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We consider a spatial analogue of the quantum error correction threshold. Given individual time-independent
subsystems in which quantum information is coherent over sufficiently long lengths, we show how the infor-
mation can be kept coherent for arbitrarily long lengths by forming time-independent composite systems. The
subsystem coherence range exhibits threshold behavior. When it exceeds a range ξth, meaningful information can
be extracted from the ground state of the composite system. Otherwise, the information is garbled. The threshold
transition implies that the parent Hamiltonian of the ground state has gone from gapped to gapless. Ramifications
of the construction for projected entangled pair states and for adiabatic quantum computation are considered.
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I. INTRODUCTION

The quantum error correction [1–4] threshold theorem
[5–7] is a foundational element of the theory of quantum
computation. Roughly, it shows that, provided a system has
quantum gates with infidelity below a threshold value pth,
scalable computation is possible. The noise in the gates can
be tamed using redundancy, by encoding physical qubits into
logical qubits. Loosely speaking, if quantum information in
individual subsystems remains coherent for sufficiently long
times, it can be kept coherent for arbitrarily long times merely
by forming composite systems.

In this paper, we consider the spatial analogue of this
phenomenon. Given individual subsystems in which quantum
information is coherent over sufficiently long lengths, can it be
kept coherent for arbitrarily long lengths merely by forming
composite systems? Is there spatial threshold behavior? In
defining the question, it is important to emphasize that we
are considering the properties of a time-independent quantum
state. In the usual, temporal version of quantum error cor-
rection, it is often supposed that the qubits occupy different
spatial locations. A set of time-dependent errors can therefore
be visualized as occurring at a set of distinct positions, a
perspective that is especially helpful in the context of topo-
logical codes [8]. However, this is only superficially similar
to the question we are asking about time-independent spatial
coherence.

To answer the question, we specify a quantum subsystem
that serves as an elemental building block, analogous to a
qubit in the usual quantum error correction context. Given
any quantum circuit c, it is possible to encode a fault-tolerant
version of c into the time-independent state |�(θ )〉 of an
assembly of these subsystems. A parameter θ tunes the mini-
mum coherence range ξ (θ ) of the subsystems. We show that
ξ (θ ) exhibits spatial quantum error correction threshold be-
havior. When ξ (θ ) is just over a threshold value ξth, the output
of c can be extracted from |�(θ )〉. Otherwise, the output of
c is generally too garbled to extract. Conveniently, |�(θ )〉 is
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the ground state of a two-local [9] parent Hamiltonian H (θ ).
The construction leverages ground-state quantum computa-
tion [10–13] with important additional features from quantum
error correction.

The paper is structured as follows. The bulk of the exposi-
tion spells out the construction of |�(θ )〉 and H (θ ). We derive
the threshold behavior as the coherence range ξ (θ ) crosses
just over ξth. Then, we show that there is a gapped to gapless
transition in H (θ ). Finally, we discuss implications of the
construction for the theory of projected entangled pair states
(PEPS) and for universal adiabatic quantum computation.

II. RESULTS

A. Building block

To describe the construction of |�(θ )〉, we assume that our
starting quantum circuit c is composed of only initializations
and unitary gates. No midcircuit measurements occur, and we
also exclude from the definition of c final measurements to
probe its output state; such final measurements are regarded
as occurring immediately after c has run to completion. We
can encode physical qubits into logical qubits to form a fault-
tolerant [5–7] quantum circuit C. While measurements are
often used within fault-tolerant circuits to extract entropy,
this is inessential [5]; it will be convenient to assume that
our circuit C uses only initializations and one- and two-qubit
unitary gates. The fault tolerance allows C to produce the
correct output of c even in the presence of noise. In particular,
we will use the fact that C can produce the correct output of c
even if each of the gates of C is followed with probability p by
a depolarizing channel. It is only necessary that p � pth − δp,
where pth is the quantum error correction threshold and δp is
fixed and positive.

The map from C to |�(θ )〉 is most easily described using
explicit circuit examples as shown in Fig. 1. For each example,
we will also specify a two-local parent Hamiltonian H (θ )
as a sum of initialization terms Hinit , one-qubit gate terms
HU

one(θ ), and two-qubit gate terms HW
two(θ ) in one-to-one

correspondence with the initializations, one-qubit gates,
and two-qubit gates of C. The Hamiltonian is represented
symbolically in Fig. 2.
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FIG. 1. Example circuits, with time flowing to the right. (a) Triv-
ial circuit composed solely of initialization without any gates.
(b) Initialization of a qubit, followed by a one-qubit gate U . (c) Cir-
cuit (b) followed by a second one-qubit gate, V . (d) Initialization of
two qubits followed by a two-qubit gate.

Start with the trivial circuit in Fig. 1(a) that simply ini-
tializes a qubit. Define a two-dimensional Hilbert space with
basis {|00〉, |10〉} where the ket |bs〉 has “bit” value b and com-
putational “stage” value s. For the trivial circuit of Fig. 1(a),
there is only stage s = 0, and the desired time-independent
state is |00〉. It is the zero-energy ground state of the positive
semidefinite parent Hamiltonian Hinit = ε|10〉〈10| with ε a
fixed energy scale. Figure 2(a) depicts Hinit symbolically.

