to codes obtained from Abelian and
non-Abelian groups, respectively. Figures 3 and 4 give similar
data for codes with Wa = 3 and Wb as indicated, and Fig. 5
shows distances for small-k codes with Wa = Wb = 4. These
plots all look similar to a family of GB codes with k = 2
studied in Ref. [19]. Namely, the available largest distances
show reasonable agreement with asymptotic distance scaling
d = g + f n1/2, with the slope f ≡ f (Wa,Wb) an increasing
function of the total row weight W = Wa + Wb, while different

FIG. 3. As in Fig. 1 but for 2BGA codes with weights Wa = 3
and Wb as indicated. We have not found any Abelian-group codes
with these weights and k = 2.

FIG. 4. As in Fig. 3 but for 2BGA codes encoding k = 4 qubits.

values of Wa � 2 and Wb � Wa have a relatively minor effect
on the coefficients g and f .

Square-root scaling of the distance is in agreement with
the lower bound in Statement 10 and, in particular, with the
case Ga ∩ Gb = {1}, where 2BGA codes can be represented as
hypergraph-product codes constructed from a pair of classical
group-algebra codes. To compare, we also tried fitting the
distances with d = anb + c, where a, b, and c are parameters.
While an upward or downward curvature corresponding to
exponent b > 1

2 or b < 1
2 , respectively, can be seen on some

of the fits, the actual deviations from the linear (in n1/2) fits
are small, 	d � 0.2 on most plots. We conclude that 2BGA
codes with dimensions k � 4, row weights W � 8, and group
sizes studied so far are not nearly large enough to resolve the
question about the scaling of the code distances of such codes
with the block size.

While constructed 2BGA codes with k > 4 also have
maximum distances d scaling near linearly with n1/2, the cor-
responding coefficients show relatively little dependence on k
(data not shown). For this reason, and to reveal the patterns
in code parameters, in Figs. 6 and 7, we plot the distances
d of the found 2BGA codes with k � 4 as a function of n,
for codes with Wa = 2 and Wb = 6 obtained from Abelian and
non-Abelian groups, respectively. Most prominent in Fig. 6
are the sequences of codes with kd = n with k � 6 and the
distances d = {2, 3, . . . , dmax(k, n)}, where the sequence cut-

FIG. 5. As in Fig. 1 but for 2BGA codes with weights Wa =
Wb = 4 and encoding k qubits as indicated. Circles ©, squares �,
and triangles �, respectively, correspond to k = 2, 4, and 6.
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FIG. 6. Distances d of Abelian connected 2BGA codes with
Wa = 2, Wb = 6, and k � 4, plotted as a function of the block length
n. Different symbols correspond to actual codes found, with k values
as indicated in the caption. Solid lines are fits to d = bn using only
the data on or below the black dashed line, d = n1/2. Parameters of
most of the codes with k � 6 satisfy the relation kd = n exactly. This
can be seen from the values of the product kb shown in the caption;
the sequences terminate at d = O(n1/2) more or less independent
of the value of k. All the codes fitting this pattern can be obtained
from the groups Cmh = Cm × C2, m � 3, of order � = 2m, producing
index-4 qQC CSS codes of length n = 4m.

off dmax(k, n) = O(n1/2) shows relatively little dependence on
k. Codes with Wa = 2, Wb = 6 obtained from non-Abelian
groups (Fig. 7) also have sequences with kd = n, but only
for k = 6 or doubly even k ∈ {4, 8, 12, 16, . . .}; there are also
sequences of codes with k = 4s + 2, s � 2, whose parameters
satisfy the relation (k + 2)d = n. As we demonstrate in Ap-
pendix C, codes with the same parameters as the codes found
in the sequences with kd = n can be obtained starting with
groups Cmh and Dm, both of which give index-4 qQC codes of
length n = 4m.

Figure 8 shows the same data as Fig. 7 but with kd plotted
as a function of n. It demonstrates that for all constructed
codes with Wa = 2 we have kd � n. By this measure, the best

FIG. 7. As in Fig. 6 but for connected 2BGA codes with Wa = 2,
Wb = 6, and k � 4 even, obtained from non-Abelian groups. As can
be seen from Table III in Appendix C, sequences of codes with kd =
n and doubly even k = 4s, s � 1, can be obtained from the groups
Dm which give index-4 qQC codes of length n = 4m; the sequences
terminate at d = O(n1/2).

FIG. 8. Same data as in Fig. 7, but with the products kd plotted
as a function of n. The dotted line is the diagonal, kd = n; all of the
found codes with Wa = 2 and Wb = 6 have kd � n.

among codes with Wa = 2 are index-4 qQC codes from groups
Cmh and Dm with kd = n. We should note that, according to
Example 12 in Ref. [45], sufficiently long codes with kd = n
can be obtained as additive cyclic codeword-stabilized (CWS)
codes [46–48] from a set of k classical repetition codes, al-
though such codes do not necessarily have bounded stabilizer
weights. Of course, asymptotically the ratio kd/n increases
without a bound for many families of quantum LDPC codes,
e.g., as O(n1/2) for hypergraph-product codes [13]. However,
it is not trivial to get kd > n in a degenerate quantum code of
length n � 102. Some of such 2BGA codes constructed in this
work are listed in Table I.

