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Two-photon quantum state tomography of photonic qubits
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We provide a tool for measuring the Stokes parameters and the degree of polarization of single photons by
employing second-order interference, namely, the Hong-Ou-Mandel (HOM) interferometer. It is shown that
the technique is able to distinguish a partially polarized photon where the polarization state is coupled to an
internal degree of freedom, such as time of arrival, from partial polarization due to external entanglement with the
environment. The method does not directly resort to any kind of polarization-selective components and therefore
is not limited by the extinction ratio of polarizers. Moreover, the technique can be generalized to any two-level
encoding of quantum information in single photons, such as time-bin or orbital angular momentum qubits.

DOI: 10.1103/PhysRevA.109.022402

I. INTRODUCTION

The need for single-photon sources (SPSs) is increasing
for many applications, such as quantum communication, pho-
tonic quantum computing, and quantum metrology [1–3].
Therefore, tools for characterization of such sources are of
paramount importance. One of the most important aspects of
a SPS is the polarization purity of the generated photons,
usually called degree of polarization (DOP), which can be
measured by standard polarimetry, i.e., polarization quantum
state tomography (QST) [4–8]. In standard QST, the polar-
ization state of the photons is determined by a succession
of measurements of Pauli operators, which are measure-
ments acting on individual photons, one at a time. However,
polarization state measurements employing two-photon in-
terference, namely, the Hong-Ou-Mandel (HOM) effect [9],
have been proposed for direct measurement of the polarization
purity of photons, without the need for QST [10]. In fact,
a previous result under the context of quantum circuits had
already shown that the purity—or any other functional—of
a quantum state can be directly measured by performing a
swap test (ST) on two copies of it [11], where the ST is an
operation known to be equivalent to the HOM effect [12]. Re-
cently, HOM interference has also been employed for tracking
changes in the polarization state over time, with many advan-
tages over the standard methods [13–15].
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In this work we use the HOM effect for a complete
characterization of the Stokes parameters and DOP of sin-
gle photons, solely relying on the second-order interference
between two photons from a SPS, without the need for
generation of any reference state or deploying any kind of
polarization-selective component. This method enables the
characterization of additional degrees of freedom of the pho-
tons, even those which the detectors are unable to resolve on
their own. Moreover, this characterization is performed with
a significantly smaller number of measurements if compared
to classical measurements, which can be regarded as a kind
of quantum advantage [16]. As will be shown in calculations
and simulations in quantum circuits, the proposed method
can detect decoherence effects due to the coupling of the
polarization state of the photon to other internal degrees of
freedom, such as time of arrival, spatial mode, or frequency
mode, and therefore distinguishing them from external cou-
plings to the environment or statistical mixtures. The method
has applications beyond polarimetry, as it can be generalized
to characterize any qubit encoding in a single photon. Towards
that end, we compare the proposed method against standard
QST on a quantum computer simulator to demonstrate its
expected performance and encoding generality.

II. METHOD

Figure 1 shows the basic idea of the method, which consists
of interfering two single photons on a beam splitter (BS). Here
the source producing the two input single-photon states are
not necessarily the same, the only requirement being that the
quantum state originally encoded onto the two photons (de-
noted |ψ〉 in Fig. 1) is the same; furthermore, before reaching
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FIG. 1. Scheme for determining the polarization state of single
photons. Two identical photons represented by the quantum state
|ψ〉, where one of them is subjected to a unitary operator U , interfere
in a beam splitter (BS), and the probability of coincidence counts
in the single-photon detectors (SPD) is determined, according to
Eq. (2). If U is replaced successively by the Pauli operators σ j , the
coincidence probabilities Pcoinc(σ j ) can be used to calculate the DOP
and the absolute value of the Stokes parameters of the original pho-
tons. Additional steps may be added for obtaining full information
on the quantum state, as described in Appendix A.

the BS, one of the two input states is subjected to a polariza-
tion transformation represented by the unitary operation U .
Let H be the Hilbert space describing all degrees of free-
dom of the photons, and write H = Hpol ⊗ Ho, where Hpol

is the (two-dimensional) Hilbert space associated with the
polarization state of the photons and Ho is the Hilbert space
associated with the remaining degrees of freedom. Whenever
the incoming states are pure (i.e., there is no entanglement
between the photons and any external degree of freedom), we
can write a generic input state as

|ψ〉 = √
p |φ〉 |ξ 〉 + eiθ

√
1 − p |φ⊥〉 |ξ⊥〉 , (1)

where |φ〉 ∈ Hpol, |ξ 〉 ∈ Ho, θ is a generic phase, the sign
⊥ means a orthogonal state, and p is a real parameter (0 �
p � 1) that can be interpreted as a probability of finding the
photon in the polarization state |φ〉. Note that Eq. (1) describes
a partially polarized photon whenever 0 < p < 1. Using two
threshold single-photon detectors (SPD) in the BS outputs,
the probability of obtaining a coincidence count Pcoinc as a
function of the applied unitary operator U is given by the
following expression:

Pcoinc(U ) = 1 − F (U )

2
, (2)

where F (U ) is the fidelity between the two input quantum
states impinging on the BS when an unitary operator U ∈
B[Hpol] is applied to one of the inputs. The derivation of
Eq. (2) can be found in Appendix B. Note that, due to the
single-photon nature of the input states, the HOM visibility
reaches 100% when the photons are indistinguishable; this,
however, does not limit the effectiveness of the method when
different photon statistics are considered, but it does impact
its performance [17]. The fidelity is given by

F (U ) = | 〈ψ |U ⊗ I|ψ〉 |2, (3)

where I is the identity operator acting on Ho.

Now recall from standard polarimetry that the (normalized)
Stokes parameters are defined, for pure polarization states, as
[18]

s j ≡ tr(|φ〉 〈φ| σ j ) = 〈φ|σ j |φ〉 ; (4)

i.e., they correspond to the expectation values of the Pauli spin
operators. Under the context of polarization states, they can be
written as

σ1 ≡ |H〉 〈H | − |V 〉 〈V | ,
σ2 ≡ |+45〉 〈+45| − |−45〉 〈−45| ,
σ3 ≡ |RC〉 〈RC| − |LC〉 〈LC| , (5)

where {|H〉 , |V 〉} are the horizontal and vertical polarizations,
{|+45〉 , |−45〉} are the diagonal and antidiagonal polariza-
tions, and {|RC〉 , |LC〉} correspond to the right-circular and
left-circular pure polarization states. The reader should be
aware of the unusual labeling of the Pauli operators; this is
due to the relabeling of the axes when going from the Bloch
sphere to Poincaré sphere.

Let us now consider a simplified version of the protocol,
where we are interested only in finding the DOP of the pho-
tons; we also assume for the moment that there is no external
entanglement taking place (see Sec. III B for a discussion and
Appendix A for the full protocol). The idea consists in sequen-
tially selecting U = σ j , for j = 1, 2, 3. It is straightforward
from Eq. (3) and Eq. (1) that

F (σ j ) = |p 〈φ|σ j |φ〉 + (1 − p) 〈φ⊥|σ j |φ⊥〉 |2
= [(2p − 1)s j]

2

= 〈s j〉2, (6)

where 〈s j〉 are defined as the time-averaged Stokes param-
eters. The probabilities of coincidence as a function of the
applied Pauli operator can be found by combining Eqs. (6)
and (2):

Pcoinc(σ j ) = 1 − 〈s j〉2

2
. (7)

The degree of polarization (DOP), on the other hand, cor-
responds to the norm of the Stokes vector. Using the usual
definition for DOP, we have

DOP =
⎡
⎣ 3∑

j=1

〈s j〉2

⎤
⎦

1/2

. (8)

Equation (8) is somewhat surprising, as the degree of po-
larization of light can be determined without any polarization-
selective component, such as polarizers or polarizing beam
splitters (PBSs). It is straightforward to show that the state
|ψ〉 given by Eq. (1) has DOP = |2p − 1|.

Please note that the DOP of Eq. (8) is unrelated to the
purity of the photons. Previous works employed HOM in-
terference [10] or, more generally, the ST [11] for directly
determining the purity v ≡ tr(ρ)2 of an incoming photon de-
scribed by its density operator ρ. The DOP, on the other hand,
can be understood as an equivalent measure of purity for the
reduced density operator that describes only the polarization
degree of freedom, not the global state ρ. The main advantage
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of our method is that the polarization-reduced density opera-
tor can be reconstructed without any generation of reference
states, which would require local sources identical to the SPS
under test (except for the polarization degree of freedom)
and polarization-sensitive components for preparation of the
polarization (pure) states, therefore rendering the process
completely unfeasible. In this work the purity v corresponds
to the coincidence probability measured when U = I , which
will also be employed in the discrimination between internal
and external entanglement in Sec. III.

It should be stressed that the presented method so far is
able to determine the absolute values of the Stokes parameters,
|s j | but not their signs. Additional measurements, and the
inclusion of a polarization-dependent loss (PDL) element in
front of one of the detectors, is a possible way to circumvent
this limitation; the full protocol for complete characterization
of the polarization state is described in Appendix A.