To apply a one-qubit gate U to the qubit after initial-
ization, as in Fig. 1(b), extend its two-dimensional Hilbert
space so that it has dimension 2 ⊗ 3 ⊗ (1 ⊕ 2 ⊕ 2). We will
explain this extension in two steps. Consider first extend-
ing from a two-dimensional space to a 2 ⊕ 2-dimensional
space, replacing the original basis {|00〉, |10〉} with an ex-
tended basis {|01〉, |11〉} ∪ {|00〉, |10〉}. The time-independent
state of the qubit in this extended space is assigned the
form 1√

2
(|01〉〈0|U |0〉 + |11〉〈1|U |0〉 + |00〉), where 〈0|U |0〉

and 〈1|U |0〉 are matrix elements of the one-qubit gate U . This
state of the qubit is a superposition of computational stage
s = 0 after initialization and stage s = 1 after U is applied.
In this way, we use superposition to replicate time evolution
within a time-independent state. If we define the operator
U = ∑

b,β,s=0,1 |bs〉〈b|U |β〉〈βs| that applies U while keeping
the stage fixed, then our state can be written in the compact
form

1√
2

(U |01〉 + |00〉). (1)

This state captures the action of U , but it has the unaccept-
able property that the postgate output U |0〉 is present with an
amplitude of just 1√

2
. This is reminiscent of qubit leakage in

standard time-dependent quantum computation, in which an
external disturbance ejects a qubit from its two-dimensional
Hilbert space. However, here we have the peculiar feature
that the qubit is sometimes at the wrong instant of “time,”
occupying the state |00〉 associated with stage s = 0 of the
computation rather than the desired state U |01〉 associated
with stage s = 1 of the computation. At first, this kind of
“leakage in time” seems like an inevitable consequence of the
fact that we are using superposition to replicate time evolution
within a time-independent state. However, it turns out that we

FIG. 2. Graphical depiction of Hamiltonians corresponding to
circuits in Fig. 1, with space flowing to the right rather than time.
(a) A pair of circles represents the two states {|00〉, |10〉}. Concretely,
one can think of an electron shared between quantum dots or a
Cooper pair shared between superconducting islands. The vertical
black line represents the energy penalty Hinit. (b) To apply a gate U ,
the two-dimensional Hilbert space is extended to 2 ⊗ 3 ⊗ (1 ⊕ 2 ⊕
2) dimensions. Colored circles represent the associated basis states
according to the correspondence blue ⊗ green ⊗ (yellow ⊕ orange
⊕ red). The terms of HU

one(θ ) are depicted using a square outline to
represent Eq. (9), a rectangle for (11), and an oval for (10). (c) To
apply a second gate V , the leftmost part of the 2 ⊗ 3 ⊗ (1 ⊕ 2 ⊕ 2)-
dimensional space is extended, yielding a 2 ⊗ 3 ⊗ (1 ⊕ 2 ⊕ 2) ⊗
3 ⊗ (1 ⊕ 2 ⊕ 2)-dimensional space. (d) Analogue of (b) for a two-
qubit gate W .

can eliminate this leakage-in-time error, trading it for depo-
larization error that can be subdued using standard quantum
error correction.

To make this trade, we extend the space of the
qubit from 2 ⊕ 2 dimensional to 2 ⊗ 3 ⊗ (1 ⊕ 2 ⊕ 2) di-
mensional. This allows us to incorporate a teleporta-
tionlike step [14] acting after U . Figure 2(b) is color
coded in consonance with the teleportation circuit in
Fig. 3 to clarify the role of each part of the 2 ⊗ 3 ⊗
(1 ⊕ 2 ⊕ 2)-dimensional Hilbert space. A convenient basis
for the Hilbert space is {|00〉, |10〉} ⊗ {|IDLE, |00〉, |10〉〉} ⊗
({|IDLE〉} ∪ {|01〉, |11〉} ∪ {|00〉, |10〉}). Our state is assigned
the form |ψU (0)〉 where

∣∣ψU (b)
〉 =

√
2

8 cos2 θ + sin2 θ

× [cos θ (|00〉 ⊗ |00〉 + |10〉 ⊗ |10〉) ⊗ (U |b1〉
+ |b0〉) + sin θ U |b0〉 ⊗ |IDLE〉 ⊗ |IDLE〉/

√
2]
(2)
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FIG. 3. Teleportation circuit. A postselection step checks that the
measured state is (|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉)/

√
2; when this is true,

the outgoing state on the bottom is U |0〉. The color coding shows
the correspondence between the parts of the circuit and the parts of
Fig. 2(b).

for b = 0, 1. In the first term of |ψU (b)〉, we prepend, along-
side a state (U |b1〉 + |b0〉)/

√
2 like (1), a Bell pair (|00〉 ⊗

|00〉 + |10〉 ⊗ |10〉) needed for teleportation. The second term
U |b0〉 ⊗ |IDLE〉 ⊗ |IDLE〉 completes teleportation, consum-
ing the original qubit state and half of the Bell pair, so that
the quantum information teleports to the other half of the
Bell pair. (The label “IDLE” was chosen to suggest that
the 3 ⊗ (1 ⊕ 2 ⊕ 2)-dimensional part of the Hilbert space
is in a neutral postmeasurement status, no longer carrying
a qubit value |0〉 or |1〉.) State (2) completely resolves the
leakage-in-time error suffered by state (1). In both terms of
(2), the leftmost part of the 2 ⊗ 3 ⊗ (1 ⊕ 2 ⊕ 2) occupies a
strictly two-dimensional Hilbert space spanned by the basis
{|00〉, |10〉}. Granted, it is not always in the desired state U |b0〉;
this is the cost of resolving the leakage-in-time error. For-
tunately, when the parameter θ is close to π/2, the postgate
output U |b〉 is available with an amplitude approaching 1 and
the fidelity of the teleportation is high.