Most of the constructed 2BGA codes with Wa = Wb = 4
do not have simple relations between their parameters, and
the plots of d vs n are not illuminating. For this reason, we
decided to illustrate the parameters of such codes with k � 4
by plotting kd vs n, for Abelian codes in Fig. 9 and for non-
Abelian codes in Fig. 10. Only codes with even values of k
are shown. As evident from the plots, many of the constructed
codes have kd > n, including the Abelian code [[64,18,8]]
with kd/n > 2 obtained from the group C4 × C4 × C2.

VI. CONCLUSIONS

In conclusion, we introduced and studied analytically and
numerically a family of quantum 2BGA codes, an ansatz
particularly suitable for constructing short- and intermediate-
length quantum LDPC codes. Indeed, unlike for many of
the “product” constructions [2–5,13] which tend to give very
long quantum codes, the block length of a 2BGA code is
twice the size of the group used in the construction. Further,
unlike for quantum group algebra codes in Ref. [49] which are
analogs of quantum cyclic codes, here the CSS orthogonality
constraint is naturally satisfied for any pair of group algebra
elements.

Moreover, the 2BGA codes are a generalization of GB
codes from cyclic to more general groups, and share many of
the nice properties of the GB codes. In particular, we show that
2BGA codes include as a special case quantum hypergraph-
product codes constructed from classical left (right) group
algebra codes, which guarantees the existence of finite-rate
2BGA codes with d = O(n1/2).
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TABLE I. Parameters of degenerate connected 2BGA codes with n < 102, kd � n, and d > W . Only codes with the largest examined row
weight W = 8 have been found with such parameters. Here � is the group order, “#” is the group number specific to GAP, n, k, d are parameters
of the code LP[a, b] with a and b as indicated, “presentation” is the shortest group presentation, and “structure” is the output of a function call
“StructureDescription(SmallGroup(�, #));” in GAP, with Cm an order-m cyclic group, S3 the order-6 symmetric group, “×” the direct
product of groups, and “�” the semidirect product, with the normal subgroup on the left. The four row blocks, respectively, list codes with
Wa = 2, Wb = 6, first Abelian then non-Abelian, followed by codes with Wa = Wb = 4, first Abelian then non-Abelian. The terms in group
algebra elements a and b are sorted according to the internal presentation in GAP.

� # n k d a b Presentation Structure

36 2 72 8 9 1 + r28 1 + r9 + r18 + r12 + r29 + r14 〈r|r36〉 C36

36 1 72 8 9 1 + r 1 + s + r6 + s3r + sr7 + s3r5 〈r, s|s4, r6, s−1rsr〉 C9 � C4

40 1 80 8 10 1 + sr4 1 + r + r2 + s + s3r + s2r6 〈r, s|s5, r8, r−1srs〉 C5 � C8

48 10 96 8 12 1 + sr2 1 + r + s3 + s4 + s2r5 + s4r6 〈r, s|s6, r8, (rs)8〉 (C3 � C8) � C2

27 1 54 6 9 1 + r + r3 + r7 1 + r + r12 + r19 〈r|r27〉 C27

30 4 60 6 10 1 + r10 + r6 + r13 1 + r25 + r16 + r12 〈r|r30〉 C30

35 1 70 8 10 1 + r15 + r16 + r18 1 + r + r24 + r27 〈r|r35〉 C35

36 2 72 8 10 1 + r9 + r28 + r31 1 + r + r21 + r34 〈r|r36〉 C36

36 2 72 10 9 1 + r9 + r28 + r13 1 + r + r3 + r22 〈r|r36〉 C36

36 1 72 8 9 1 + s + r + sr6 1 + s2r + s2r6 + r2 〈r, s|s4, r9, s−1rsr〉 C9 � C4

40 1 80 8 10 1 + r + s + s3r5 1 + r2 + sr4 + s3r2 〈r, s|s5, r8, s−1rsr〉 C5 � C8

48 1 96 8 12 1 + r + s + r14 1 + r2 + sr4 + r11 〈r, s|s3, r16, r−1srs〉 C3 � C16

40 8 80 9 9 1 + sr5 + r5 + sr6 1 + s2 + r + s2r3 〈r, s|s4, r10, (rs)2〉 (C10 × C2) � C2

42 3 82 10 9 1 + r7 + r8 + sr10 1 + s + r5 + s2r13 〈r, s|s3, r14, r−1srs〉 C7 × S3