III. APPLICATION OF THE METHOD IN PARTIALLY
POLARIZED LIGHT

Partially polarized light may be obtained in two ways. The
first one is by incoherently mixing polarized photons, whereas
the second one consists of, for each photon, entangling the
polarization state with another degree of freedom, which can
belong to the same photon or to some external environment,
thus obtaining a partially polarized photon [19,20]. In the
next sections, we discuss the cases of “internal” and “ex-
ternal” entanglement in partially polarized photons, which
correspond, respectively, to internal degrees of freedom of the
photon and external quantum systems, commonly referred to
as the environment. The case of incoherent mixtures, as will
be discussed, is indistinguishable from external entanglement.

A. “Internal” entanglement

We provide now an example where the polarization de-
gree of freedom is entangled with the photon time of arrival,
usually called “time bin” in the context of quantum commu-
nications [21], in order to show that the definition in Eq. (8)
coincides with the usual DOP definition for such states. Let
{|t0〉 , |t1〉} represent the states where the photon wave packets
are centered at times of arrival t0 and t1 = t0 + �t , where
the delay �t between each bin is longer than the photon
coherence time τc.

From the point of view of the polarization state alone, the
state depicted in Fig. 2 corresponds to partially polarized light.
The polarization state of |ψ〉 is given by the reduced density
operator obtained by tracing over the Hilbert space Ho:

ρ = trHo |ψ〉 〈ψ | =
(|α|2 0

0 1 − |α|2
)

. (9)

As expected, the off-diagonal components of ρ are zero, such
that s2 = s3 = 0, and the degree of polarization is simply
given by

DOP = |s1| = tr(ρσ1) = |2|α|2 − 1|. (10)

Now, consider the two-photon interference measurement of
the state depicted in Fig. 2. It is straightforward to show that
this is a particular case of Eq. (1) with ξ = t0 and ξ⊥ = t1,

FIG. 2. Partially polarized light due to polarization-time cou-
pling, where α, β are complex numbers such that |α|2 + |β|2 = 1.
The standard definition of degree of polarization yields DOP =
|2|α|2 − 1|, which is shown to coincide with the proposed method.

such that Eq. (6) now yields

F (U ) = ||α|2 〈H |U |H〉 + |β|2 〈V |U |V 〉 |2, (11)

which is clearly zero for U ∈ {σ2, σ3} and equal to |α|2 −
|β|2 = |2|α|2 − 1| for U = σ1, which coincides with the stan-
dard tomography result given by Eq. (10). For a detailed
calculation we refer the reader to Appendix B.

As previously mentioned, when U = I , we have F (I ) = 1,
which translates to a zero coincidence probability in the HOM
setting, according to Eq. (2). This result, in fact, occurs in-
dependently of the way the polarization state is coupled to
any inner degree of freedom of the photon. This happens
because the photons remain in a pure state, and whenever two
identical photons described by a pure quantum state impinge
on a BS, the probability amplitudes of one photon being
transmitted and the other reflected (and vice versa) are out of
phase, such that the photon-bunching effect occurs. This is a
remarkable advantage of the proposed protocol: by measuring
the coincidence probability Pcoinc(I ), one can verify whether
the incoming state is indeed a pure state.

B. “External” entanglement and incoherent mixtures
of pure states

If the coincidence probability Pcoinc(I ) > 0, the input states
are not pure states; by “pure” state, we mean the density
matrix that encompasses all degrees of freedom of the single
photon can be represented by a rank 1 projector. If the coin-
cidence rate is greater than zero, then two possibilities arise:
first, the case where random time-varying unitary operations
produce resulting mixed states, i.e., incoherent mixtures of
pure states; second, and assuming that the two photons at the
BS inputs have been collected from the SPS in a controllable
way—such that we can rule out such fast unitary operations—
the case where the polarization state and an external degree of
freedom are entangled. Examples of the latter are two photons
that are each half of a polarization-entangled pair, or photons
produced through the decay of an atomic level that retains
information about the polarization state of the photon, as
in certain Raman-based atom-photon entanglement protocols
[22]. In both cases described above, the input states in Fig. 1
are now represented by a density operator ρ. Irrespective of
the actual nature of ρ, we can always write

ρ = λ |φ〉 〈φ| + (1 − λ) |φ⊥〉 〈φ⊥| , (12)
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where the parameter λ is directly related to the DOP =
|2λ − 1|. Now we can apply the following reasoning: when-
ever both inputs are identical, which occurs with probability
λ2 + (1 − λ)2, the fidelity is one; however, when both inputs
are different, which happens with probability 2λ(1 − λ), the
fidelity is zero. Therefore, the average fidelity is given by
F (I ) = λ2 + (1 − λ)2, which corresponds to a coincidence
probability given by