To formalize this in a useful way, we compute the den-
sity matrix of the system and trace out the 3 ⊗ (1 ⊕ 2 ⊕
2)-dimensional part. First, we define the one-qubit “gate op-
erator”

ĝU
one = |ψU (0)〉〈00| + |ψU (1)〉〈10| (3)

in terms of (2). This operator is a mapping from a two-
dimensional space to a 2 ⊗ 3 ⊗ (1 ⊕ 2 ⊕ 2)-dimensional
space. Our qubit state is simply |ψU (0)〉 = ĝU

one|00〉 given in
(2). Next, we define the superoperator

gU
one(ρ) = Tr3⊗(1⊕2⊕2)ĝ

U
oneρĝU†

one. (4)

One calculates that

gU
one(ρ) = (1 − pone)UρU† + poneTrρ

I (2)

2
(5)

where

pone(θ ) = 8 cos2 θ

8 cos2 θ + sin2 θ
(6)

and I (k) denotes the identity operator on a k-dimensional
Hilbert space. Thus, gU

one(ρ) applies U followed by a depo-
larizing channel with probability pone. The reduced density
matrix of the leftmost two-dimensional part of the 2 ⊗ 3 ⊗
(1 ⊕ 2 ⊕ 2)-dimensional space of the qubit is gU

one(|00〉〈00|).

This yields the desired output U |0〉 of Fig. 1(b) with high
probability as θ approaches π/2.

The 2 ⊗ 3 ⊗ (1 ⊕ 2 ⊕ 2)-dimensional subsystem is the el-
emental building block of our construction. The two states (2)
are structured so that, in some sense, a 2 × 2 input density
matrix ρ ends up becoming gU

one(ρ) as one moves spatially
from one part of the subsystem to the other.

B. Coherence range

If we assume that the quantum state is distributed spatially
like the dots laid out in Fig. 2(b), it is natural to define
a coherence range describing the decay of quantum coher-
ence from the rightmost two-dimensional part of the 2 ⊗ 3 ⊗
(1 ⊕ 2 ⊕ 2)-dimensional Hilbert space to the leftmost two-
dimensional part. In the case of a one-qubit gate like we
have been considering, we denote the coherence range ξone(θ ).
Since qubits are equivalent to spin-1/2 degrees of freedom,
we define ξone(θ ) using a kind of spin-spin correlation func-
tion. Denote the Pauli matrices by σ i for i = 1, 2, 3. Let
τ i = ∑

b,b′ |ψU (b)〉σ i
b,b′ 〈ψU (b′)| express the Pauli matrix σ i

in the space {|ψU (b)〉|b ∈ 0, 1} indexed by the pregate input b.
Let ς i = (

∑
b,b′ U |b0〉σ i

b,b′ 〈b′
0|U†) ⊗ I (3) ⊗ (I (1) ⊕ I (2) ⊕ I (2) )

express the Pauli matrix σ i in the postgate output basis
{U |00〉,U |10〉}. Define the spin-spin correlation function be-
tween input and output:

e− 1
ξone (θ ) = Tr ρ(ς1τ 1 + ς2τ 2 + ς3τ 3)

3
= 1 − pone(θ ) (7)

where ρ = ∑
b,b′ |ψU (b)〉ρb,b′ 〈ψU (b′)| denotes any density

matrix with Tr ρ = 1. Note that the result is independent of U
and ρ. As the depolarizing channel probability pone(θ ) grows,
the coherence range ξone(θ ) shrinks.

C. Parent Hamiltonian

We can find a positive semidefinite parent Hamiltonian

HU
one(θ ) + I (2) ⊗ I (3) ⊗ Hinit

that has ĝU
one|00〉 as a nondegenerate zero-energy ground state.

Earlier, we defined Hinit = ε|10〉〈10|. In a slight abuse of no-
tation, we retain the same notation even though the operator
above was defined on a two-dimensional Hilbert space with
basis {|00〉, |10〉}, whereas now Hinit = ε|10〉〈10| is defined on
a 1 ⊕ 2 ⊕ 2-dimensional Hilbert space with basis {|IDLE〉} ∪
{|01〉, |11〉} ∪ {|00〉, |10〉}. We set

HU
one(θ ) = I (2) ⊗ I (3) ⊗ HU + HB ⊗ (I (1) ⊕ I (2) ⊕ I (2) )

+ I (2) ⊗ HP(θ ). (8)

Figure 2(b) sketches the Hamiltonian, emphasizing the do-
main of each of these terms. The three operators HU , HB, and
HP(θ ) take the following forms. First,

HU = ε
∑

b

(U |b1〉 − |b0〉)(〈b1|U† − 〈b0|)/2 (9)
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enforces the action of the specific unitary U . It is defined on a
1 ⊕ 2 ⊕ 2-dimensional Hilbert space. The Bell-pair term

HB = ε

2
[(|10〉|00〉 − |00〉|10〉)(〈10|〈00| − 〈00|〈10|)

+ (|10〉|00〉 + |00〉|10〉)(〈10|〈00| + 〈00|〈10|)
+ (|00〉|00〉 − |10〉|10〉)(〈00|〈00| − 〈10|〈10|)] (10)

imposes an energy penalty if the Bell pair in the first term of
(2) is not of the desired form (|00〉 ⊗ |00〉 + |10〉 ⊗ |10〉)/

√
2.

It is defined on a 2 ⊗ 3-dimensional Hilbert space. Finally, the
projection term

HP(θ ) = ε

×
[(

sin θ
|00〉|01〉 + |10〉|11〉√

2
− cos θ |IDLE〉|IDLE〉

)

×
(

sin θ
〈00|〈01| + 〈10|〈11|√

2
− cos θ〈IDLE|〈IDLE|

)

+ |IDLE〉〈IDLE| ⊗
∑

b,s=0,1

|bs〉〈bs|

+
∑

b=0,1

|b0〉〈b0| ⊗ |IDLE〉〈IDLE|
]

(11)

is designed to replace the Bell-basis measurement step of
teleportation. In place of the Bell-basis measurement step of
teleportation, it enforces a time-independent form of post-
selection on the states (2). The parameter θ is introduced
to govern the relative contributions of the premeasurement
and postmeasurement stages of the computation [i.e., the two
terms in Eq. (2)]. The final lines of (11) impose an energy
penalty unless both targets of the measurement undergo the
step in tandem. The operator HP is defined on a 3 ⊗ (1 ⊕ 2 ⊕
2)-dimensional Hilbert space.