48 13 96 10 12 1 + s + r9 + sr 1 + s2r9 + r7 + r2 〈r, s|s4, r12, s−1rsr〉 C12 � C4

48 5 96 11 9 1 + s + r9 + sr13 1 + r9 + sr18 + r7 〈r, s|s2, r24, (rs)8〉 C24 � C2

48 9 96 12 10 1 + r + s3r2 + s2r3 1 + r + s4r6 + s5r3 〈r, s|s6, r8, r−1srs〉 C2 × (C3 � C8)

Although we have not been able to give explicit expres-
sions for the parameters of 2BGA codes, we constructed a
number of equalities and inequalities relating the parameters
to those of other classical and quantum codes. From the
practical point of view, most important results are the code
equivalence relations in Theorem 1, and the analysis of block
structure of 2BGA codes in Sec. IV C.

We used these symmetries to enumerate the inequivalent
parameters of binary (designed for qubits) 2BGA codes with
stabilizer generator weights W � 8 for all Abelian groups
of ranks � � 50 and non-Abelian groups of ranks � � 100.
Although the sample is too small to identify the asymptotic
form of the distance scaling, some of the constructed codes
have parameters substantially better than those of GB codes of

FIG. 9. As on Fig. 8 but for Abelian connected 2BGA codes with
Wa = Wb = 4 and k � 4.

similar size. Some of the constructed codes with row weights
W = 8, distances d � 8, and dimensions k � 8 have kd > n,
a condition difficult to reach for a short quantum LDPC code.
These codes with larger k have many redundant minimum-
weight stabilizer generators and are expected to perform well
in a fault-tolerant setting as data-syndrome codes [50–53].

The 2BGA codes based on non-Abelian groups have a
bigger set of possible parameters than the Abelian 2BGA or
GB codes; in particular, only the former codes may have a
dimension k given by an odd number, and there are more
short degenerate non-Abelian codes with large k (see Ta-
ble I), especially for larger n. On the other hand, some of
Abelian-group codes found have better parameters than any
of the non-Abelian 2BGA codes with the same sizes, and the

FIG. 10. As on Fig. 9 but for codes with Wa = Wb = 4 and k � 4
even obtained from non-Abelian groups.
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Abelian codes in Table I are all obtained from cyclic groups
(and thus are GB codes). Thus, at least for group sizes studied
here, there is no clear advantage of Abelian vs non-Abelian
2BGA codes. Definitely, GB codes and Abelian 2BGA codes,
because of the simpler structure, are much more convenient to
use.

Note added. Recently, Bravyi et al. posted a related pa-
peer [54] describing quasicyclic codes equivalent to 2BGA
codes over two-generator Abelian groups. Specifically, the
authors constructed several CSS codes with stabilizer gen-
erator weight W = 6 and high encoding rates, suggested a
feasible implementation of these codes in a two-layer planar
geometry, constructed near-optimal syndrome measurement
circuits, and demonstrated fault-tolerant quasithresholds close
to 0.8%. This is close to a threshold of around 1% for the
surface code under depolarizing noise, despite a significant
increase in the encoding rate.
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APPENDIX A: DETAILED PROOFS FOR SEC. III

1. Proof of Statement 1

Proof. It is enough to prove the statement for E ≡ EA; the
statement for FA is obtained by a similar argument (or by a
transposition).

First, any idempotent matrix E = E2 ∈ M�(F ) is diago-
nalizable by a change of basis since its minimal polynomial
μE (x) = x(1 − x) factors into distinct linear terms. Let EA =
U −1DU , U ∈ M�(F ) an invertible matrix, and D a diagonal
(0,1) matrix with a block of r ≡ rank EA = rank A ones in
the top left corner. Use U to transform each square matrix,
A′ = UAU −1, B′ = UBU −1, and E ′

A = D. Such an invertible
transformation preserves both ranks and commutativity, thus,
B′ must be block diagonal, with two square blocks of size
r and � − r, and ranks rank EAB and rank(I − EA)B, respec-
tively. Similarly, since DA′ = A′ and their ranks coincide, the
matrix A′ has only the first rank -A rows nonzero and linearly
independent. This gives that the rank of the product B′A′
coincides with that of the first block of B′, i.e., rank BA =
rank EAB, giving δX = 0. �

2. Proof of statement 2

Proof. Using the definitions in Eq. (26), write

SEABS−1 = F T
A BT = (BFA)T .