Pcoinc(I ) = λ(1 − λ). (13)

For the Stokes parameters {s j}, the calculation is somewhat
different from the case of pure states, given by Eq. (6). Indeed,
Eq. (6) considers that all degrees of freedom are available
when performing the inner product in Eq. (3). Here the fidelity
is taken over two mixed states, i.e., between ρ and UρU †. A
simple calculation shows that

F (σ j ) = s2
j [λ

2 + (1 − λ)2] + (
1 − s2

j

)
2λ(1 − λ)

= s2
j (2λ − 1)2 + 2λ(1 − λ). (14)

Note that, whenever λ = 0 or λ = 1, Eq. (14) reduces to
Eq. (6), as expected. The probabilities of coincidence for a
generalized state, replacing Eq. (14) on Eq. (2), now read

Pcoinc(σ j ) = 1 − s2
j (2λ − 1)2

2
− λ(1 − λ)

= 1 − 〈s j〉2

2
− Pcoinc(I ), (15)

where 〈s j〉 = s j |2λ − 1|, a generalization of Eq. (7).
It is interesting to identify that λ now has a twofold ef-

fect on Pcoinc(σ j ): it acts on the first right-hand side term
of Eq. (15) similarly to p in Eq. (6), but the existence of
external entanglement decreases all coincidence probabilities
by Pcoinc(I ), also governed by λ. Whenever λ = 1

2 , the proba-
bilities are all equal to 1

4 , as one should expect: two completely
mixed states impinging on the BS correspond to a 50-50
mixture of two identical states (zero coincidence probabil-
ity) and two orthogonal states (50% coincidence probability).
Again, external entanglement is indistinguishable from inco-
herent mixtures of pure states; however, as long as random
time-varying unitary operations are known not to be present,
this protocol allows one to distinguish between “inner” and
“outer” entanglement scenarios by computing Pcoinc(I ) and
verifying whether it is equal to zero (“inner” entanglement) or
grater than zero (“outer” entanglement). Conversely, when en-
tanglement with external degrees of freedom can be neglected
or prevented, the protocol is able to distinguish between in-
ternal entanglement and incoherent mixtures. In both cases
these distinctions are unattainable in standard quantum state
tomography.

Finally, it should be mentioned that both kinds of entangle-
ment can be quantified, e.g., by calculating the von Neumann
entropy of the reduced density matrix, S(ρ), as usual.

C. Advantages over standard QST

The main advantage of the method stems from the combi-
nation of the calculated DOP from Eq. (8) and the coincidence
probability Pcoinc(I ). If ρ is the density operator represent-
ing all (internal) degrees of freedom of the photon, then by

definition Pcoinc(I ) = tr(ρ2). This information, together with
the DOP value, answers the following two questions at the
same time: (1) “Is there entanglement between the polariza-
tion state and another internal degree of freedom?” and (2)
“Is there entanglement between a internal degree of freedom
of the photon and an external environment or, alternatively,
an incoherent mixture prepared using classical probability
sampling?”

Standard QST cannot directly provide these answers, un-
less all degrees of freedom are separately discriminated. Let
us consider a simpler case where there are only two degrees
of freedom of interest, as in Sec. III A. Standard QST would
need to reconstruct the 4 × 4 polarization-time-bin density
matrix, which requires measurements of average values of all
combinations of Pauli operators σi ⊗ σ j , which adds up to
16 measurement rounds; moreover, the detectors would have
to be fast enough (and have low enough jitter) to be able
to distinguish arrival times t0 from t1. The current method,
however, needs only four measurement rounds, and there is
no constraint on the frequency response or the timing jitter of
the detectors. This can be compared to an efficient QST, as
the required number of resources does not scale exponentially
with the system dimension [23].

D. Robustness to noise

Up to this point we have considered perfect detectors and
perfect single-photon sources. Therefore, a natural question
arises: how robust to noise is the method? There are two
main sources of noise that could influence the detection prob-
abilities and potentially cause alterations in the measurement
results. The first one are accidental counts in the detectors,
which stem from the dark count probability density per sec-
ond pdc, the after-pulse probability pa, and the background
noise probability pbkg. Assuming that pbkg can be completely
eliminated by proper filtering and that pa can be made negli-
gible by using a sufficiently long dead time, the dark counts
will be the dominating source of accidental counts. In fact,
accidental counts alone have no meaning: the figure of merit
we are looking for is the signal-to-noise ratio, or in this case,
the coincidence-to-accidental count ratio RCA. This ratio also
depends on other detection parameters, such as the detection
window duration �T and the detection efficiency η.