D. Composing building blocks

We have discussed the state and parent Hamiltonian associ-
ated with a single one-qubit gate. To handle more complicated
circuits, the construction of Fig. 2(b) can be iterated. For
instance, if a second unitary gate V is applied to our qubit,
as in Fig. 1(c), the ground state is assigned the form

[
ĝV

one ⊗ I (3) ⊗ (I (1) ⊕ I (2) ⊕ I (2) )
]|ψU (0)〉

= [
ĝV

one ⊗ I (3) ⊗ (I (1) ⊕ I (2) ⊕ I (2) )
]
ĝU

one|00〉. (12)

The action of ĝV
one iteratively expands the leftmost two-

dimensional part of the Hilbert space, so that, instead of a 2 ⊗
3 ⊗ (1 ⊕ 2 ⊕ 2)-dimensional space, the qubit now inhabits
a 2 ⊗ 3 ⊗ (1 ⊕ 2 ⊕ 2) ⊗ 3 ⊗ (1 ⊕ 2 ⊕ 2)-dimensional space.
The reduced density matrix of the leftmost two-dimensional
Hilbert space is gV

one(gU
one(|00〉〈00|)). This equals the output

produced by a noisy quantum circuit that starts with |0〉,
applies U followed by a depolarizing channel with probability
pone(θ ), then applies V followed by a depolarizing channel
with probability pone(θ ). The Hamiltonian, depicted symboli-

cally in Fig. 2(c), is

HV
one(θ ) ⊗ I (3) ⊗ (I (1) ⊕ I (2) ⊕ I (2) ) + I (2) ⊗ I (3)⊗

× [
HU

one(θ ) + (I (1) ⊕ I (2) ⊕ I (2) ) ⊗ I (3) ⊗ Hinit
]
. (13)

It is worth reflecting on the essential role that teleportation
plays in the construction presented in this paper. In the ab-
sence of teleportation, it is still possible to generalize (1) to
include another gate. The natural generalization would take
the form 1√

3
(VU |02〉 + U |01〉 + |00〉). The problem is that

the postgate result VU |02〉 appears with an amplitude of just
1/

√
3 in this state. Effectively, leakage in time of quantum

information, discussed above after Eq. (1), gets worse and
worse with the addition of every gate. In contrast, when we
include teleportation, the leakage-in-time problem goes away
entirely, albeit with the cost that every gate is followed by a
depolarization channel.

To incorporate the effect of a two-qubit gate W in C, as
in Fig. 1(d), ĝU

one is replaced with an operator ĝW
two. This is

specified in detail in Appendix A. Its associated superoperator
gW

two applies W followed by a depolarizing channel on one or
both qubits with probability

ptwo(θ ) = 32 cos4 θ + 8 cos2 θ sin2 θ

32 cos4 θ + 8 cos2 θ sin2 θ + sin4 θ
. (14)

The Hamiltonian HW
two(θ ) is represented in Fig. 2(d). The

coherence range ξtwo(θ ) associated with the two-qubit gate is
defined in analogy to (7), as described in Appendix B.

By iterating the constructions above, employing 2 ⊗ 3 ⊗
(1 ⊕ 2 ⊕ 2)-dimensional subsystems for each of the gates in
C, one obtains a |�(θ )〉 that contains the output of C, and
one also obtains the parent Hamiltonian H (θ ) of |�(θ )〉. The
state has the form |�(θ )〉 = . . . ĝW

two . . . ĝU
one . . . |00〉⊗Q where

there is an operator of the form ĝW
two for each two-qubit

gate in C, there is an operator of the form ĝU
one for each

one-qubit gate in C, and Q is the number of qubits in C.
We have omitted tensor products with identity operators, ab-
breviating, for example, [ĝV

one ⊗ I (3) ⊗ (I (1) ⊕ I (2) ⊕ I (2) )] in
(12) as ĝV

one. The final reduced density matrix of dimension
2⊗Q, obtained by tracing out all but the final two-dimensional
Hilbert space of each qubit, takes the abbreviated form
. . . (gW

two{. . . gU
one[. . . (|00〉〈00|⊗Q) . . . ] . . . }), where again we

have omitted tensor products with identity operators. This
equals the density matrix that would be produced by executing
the quantum circuit C with each perfect one-qubit unitary
followed by depolarization with probability pone(θ ) and each
perfect two-qubit unitary followed by depolarization with
probability ptwo(θ ). Because pone(θ ) � ptwo(θ ), we set the
gate error probability p to ptwo(θ ). Then, C’s fault tolerance
implies the output of c can be extracted, by decoding the
final density matrix of dimension 2⊗Q of |�(θ )〉, provided
ptwo(θ ) � pth − δp.

E. Threshold

This gives rise to our spatial quantum error correction
threshold. We set the minimum coherence range ξ (θ ) to
ξtwo(θ ) because ξtwo(θ ) � ξone(θ ). When

ξtwo(θ ) � ξth + δξ, (15)
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FIG. 4. Phase diagram of H (θ ). Values of θ appear above the line
with the corresponding value of ξtwo below. As ξtwo increases from
zero to ∞, it crosses the threshold value ξth, and the ground state
develops long-range entanglement. This implies the Hamiltonian has
become gapless.

the output of c can be extracted. Here, ξth is defined as ξth =
ξtwo(θth ) where ptwo(θth ) = pth, and δξ = ξtwo[p−1

two(pth +
δp)] − ξth.