The ranks on the left-hand side and on the right-hand side are
p� + δX and p� + δZ , respectively, which gives δX = δZ . �

3. Proof of Statement 3

Proof. To be specific, we only consider μ = L; the case
μ = R is similar. The proof amounts to a demonstration that
the set contributing to the distance (15) for each subsequent

code is a subset of the previous one. (a) The additional row
block in matrix H (L)

X (compared to HX ) guarantees that any Z-
like codeword in Q′

L is also a Z-like codeword in LP[a, b], but
not necessarily the other way. (b) Any nontrivial Z codeword u
in Q′′

L is also a nontrivial codeword
(u

0

)
in Q′

L. (c) Any nonzero
codeword u ∈ CL is a Z codeword in Q′′

L, with an extra row
block in HL fully suppressing the degeneracy. The condition
EBu = 0 guarantees that u �= 0 cannot be set to zero by adding
linear combinations of the rows of (HZ )L. �

4. Proof of statement 4

Proof. Indeed, since A is block diagonal with the maximum
block size m, we can choose a set of basis vectors U ≡
{u1, u2, . . .} of the code C⊥

A so that the support of each vector
fits entirely in a single block, which implies wgt (u j ) � m. By
the condition, this code contains a nonzero vector u linearly
independent from the columns of B. Linear independence can
be also written as (I − EB)u �= 0 [see Eq. (19)]. Since u is a
linear combination of the basis vectors in U , at least one of
these satisfies the equation (I − EB)u j �= 0, which gives the
upper bound in question dZ (A, BT ) � wgt u j � m. �

5. Proof of statement 5

The proof is based on the following lemma (note that the
formulation in the original paper [17] is missing a condition;
this was corrected in the Erratum).

Lemma 1 (Z-puncturing bound [17]). Consider a
stabilizer code Q = CSS(HX , HZ ) with the parameters
[[n, k, (dX , dZ )]]q and a qudit index set V = [n]. Given a
partition into complementary sets I ⊂ V and J = V \ I,
suppose a logical generator matrix LX can be chosen so that
none of its k rows is supported both in I and in J . Let
Q′ = CSS ((HX )I, HZ [I]) and Q′′ = CSS ((HX )J , HZ [J ])
be the codes whose X -generator matrices are shortened and
Z-generator matrices punctured to I and J , respectively.
Then the Z distances of the three codes satisfy the inequality
dZ � min(d ′

Z , d ′′
Z ).

Proof of Statement 5. We construct the lower bound for Z
codewords; CSS symmetry combined with the block permuta-
tion symmetry gives the other bound. The proof amounts to a
demonstration that the condition of the Z-puncturing bound
lemma applies, which relates dZ to the Z distances of the
gauge-fixed codes (32), which are known to have the same
Z distances as the corresponding single-block erasure codes
[see Eq. (15)]. Indeed, with δX = δZ = 0, the total number
of independent codewords in the original code matches the
sum of those for the two Z-punctured codes. Thus, we just
need to show that any nontrivial Z codeword in one of the
Z-punctured codes can be padded with zeros to become a
nontrivial codeword of the original code, and independent
from the codewords coming from the other punctured code.
To this end, take u ∈ F � a nontrivial Z codeword from the left
Z-punctured code,

Au = 0, u + Bw �= 0 ∀ w ∈ F �. (A1)

Immediately, the pair cZ ≡ (u
0

)
is a Z-like codeword in the

original two-block code and, from the second part of Eq. (A1),
the top component remains nonzero when arbitrary linear
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combinations of rows of HZ are added. Thus, cZ is a nontrivial
Z codeword, and it is not degenerate to any codeword coming
from the other punctured code. This argument is repeated
identically for the second code in Eq. (32), up to an inter-
change of the A and B matrices. �

6. Proof of Eq. (34)

Proof. Without limiting generality, take μ = L. We are
going to show that the set of nontrivial Z codewords of the
original two-block code Q is split without an intersection
between those of the codes Q1 ≡ CSS(H (L)

X , HZ ) and Q2 ≡
CSS(HX , H (L)

Z ).
Indeed, a nontrivial Z codeword in Q1 or Q2 is also a

nontrivial codeword in Q, and a nontrivial codeword in Q
is necessarily a codeword in Q2 (possibly trivial). Second,
the ranks of the extended matrices H (L)

X and H (L)
Z both equal

to �; the two codes have dimensions k1 = kS + δZ and k2 =
kS + δX , adding up to the dimension (25) of the code Q.

Third, consider a nontrivial codeword cZ ≡ (u
v

)
in Q.

Suppose it also happens to be a (necessarily nontrivial) Z
codeword in Q1, i.e., (1 − EA)v = 0. This implies v = As,
for some s ∈ F �, which, in turn, gives u = Bs + (I − FA)w, a
trivial codeword in Q2. On the other hand, cZ is necessarily a
codeword in Q2, and any linear combination of the columns of
H (L)

Z cannot modify the value of (1 − EA)v. That is, when this
value is nonzero (i.e., cZ �∈ Q1), cZ is a nondegenerate code-
word in Q2. This completes the dichotomy and the proof. �

APPENDIX B: DETAILED PROOFS FOR SEC. IV

Proof of Theorem 1. (i) A group automorphism is a per-
mutation of group elements preserving the action of group
operation ϕ(a)ϕ(b) = ϕ(ab), a, b ∈ G. Further, for any size-�
permutation matrix S we can write, for HX = (A, B),

SHX

(
u
v

)
= (SAS−1, SBS−1)

(
Su
Sv

)
,

and similarly for HZ = (BT ,−AT ). Using ST = S−1, it is easy
to verify that scalar products and, in particular, the row or-
thogonality (8), are preserved by this transformation. (ii) This
follows from the proof of (i) if we choose the permutation
matrix S = L(α−1) R(β ) and remember that L and R matrices
commute. (iii) This is proved similarly, by rescaling block
components of cZ , u → x−1u, v → y−1v, and doing a similar
weight-preserving transformation of cX . (iv) This also is a
consequence of commutativity of left and right matrices. In-
deed, if we denote L ≡ L(α) and R ≡ R(β ), it is easy to verify
that the modified block matrices in Eq. (16) are A′ = AL,
B′ = BR, so that components of a cZ vector are transformed
as u → LT u, v → RT v, and an identical transformation for
the components of a cX vector, uX → LT uX , v → RT v. This
obviously preserves the scalar products between X and Z
codewords, and we only need to verify

H ′
Z c′

X = (RT BT ,−LT AT )

(
LT uX

RT vX

)
= RT LT (BT ,−AT )

(
uX

vX

)
= 0.

(v) The proof is also similar to (i), except we use the sym-
metric permutation matrix S = P = PT from Eq. (37) and,
in addition, interchange the blocks u′

μ = Pvμ, v′
μ = ±Puμ,

μ ∈ {X,Y }. (vi) After a permutation of the blocks, this is an
immediate consequence of Eq. (38). The second form follows
from (iii) and (v). �

1. Proof of Statement 6

Proof. The equivalence of the two codes is evident from
Theorem 1(ii). With Eqs. (39) and (40), the correspond-
ing transformation for a pair of group algebra elements is
[u, v] → [u, vx−1]; in particular, the row x goes to 1. Finally,
this invertible map sends the original double coset GaxGb to
GaxGbx−1 = Ga1Gxbx−1 . �

2. Proof of Statement 7

Proof. The subgroup N being normal both in Ga and Gb

guarantees that we can decompose Ga = Ha � N and Gb =
N � Hb as semidirect products [41], where Ha = Ga/N and
Hb = N\Gb are sets of cosets. The semidirect product, e.g.,
with the normal group on the right, is defined as a group
with elements from the set of all pairs Ha � N = {(h, γ )|h ∈
Ha, γ ∈ N} and the group product

(h1, γ1)(h1, γ2) ≡ (
h1h2, h−1

2 γ1h2 γ2
)
.

Similarly, any element of the double coset Ga1Gb can be
written as a triplet (α, γ , β ), with α ∈ Ga, γ ∈ N and β ∈ Gb,
with all triplets in the form (αx, x−1γ y−1, yβ ), x, y ∈ N united
into product-preserving equivalence classes. The group prod-
uct is defined as

(α1, γ1, β1)(α2, γ2, β2) = (
α1α2, α

−1
2 γ1α2 β1γ2β

−1
1 , β1β2

)
,

where the elements from Ha and Hb are forced to commute,
and the Abelian property of N is used to ensure the consis-
tency of the definition. It is easy to verify the group axioms:
thus defined product is associative, the identity element is the
equivalence class of (1,1,1), and the inverse of (α, γ , β ) is
(α−1, αβ−1γ −1βα−1, β−1), which is both a left and a right
inverse. Finally, this map also gives a natural map for the
group algebra elements a and b, with the multiplication by
an element of Ga from the left or an element of Gb from the
right giving the expected results. �

3. Proof of statement 8

Proof of statement 8. As discussed in the previous sec-
tion, the square matrices of 2BGA codes under consideration
here have the form of Kronecker products A = A1 ⊗ Imb , B =
Ima × B1, where ma and mb are indices of the support groups
in G, with � = mambc and c ≡ |N |. Further, A1 and B1 have
square blocks of size c which can be readily seen to have
the form of group algebra matrices LN (xi j ) = RN (xi j ) and
xi j ∈ F [N]. That is, the original 2BGA code is an Abelian
LP code, which can also be seen as an HP code over the ring
R = F [N]. As explained in the Appendix of Ref. [3], any such
code can be decomposed further as a direct sum of HP codes
over cyclic rings F [C�i ], 1 � i � s, where the groups C�i are
those in the decomposition of finite Abelian group N = C�1 ×
C�2 × · · · × C�s into a direct product of cyclic groups. Each of
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these HP codes can be also seen as an F -linear quasicyclic
LP code, and as a special case of a hyperbicycle code [14].
Importantly, at each step, we can reconstruct matrices over the
original field F as block-diagonal matrices, with the blocks
given by the corresponding matrices of the quasicyclic codes
in the decomposition; these transformations preserve the total
matrix rank and the dimension k of the original code.