When ξ (θ ) crosses the threshold, there are ramifications
for the properties of H (θ ). A key property of interest is the
energy gap, which is computed by taking the limit of large
system size. Since the form of H (θ ) is determined by a
fault-tolerant circuit C, this thermodynamic limit should be
taken by specifying a family of larger and larger fault-tolerant
circuits. One natural family is composed of circuits associated
with a given quantum algorithm of growing problem size.
However, it is simpler to consider [15] a circuit c that starts
with two qubits initialized to |0〉 ⊗ |0〉, applies a Hadamard
gate to the second qubit to produce |0〉 ⊗ (|0〉 + |1〉)/

√
2,

and then applies a controlled-NOT (CNOT) gate targeting the
first qubit in order to produce the Bell pair (|0〉 ⊗ |0〉 + |1〉 ⊗
|1〉)/

√
2. Finally, a string of G identity gates is applied to each

qubit of the pair. To take the limit of large system size, let G
grow, with the fault-tolerant circuit C requiring ever bulkier
logical qubits.

At the point θ = 0, where ξ (θ ) = 0, the energy eigenval-
ues of H (θ ) are easily obtained by inspecting the forms of
HU

one(θ ) and HW
two(θ ). We find a gap for all G. Now, H (θ )

is going to remain gapped for small values of θ , but, by
the time ξ (θ ) crosses ξth + δξ , the system must have under-
gone a transition to a gapless phase (see Fig. 4). This must
happen because C successfully outputs an intact logical Bell
pair for all values of G. Thus, the ground state |�(θ )〉 con-
tains long-range entanglement between the members of this
Bell pair, which can only happen if H (θ ) is gapless [16,17].
The argument is suitably generalized to other circuits C in
Appendix C.

III. DISCUSSION

We have demonstrated a spatial quantum error correction
threshold. It is realized in the time-independent ground state
|�(θ )〉 of a parent Hamiltonian H (θ ). The threshold behavior
is associated with a gapped to gapless transition in H (θ ).

The results have interesting implications for the study
of spatial correlations in quantum states, especially ground
states, a topic that has been under active investigation in recent
years [16–20]. Our construction demonstrates an unexpected

way in which quantum error correction, a tool that is proving
to be remarkably versatile [21–25], can impact the analysis of
such correlations. In particular, the gapped to gapless transi-
tion that we have exhibited is of significance in the context
of PEPS [26–29] since |�(θ )〉 can be written as a projected
entangled pair state (see Appendix D). While one-dimensional
PEPS, referred to as matrix product states, generally have
gapped parent Hamiltonians [30], understanding when higher-
dimensional PEPS parent Hamiltonians are gapped and when
they are gapless is a subtle problem under active consideration
[31]. Our |�(θ )〉 and H (θ ) provide a useful example to inform
this investigation.

Moreover, the construction presented in this paper could
be considered for use in universal adiabatic quantum com-
puting [32]. Adiabatic quantum computing entails a system
controlled by a parameter-dependent Hamiltonian H (θ ). The
Hamiltonian is designed so that H (θi ) has a simple ground
state while H (θ f ) has a useful ground state that can be mea-
sured to obtain the results of some computation. The ground
state of H (θi ) is the initial state of the computation. By slowly
tuning θ from θi to θ f , one adiabatically carries the initial
state to the useful ground state of H (θ f ). In the construction
detailed in this paper, by adiabatically carrying the parent
Hamiltonian H (θ ) from θi = 0 to a θ f close to π/2, one
brings its ground state |�(θ )〉 from a simple initial form to
one containing the output of c.

There are a number of sources of error that can disrupt an
adiabatic quantum computation.

(i) One source of error stems from the inevitable differ-
ences between the desired form of H (θ ) and the form of H (θ )
that ends up getting realized in an actual physical system.

(ii) Another source of error arises from thermal excitations
of H (θ ) out of its ground state as a result of the fact that the
environment does not have zero temperature in the real world.

(iii) Related to this, we have a source of error that stems
from leakage of the qubits of the physical system out of
their Hilbert space as a result of environmental disturbances.
It is noteworthy that the parent Hamiltonian H (θ ) we have
specified allows universal adiabatic quantum computation
that is fault tolerant against sources of error (i) and (iii)
as a result of the fault tolerance of the circuit c. How-
ever, the gapless property of H (θ ) indicates that, in thermal
equilibrium, the system is not fault tolerant against thermal
error (ii).
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APPENDIX A: TWO-QUBIT GATES

This section completes the discussion of Fig. 2(d), detail-
ing the case of a two-qubit gate W . The two participating
qubits inhabit a [2 ⊗ 3 ⊗ (1 ⊕ 2 ⊕ 2)] ⊗ [2 ⊗ 3 ⊗ (1 ⊕ 2⊕2)]-
dimensional Hilbert space. We define four states of the
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system by ∣∣ψW
0 (b, B)

〉 = 1√
32 cos4 θ + 8 cos2 θ sin2 θ + sin4 θ

×
[

4 cos2 θ
1√
2

(|00〉|00〉 + |10〉|10〉)|b0〉 1√
2

(|00〉|00〉 + |10〉|10〉)|B0〉

+
∑
b′,B′

〈b′|〈B′|W |b〉|B〉
(

4 cos2 θ
1√
2

(|00〉|00〉 + |10〉|10〉)
∣∣b′

1

〉 1√
2

(|00〉|00〉 + |10〉|10〉)
∣∣B′

1

〉

+ 2 cos θ sin θ
∣∣b′

0

〉|IDLE〉|IDLE〉 1√
2

(|00〉|00〉 + |10〉|10〉)
∣∣B′

1

〉
+ 2 cos θ sin θ

1√
2

(|00〉|00〉 + |10〉|10〉)
∣∣b′

1

〉∣∣B′
0

〉|IDLE〉|IDLE〉

+ sin2 θ
∣∣b′

0

〉|IDLE〉|IDLE〉∣∣B′
0

〉|IDLE〉|IDLE〉
)]

. (A1)

In this equation, line 1 contains the normalization constant. Line 2 corresponds to the stage of the computation before W is
applied. The input qubit states |b〉 and |B〉 are each accompanied by a Bell pair (|00〉|00〉 + |10〉|10〉)/

√
2 that will be needed for

teleportation. At line 3, W has been applied, but teleportation has not yet occurred, so the Bell pairs are still present. At lines 4
and 5, teleportation has occurred for one of the two qubits but not the other. At line 6, teleportation has occurred for both qubits,
completing the gate.