The final step of the proof is to use Smith normal form
(SNF) decomposition over the polynomial ring F [x] to show
that a quasicyclic LP code can be further decomposed as a
direct sum of GB codes (see Lemma 2) below. Since matrix
ranks are additive, and rank defects vanish for GB codes, this
proves δX = δZ = 0 for 2BGA codes under consideration, and
also for all quasi-Abelian LP codes. �

Lemma 2 (Decomposition of a quasicyclic LP code).
Given R ≡ F [x]/(x� − 1), a ring of modular polynomials
isomorphic to circulant matrices over the finite field F , let
A and B be arbitrary matrices over R. The code LP[A, B] is
isomorphic a direct sum of GB codes.

As a reminder, the quasicyclic LP code [3,20] is con-
structed by replacing matrix elements of the associated HP
code over R, polynomials h(x) ∈ R, with the cyclic permuta-
tion matrices h(P) [see Eq. (43)]. The transformation in the
proof below is done with the help of SNF decomposition. In
general, this requires a nontrivial basis change. That is, only
the dimensions of the corresponding spaces are preserved, but
not the code distances.

Proof of Lemma 2. Denote the dimensions of matrices A
and B, respectively, as rA × nA and rB × nB. Then the associ-
ated HP code over R has CSS generators

HX = (A ⊗ IB, IA ⊗ B), HT
Z =

(
I ′
A ⊗ B

−A ⊗ I ′
B

)
, (B1)

where IA, IB, I ′
A, and I ′

B, respectively, are identity matrices
of dimensions rA, rB, nA, and nB. The matrix elements of
the original matrices A and B are polynomials from R. Con-
sidering the polynomials as elements of F [x], a principal
ideal domain, SNF of such matrices can be readily con-
structed using elementary row and column transformations,
e.g., A = UADAVA, where UA and VA are square matrices of
size rA and nA with unit determinants, respectively, and DA =
diag (a1(x), a2(x), . . . ), where a j (x) along the diagonal are
SNF invariants, with each subsequent polynomial divided by
the previous one, a j (x) | a j+1(x), 0 < j < min(ra, na). The
SNF over F [x]/(x� − 1) is obtained by taking these matrices
modulo x� − 1 elementwise. This preserves the unit determi-
nants of the matrices UA and VA, i.e., these matrices remain
invertible. Denoting the SNF invariants of the matrix B as
b j (x), 0 < j � min(rB, nB), it is easy to see that the invertible
matrices can be factored out in the CSS generator matrices
(B1), e.g.,

(UADAVA ⊗ IB, IA ⊗ UBDBVB)

= (UA ⊗ UB) (DA ⊗ IB, IA ⊗ DB)

(
VA ⊗ U −1

B
U −1

A ⊗ VB

)
,

which preserves the orthogonality between the rows of the
transformed matrices H ′

X and H ′
Z . Evidently, the transformed

matrices are constructed similarly to Eq. (B1), but from the
diagonal matrices DA and DB, so that each row contains

just two polynomials, e.g., the row i + ( j − 1)rA of HX has
ai(x) in the first block and b j (x) in the second. This gives a
block-diagonal form of the original HP code, with individual
blocks forming the codes GB[ai(x), b j (x)] constructed from
all pairwise combinations of SNF invariants of the original
matrices A and B. In particular, this gives the dimension of the
original quasicyclic LP code as

k = 2
min(rA,nA )∑

i=1

min(rB,nB )∑
j=1

gcd (ai(x), b j (x), x� − 1). (B2)

Unlike the corresponding expressions in Appendix B of
Ref. [3], this formula does not require that the group algebra
F [C�] be semisimple. �

4. Proof of Statement 9

Proof. The result follows from Statement 1. Indeed,
semisimple ideals aR and Ra are summands in R, and can be
generated by idempotents ea and fa, respectively, such that
a = eaa = a fa. The conditions of Statement 1 are satisfied
by taking EA = L(ea) and FA = L( fa) which necessarily com-
mute with B = R(b). �

5. Proof of Statement 10

The proof is based on the following.
Lemma 3 (Trivial quasi-Abelian LP codes). Given an

Abelian group N and a finite field F , consider the Abelian
group algebra R ≡ F [N]. Let A and B be matrices with
elements in R such that the classical codes C⊥

A and C⊥
B both

have zero dimensions. Then the quasi-Abelian code LP[A, B]
is trivial, dim LP[A, B] = 0.

Proof. This result is proved similarly to Statement 8.
Namely, we start from the decomposition of the LP code
as a direct sum of quasicyclic LP codes (see Appendix B
in Ref. [3]), combined with the decomposition in Lemma
2. With both C⊥

A and C⊥
B trivial, the SNF invariants of both

matrices must all be unit. As a result, every GB code in the
decomposition of Lemma 2 is trivial, which gives the result
immediately.

Alternatively, we can say that all-unit SNF invariants of A
and B imply that these matrices have well-defined ranks over
R, and follow the conventional rank-based derivation for the
dimension of HP code [13]. It gives zero when both matrices
have full row ranks. �

Proof of Statement 10. The proof goes along the lines of
that for the lower bound on the distance of conventional HP
codes [13]; it is based on Lemma 3. In this proof, matrices
over R are labeled by capital letters in the usual math italic
font, while the corresponding matrices over F are labeled in
bold italic, e.g, A with matrix elements ai j ∈ R and A formed
by blocks LN (ai j ) = RN (ai j ). We also denote �a ≡ [Ga : N]
and �b ≡ [Gb : N] the indices of the intersection group N in
the two support subgroups, so that � = c�a�b.

The 2BGA code LP[a, b] is a two-block code constructed
from matrices A = A1 ⊗ I�b and B = I�a ⊗ B1, where A1 and
B1, respectively, are block matrices equivalent to A1 ∈ M�a [R]
and B1 ∈ M�b[R]. Thus, the original code is equivalent to the
R-linear code HP[A1, B1], and it is this equivalence that is used
to construct the lower distance bound.
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TABLE II. Largest-distance 2BGA codes from Abelian groups
Cmh = Cm × C2, with k a factor of n = 4m and Wa = 2, Wb = 6. The
group generators are x and s, with xm = 1, s2 = 1, and xs = sx. The
distances which fail to satisfy the condition kd = n are given in bold.

m � n k d a b

4 8 16 2 4 1 + x 1 + x + s + x2 + sx + sx3

4 4 1 + x 1 + x + s + x2 + sx + x3

8 2 1 + s 1 + x + s + x2 + sx + sx2

6 12 24 4 5 1 + x 1 + x3 + s + x4 + x2 + sx
12 2 1 + x3 1 + x3 + s + x4 + sx3 + x

8 16 32 8 4 1 + x6 1 + sx7 + sx4 + x6 + sx5 + sx2

16 2 1 + sx4 1 + sx7 + sx4 + x6 + x3 + sx2

10 20 40 4 8 1 + x 1 + x5 + x6 + sx6 + x7 + sx3

8 5 1 + x6 1 + x5 + s + x6 + x + sx2

20 2 1 + x5 1 + x5 + s + x6 + sx5 + x

12 24 48 8 6 1 + sx10 1 + x3 + sx6 + x4 + x7 + x8

12 4 1 + x3 1 + x3 + sx6 + x4 + sx9 + x7

16 3 1 + x4 1 + x3 + sx6 + x4 + x7 + sx10

24 2 1 + sx6 1 + x3 + sx6 + x4 + sx9 + sx10

14 28 56 4 10 1 + x 1 + x7 + sx8 + x2 + x3 + sx11

8 7 1 + x8 1 + x7 + s + x8 + x9 + sx4

28 2 1 + x7 1 + x7 + s + x8 + sx7 + x

Given a vector e ∈ F 2� orthogonal to the rows of the gen-
erator matrix HX of the 2BGA code LP[a, b] equivalent to
HP[A1, B1], we construct sets IA ⊂ [�a] and IB ⊂ [�b] index-
ing only the columns of the matrices A1 and B1 incident on
nonzero elements of e in the product HX e = 0, the sets I ′

A and
I ′

B labeling all columns in the corresponding blocks of A1 and

B1, and the set I = I ′
A × [�b]

⊔
[�a] × I ′

B labeling all such
columns in HX , a disjoint union of the corresponding sets in
the left and in the right blocks. Each element of R corresponds
to a block of size c ≡ |N | in matrices A1 and B1, thus,

|I ′
μ| = c |Iμ| � c wgt (e), μ ∈ {A, B}.

Denote H ′
X , H ′

Z the CSS generator matrices of the LP code
constructed from punctured matrices A1[IA] and B1[IB]. By
construction, the shortened vector e[I] is a Z-like codeword
in the modified LP code, H ′

X e[I] = 0. On the other hand,
if |I ′

A| < d⊥
A and |I ′

B| < d⊥
B , the modified LP code must be

trivial by Lemma 3, i.e., e[I] can only be a trivial codeword,
and thus a linear combination of the rows of H ′

Z . These latter
rows can be constructed by shortening a subset of the rows of
the original matrix HX (where we drop only positions equal
to zero in each row of the subset), thus, the full vector e
is a linear combination of the rows of the original matrix
HZ . The inequality on the subset sizes is satisfied whenever
c wgt (e) < min(d⊥

A , d⊥
B ), which proves that the distance of

the original LP code satisfies dZ � min(d⊥
A , d⊥

B )/c, and, since
dZ is an integer, dZ � d0 as stated. �

6. Proof of Statement 11

Proof. If the code C⊥
A ∩ CJ is trivial, its distance is infinite,

and the upper bound in question is definitely satisfied. As-
suming otherwise, take any nonzero vector u ∈ C⊥

A ∩ CJ ; the
corresponding pair

(u
0

)
is clearly a Z codeword in the 2BGA

code, and we just need to verify that it is not degenerate to a
zero vector.