The gate operator is defined by ĝW
two = ∑

b,B |ψW
0 (b, B)〉〈b0|〈B0|. The corresponding superoperator is

gW
two(ρ) = Tr3⊗(1⊕2⊕2)Tr3⊗(1⊕2⊕2)ĝ

W
twoρĝW †

two = [1 − ptwo(θ )]WρW†

+ 4 cos2 θ sin2 θ

32 cos4 θ + 8 cos2 θ sin2 θ + sin4 θ

∑
b,b′,B

〈b|〈B|ρ|b′〉|B〉W
(

|b0〉〈b′
0| ⊗ |00〉〈00| + |10〉〈10|

2

)
W†

+ 4 cos2 θ sin2 θ

32 cos4 θ + 8 cos2 θ sin2 θ + sin4 θ

∑
b,B,B′

〈b|〈B|ρ|b〉|B′〉W
(

|00〉〈00| + |10〉〈10|
2

⊗ |B0〉〈B′
0|

)
W†

+ 32 cos4 θ

32 cos4 θ + 8 cos2 θ sin2 θ + sin4 θ
Trρ

|00〉〈00| + |10〉〈10|
2

⊗ |00〉〈00| + |10〉〈10|
2

(A2)

with

ptwo(θ ) = 32 cos4 θ + 8 cos2 θ sin2 θ

32 cos4 θ + 8 cos2 θ sin2 θ + sin4 θ
.

Here, W = ∑
s,b,B,b′,B′ |bs〉|Bs〉〈b|〈B|W |b′〉|B′〉〈b′

s|〈B′
s| applies W while keeping the stage variable fixed. The second line of

Eq. (A2) corresponds to the successful application of the gate W . In the third and fourth lines, a depolarization channel has been
applied to just one of the two qubits. In the final line, depolarization channels have been applied to both qubits. In Fig. 2(d), the
reduced density matrix of the two qubits, after tracing out the 3 ⊗ (1 ⊕ 2 ⊕ 2)-dimensional part of the Hilbert space of each, is
gW

two(|00〉|00〉〈00|〈00|). This yields the desired output W |0〉|0〉 of Fig. 1(d) as θ approaches π/2.
The parent Hamiltonian of the ground states (A1) has the form

HW
two(θ ) = ε

2

∑
b,B

I (2) ⊗ I (3) ⊗ |b0〉〈b0|] ⊗ [I (2) ⊗ I (3) ⊗ |B0〉〈B0|]

+ ε

2

∑
b,B

[I (2) ⊗ I (3) ⊗ |b1〉〈b1|] ⊗ [I (2) ⊗ I (3) ⊗ |B1〉〈B1|]

− ε

2

∑
b,B,b′,B′

〈b′|〈B′|W |b〉|B〉[I (2) ⊗ I (3) ⊗ |b′
1〉〈b0|] ⊗ [I (2) ⊗ I (3) ⊗ |B′

1〉〈B0|]

− ε

2

∑
b,B,b′,B′

〈b|〈B|W †|b′〉|B′〉[I (2) ⊗ I (3) ⊗ |b0〉〈b′
1|] ⊗ [I (2) ⊗ I (3) ⊗ |B0〉〈B′

1|]

+ ε

2
[I (2) ⊗ I (3) ⊗

∑
b

|b0〉〈b0|] ⊗ [I (2) ⊗ I (3) ⊗ (|IDLE〉〈IDLE| +
∑

B

|B1〉〈B1|)]
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+ ε

2
[I (2) ⊗ I (3) ⊗ (|IDLE〉〈IDLE| +

∑
b

|b1〉〈b1|)] ⊗ [I (2) ⊗ I (3) ⊗
∑

B

|B0〉〈B0|]

+ [HB ⊗ (I (1) ⊕ I (2) ⊕ I (2) ) + I (2) ⊗ HP] ⊗ [I (2) ⊗ I (3) ⊗ (I (1) ⊕ I (2) ⊕ I (2) )]

+ [I (2) ⊗ I (3) ⊗ (I (1) ⊕ I (2) ⊕ I (2) )] ⊗ [HB ⊗ (I (1) ⊕ I (2) ⊕ I (2) ) + I (2) ⊗ HP]. (A3)

The first four lines are analogous to the single-qubit gate case
(9), despite superficial complexity resulting from the tensor
product notation. Both qubits move together from stage 0 to
stage 1, undergoing the gate W . The next two lines impose
an energy penalty if either qubit attempts to traverse the gate
alone. The seventh line is concerned with the teleportation of
one qubit, and the final line is concerned with the teleportation
of the other qubit. These last two lines employ the Hamiltoni-
ans (10) and (11).

The circuit in Fig. 1(d) includes initializations. Thus, the
total Hamiltonian for Fig. 2(d) is

H (θ ) = HW
two(θ ) + [I (2) ⊗ I (3) ⊗ (I (1) ⊕ I (2) ⊕ I (2) )] ⊗ [I (2)

⊗ I (3) ⊗ Hinit] + [I (2) ⊗ I (3) ⊗ Hinit]

⊗ [I (2) ⊗ I (3) ⊗ (I (1) ⊕ I (2) ⊕ I (2) )]. (A4)

APPENDIX B: COHERENCE RANGES ξone(θ) AND ξtwo(θ)

In this section, we first compute the coherence range
ξone(θ ) relation given in (7). It is convenient to define

σ̃ i =
∑
b,b′

|b0〉σ i
b,b′ 〈b′

0|, (B1)

an operator corresponding to the Pauli matrix σ i in the |b0〉
basis. This definition implies that ς i = U σ̃ iU† and that τ i =
ĝU

oneσ̃ ĝU†
one. We also define

ρ̃ =
∑
b,b′

|b0〉ρb,b′ 〈b′
0|, (B2)

an operator corresponding to the density matrix ρ in the |b0〉
basis, so that ρ = ĝU

oneρ̃ĝU†
one. We define ξone(θ ) in terms of a

kind of spin-spin correlation function:

e−1/ξone (θ ) = Tr ρ
[ ∑3

i=1 ς iτ i
]

3

= Tr
[ ∑3

i=1 U σ̃ iU† gU
one(σ̃ iρ̃ )

]
3

= Tr
[ ∑3

i=1 σ̃ i (1 − pone(θ )) σ̃ iρ̃
]

3

= 1 − pone(θ ). (B3)

In the second equality, we have taken the trace over the 3 ⊗
(1 ⊕ 2 ⊕ 2) parts of the 2 ⊗ 3 ⊗ (1 ⊕ 2 ⊕ 2) Hilbert space. In
the third equality, we have used the formula gU

one(σ̃ iρ̃ ) = (1 −
pone)U σ̃ iρ̃U† + poneTr(σ̃ iρ̃ ) I/2 that appears in the main
text.

The definition of ξone(θ ) can be extended to the case of a
two-qubit gate W . The Hilbert space has dimension 2 ⊗ 3 ⊗

(1 ⊕ 2 ⊕ 2) ⊗ 2 ⊗ 3 ⊗ (1 ⊕ 2 ⊕ 2). Define ς i j = W[σ̃ i ⊗ I ⊗
I ⊗ σ̃ j ⊗ I ⊗ I]W† where the two-qubit operator W acts on the
first and fourth parts of the Hilbert space:

W =
∑

b,B,b′,B′
〈b|〈B|W |b′〉|B′〉

× |b0〉〈b′
0| ⊗ I ⊗ I ⊗ |B0〉〈B′

0| ⊗ I ⊗ I. (B4)

The subsystem spin operator is

τ i j =
∑

b,B,b′,B′

∣∣ψW
0 (b, B)

〉
σ i

b,b′σ
j

B,B′
〈
ψW

0 (b′, B′)
∣∣

= ĝW
twoσ̃

i ⊗ σ̃ j ĝW †

two. (B5)

Set

ρ =
∑

b,B,b′,B′

∣∣ψW
0 (b, B)

〉
ρb,B;b′,B′

〈
ψW

0 (b′, B′)
∣∣

= ĝW
twoρ̃ĝW †

two (B6)

where ρ̃ = ∑
b,B,b′,B′ |b0〉|B0〉ρb,B;b′,B′ 〈b′

0|〈B′
0|. Define

e−1/ξtwo(θ ) = Tr ρ
[ ∑3

i, j=1 ς i jτ i j
]

9

= Tr
[ ∑3

i, j=1 W σ̃ i ⊗ σ̃ jW†gW
two(σ̃ i ⊗ σ̃ j ρ̃ )]

9

= 1 − ptwo(θ ) (B7)

using (A2).

APPENDIX C: GAPPED TO GAPLESS
PHASE TRANSITION

In the main text, the gapped to gapless phase transition is
discussed in the context of a specific family of circuits. This
specific family is chosen for simplicity: all it does is form
a Bell pair. However, the gapped to gapless phase transition
occurs for any family of circuits with increasingly long-range
entanglement in the output. We formalize this statement in this
section, relying on the discussion in [16]. Then, we observe
that the phase transition can actually occur more generically.

To begin, we need a definition of distance to capture the
notion of long-range entanglement. Suppose we are given a
circuit C. Choose two of its qubits x and y. Define the distance
between x and y as the minimum number of gates one must
traverse to form a continuous line connecting the output of x
and the output of y in the circuit diagram of C. For example,
in the family of Bell pair circuits discussed in the main text
(see Fig. 5), x could refer to the first qubit and y to the second
qubit. To connect the output of x and the output of y, we must
traverse backward through G identity gates from the output of
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FIG. 5. Circuit that generates a Bell pair and then applies G
identity gates to each member of the pair.

x to get to a CNOTgate, traverse the CNOT gate over to qubit y,
and then traverse forward G identity gates to get to the output
of y. Thus, the distance between x and y is 2G + 1. If X and Y
denote sets of qubits, define the distance between them as the
minimum distance between any qubit x in X and any qubit y
in Y .

Now, consider measuring a Hermitian operator AC
X C on the

output state of the circuit C. The subscript of AC
X C indicates

that it is supported on the set X C of qubits of the circuit C.
Similarly, consider measuring a Hermitian operator BC

Y C that
is supported on a set Y C of qubits among the output of the
circuit C. We can compute the distance between the sets X C

and Y C in the manner described in the previous paragraph. We
can also look for entanglement by computing the correlation
〈AC

X C BC
Y C〉 − 〈AC

X C〉〈BC
Y C〉 in the output state. For example, con-

sider the fault-tolerant version of the Bell pair circuit of Fig. 5,
in which each horizontal line is associated with a logical qubit
and each gate with a logical gate. Choose X C to be the set
of physical qubits comprising the first logical qubit. Choose
Y C to be the set of physical qubits comprising the second
logical qubit. Set AC

X C to be the logical Z operator of the
first logical qubit, appropriately dressed to handle physical
bit-flip errors in the logical qubit [33]. Set BC

Y C to be the
dressed logical Z operator of the second logical qubit. Then,
〈AC

X C BC
Y C〉 − 〈AC

X C〉〈BC
Y C〉 is ≈1 independent of the value of G.