The minimum-weight elements in C⊥
A are associated with a

single block of A ≡ L(a), e.g., the terms in Eq. (45) with β =
1, the element of F [G] corresponding to u has the form u =

TABLE III. As in Table II but for non-Abelian dihedral groups Dm = 〈r, s|rm = s2 = (rs)2 = 1〉, with k a factor of n = 4m. Parameters of
all codes listed satisfy the condition kd = n.

m � n k d a b

6 12 24 8 3 1 + r4 1 + sr4 + r3 + r4 + sr2 + r
12 2 1 + r3 1 + sr + r3 + r4 + sr4 + r

8 16 32 8 4 1 + r2 1 + sr5 + sr4 + r2 + sr7 + sr6

16 2 1 + r4 1 + sr3 + sr6 + r4 + sr7 + sr2

9 18 36 12 3 1 + r3 1 + s + r + r3 + sr3 + r4

10 20 40 8 5 1 + r2 1 + sr4 + r5 + r2 + sr6 + r
20 2 1 + r5 1 + sr2 + r5 + r6 + sr7 + r

12 24 48 8 6 1 + r10 1 + sr8 + r9 + r4 + sr2 + r5

12 4 1 + r3 1 + sr7 + r3 + r4 + sr10 + r7

16 3 1 + r8 1 + sr8 + r9 + r8 + sr4 + r5

24 2 1 + r6 1 + sr11 + r6 + sr5 + r + r7

14 28 56 8 7 1 + r4 1 + sr11 + r7 + sr5 + r12 + r9

28 2 1 + r7 1 + sr2 + r7 + r8 + sr9 + r

15 30 60 12 5 1 + r12 1 + sr14 + r5 + r12 + sr11 + r14

20 3 1 + r5 1 + sr13 + r5 + r12 + sr3 + r2

16 32 64 8 8 1 + r6 1 + sr12 + sr9 + r6 + s + sr
16 4 1 + r4 1 + sr10 + sr3 + r4 + sr14 + sr7

32 2 1 + r8 1 + sr11 + sr12 + r8 + sr3 + sr4
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∑
α∈A α uα; intersection with CJ ensures that all uα ∈ I. The

code C⊥
BT ∩ ĈJ contains vectors z ≡ Py, such that y ∈ CJ and

BT z = 0, where B ≡ R(b) and P is the permutation matrix in
Eq. (37). Rewrite the condition BT z = 0 in terms of the group
algebra element associated with y; with the help of Eq. (37) it
reads as

0 = R(b)T P L(y) = P L(b) L(y) = P L(by),

or simply by = 0. Again, block structure of B and group
symmetry guarantees that we can choose y in the form y =∑

β∈B yββ. By construction, yα ∈ J , a maximal ideal, which
ensures that uy = ∑

α

∑
β αuαyββ �= 0, and thus for any w ∈

F [G], (u − wb)y = uy �= 0, which guarantees that the pair
(u

0

)
be a nondegenerate Z codeword in LP[a, b]. �

APPENDIX C: ADDITIONAL EXAMPLES

Table II gives explicitly the group algebra elements for
constructing Abelian 2BGA codes from the sequences kd =
n. Namely, for a given group Cmh = Cm × C2 = 〈x, s|xm =

s2 = xsx−1s−1 = 1〉, m � 1, only the maximum-distance
codes with k/2 a factor of n are shown. With polynomial
decomposition a = a0(x) + sa1(x) and b = b0(x) = sb1(x),
these codes can be also seen as index-4 qQC two-block codes
constructed from the circulant matrices

A =
(

a0(x) a1(x)
a1(x) a0(x)

)
, B =

(
b0(x) b1(x)
b1(x) b0(x)

)
.

Table III gives explicitly the group algebra elements for
constructing non-Abelian 2BGA codes with kd = n. All
codes are constructed from the groups Dm = Cm � C2 =
〈r, s|rm = s2 = (rs)2 = 1〉, m � 1. With polynomial decom-
position a = a0(r) + sa1(r) and b = b0(r) + sb1(r), these
codes can be also seen as index-4 qQC two-block codes con-
structed from circulant matrices

A =
(

a0(x) a1(x)
a1(x) a0(x)

)
, B =

(
b0(x) b1(x)
b1(x) b0(x)

)
,

where a0(r) = a0(r−1) ≡ sa0(r)s is the reverse of the polyno-
mial a0(r).
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