With this framework, we can consider the gapped to gap-
less phase transition. Suppose that we are given a linearly
ordered set of circuits F. Suppose that we can identify an AC

X C

and BC
Y C for each C ∈ F such that the distance between X C and

Y C grows as we proceed through F but the correlation always
satisfies 〈AC

X C BC
Y C〉 − 〈AC

X C〉〈BC
Y C〉 � k for some constant k. For

each circuit C, construct a Hamiltonian H (θ ) and ground state
|�(θ )〉 according to the mapping detailed in the main text. The
condition 〈AC

X C BC
Y C〉 − 〈AC

X C〉〈BC
Y C〉 � k implies a correspond-

ing correlation in |�(θ )〉, provided θ is sufficiently close to
π/2. Given this correlation in the ground state, we can apply
theorem 2.8 of [16]. This theorem indicates that, as we pro-
ceed through the set of circuits F, the gap of the Hamiltonians
must shrink down to zero. Since it is easily seen by inspection
that H (θ ) is gapped near θ = 0, there must be a gapped to
gapless phase transition for F.

We have now demonstrated that a gapped to gapless phase
transition occurs for any family of circuits with increasingly
long-range entanglement among the output logical qubits.
One wonders whether the long-range entanglement is essen-
tial: does a phase transition occur even in its absence? (For
instance, perhaps the phase transition occurs simply as a result

of entanglement of the physical qubits within each individ-
ual logical qubit rather than entanglement between logical
qubits.) To consider this, note that the gap of the Hermitian
operator H (θ ) is unaffected by the application of a unitary
transformation. Thus, the phase transition would still occur
if we were to start with a linearly ordered set of circuits F
exhibiting long-range entanglement and then eliminate the
long-range entanglement via unitary transformations on the
Hamiltonians.

For an illustration of this idea, consider the fault-tolerant
version of Fig. 5. We have established that the phase transfor-
mation occurs in this case. But, suppose that the logical CNOT

gate were replaced with a two-qubit logical identity gate. Even
though the circuit would no longer produce a Bell pair, there
would still be a phase transition. To see this, note that the
logical CNOT gate is simply a collection of transverse CNOT

gates in the fault-tolerant construction of [5] on which we
have relied. When we map the circuit to a Hamiltonian H (θ ),
each CNOT in this collection of transverse CNOT gates appears
in H (θ ) in the manner described in Fig. 2(d) and Eq. (A3).
But it is possible to perform a unitary operation on H (θ ) that
transforms W = CNOT in Eq. (A3) into a two-qubit identity
gate. This unitary operation does not affect the gap of H (θ ),
so the gapped to gapless phase transition must still occur.

APPENDIX D: PEPS FORM OF THE GROUND STATE

Here, we show how the ground state |�(θ )〉 can be written
as a projected entangled pair state. Rather than a formal proof,
which would require the introduction of cumbersome nota-
tion, we consider the examples shown in Fig. 2. The general
pattern will become clear from these examples.

In the case of Fig. 2(a), the ground state is a trivial
projected entangled pair state: |�(θ )〉 = |00〉. For Fig. 2(b),
define the map

Â = cos θ (|00〉〈00| + |10〉〈10|) ⊗ (|01〉〈01| + |11〉〈11|)

+ 1√
2

sin θ (|IDLE〉〈00| ⊗ |IDLE〉〈01|

+ |IDLE〉〈10| ⊗ |IDLE〉〈11|). (D1)

Then, the ground state |�(θ )〉 has the PEPS form

(I (2) ⊗ Â)[(|00〉|00〉 + |10〉|10〉) ⊗ (U |01〉 + |00〉)] (D2)

up to normalization. In Fig. 2(c), |�(θ )〉 has the PEPS form

(I (2) ⊗ Â ⊗ Â){(|00〉|00〉 + |10〉|10〉)

⊗ [(V|01〉 + |00〉)|00〉 + (V|11〉 + |10〉)|10〉]
⊗ (U |01〉 + |00〉)} (D3)

up to normalization. Here, we have defined V =∑
b,β,s=0,1 |bs〉〈b|V |β〉〈βs| that applies V while keeping

the stage fixed. If a circuit were to include more one-qubit
gates, for each gate we would include another factor similar
to the form [(V|01〉 + |00〉)|00〉 + (V|11〉 + |10〉)|10〉] and
perform an additional projection using Â.
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The final example, shown in Fig. 2(d), has a ground state
of the form

(I (2) ⊗ Â ⊗ I (2) ⊗ Â)

[
(|00〉|00〉 + |10〉|10〉) ⊗ |00〉 ⊗ (|00〉|00〉

+ |10〉|10〉) ⊗ |00〉 +
∑
b′,B′

〈b′|〈B′|W |0〉|0〉(|00〉|00〉

+ |10〉|10〉) ⊗ |b′
1〉 ⊗ (|00〉|00〉 + |10〉|10〉) ⊗ |B′

1〉
]
.

(D4)

The first term in brackets has both qubits in their initialized
states |00〉 and |00〉. The second term in brackets has both
qubits emerging from W in the states |b′

1〉 and |B′
1〉, with

the transition matrix elements given by 〈b′|〈B′|W |0〉|0〉. The
projection operators Â take care of the teleportation circuits
that act after W .

In these examples, we see the structure that character-
izes |�(θ )〉 for any circuit. The unitary gates are included
in the entangled pairs, and the projections are performed
using Â.
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