The second main source of noise is the photon number
probability distribution of the single-photon source. Ideal
sources produce Fock states with exactly one photon per
pulse, but in practice there are small (usually negligible) prob-
abilities of generating two or more photons or—much more
frequently—zero photons, which corresponds to a vacuum
state. The probability pph that a pulse emitted by the source
contains a photon defines the figure of merit that is relevant to
this discussion.

It is straightforward to show that, whenever two (distin-
guishable) photons impinge on the BS, the coincidence-to-
accidental count ratio is given by

RCA =
(

ηpph

pdc�T

)2

. (16)

Let us now plug into Eq. (16) worst-case scenario num-
bers for existing single-photon detectors. Considering current
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FIG. 3. Swap test quantum circuit using a Toffoli gate. By mea-
suring the ancilla qubit in mode aux, it is possible to determine
whether states in modes A and B are identical, which mimics the
statistics of a HOM interferometer. Figure adapted from Ref. [29].

off-the-shelf components, the single-photon detection tech-
nology that yields the smaller quantum efficiency and highest
dark count rate corresponds to InGaAs APDs for detection
of telecommunication wavelength photons [24]. For this kind
of detector, the dark count probability is at most pdc ≈
10−5/ns, and the quantum efficiency at least η = 0.1; see,
e.g., idQuantique’s detectors. The detection gate duration �T
must correspond to at least the coherence time of the photons,
which are at most on the order of 1 ns for quantum-dot sources
[25,26]. Even taking an extreme value of �T = 10 ns, we
obtain RCA ≈ 106 for a perfect single-photon source. As one
can immediately conclude, even if the source deviates by a
factor 10 from an ideal one (i.e., pph = 0.1), the coincidence
count rate due to legitimate photons would still be four orders
of magnitude above the accidental counts in the worst case
scenario, i.e., using noisy and low-efficiency detectors. For
this reason, we neglect noise counts in the next section while
performing the simulations.

IV. SIMULATIONS

In this section we provide simulations for the proposed
protocol in a simulated quantum computer using the QISKIT

package [27]. The basic idea is to use the equivalence between
the HOM effect and the so-called ST [12], which has already
been studied in [28,29] for single qubits, i.e., for a single
degree of freedom, but also for multimode input states [30],
i.e., a bipartite entangled state. Indeed, a HOM interference
effect between two pure polarization states is equivalent to
asking “are the two polarization states identical?” which, in
its turn, is the question answered by the projection over the
singlet state |ψ−〉.

Before performing the experiments, 10 000 states over the
Bloch sphere were randomly selected to create an uniform
input data for all assessments.

A. Polarized single photon states

In the case of Fock states (n = 1) in pure polarization
states, the HOM interferometer, presented in Fig. 1, is equiv-
alent to a standard ST, as shown in Fig. 3. In our case qubit A
corresponds to state |ψ〉 and qubit B to state U |ψ〉. Whenever
qubits A and B are identical (which happens when U = I),

measurement of the ancilla qubit C always result in a projec-
tion onto state |0〉:

Prob(“0”) = 1
2 (1 + | 〈ψ |U |ψ〉 |2) = 100%, (17)

which is equivalent to a coincidence measurement Pcoinc(I ) in
a HOM scenario.

As presented in Fig. 3, in the simulation we prepare
the aforementioned arbitrary states, with previously known
Stokes parameters, and use the method to estimate Pexpt

coinc(σ j ).
The random states are obtained by a Uinit operator, comprising
RY (θ ) and RZ (φ) gates, where θ and φ are calculated accord-
ing to the random state’s Stokes vector:

−→s = (s1, s2, s3)

= DOP(cos θ, cos φ sin θ, sin φ sin θ ). (18)

Note that, for simplicity, we keep the original defini-
tion of the Stokes parameters such that s1 = 〈ψ |Z|ψ〉 , s2 =
〈ψ |X |ψ〉 and s3 = 〈ψ |Y |ψ〉. Additionally, in this case,
Eq. (18) will have DOP = 1 for all randomly selected states;
in the next section we will deal with partially polarized light.

We now define the Stokes vector error estimation pa-
rameter ε as the square sum of the differences between the
theoretical and experimental values of the coincidence proba-
bilities for all Pauli operators, as in Eq. (19):

ε ≡
3∑

j=1

∣∣Pcoinc(I ) + Pcoinc(σ j ) − Pexpt
coinc(I ) − Pexpt

coinc(σ j )
∣∣2

=
3∑

j=1

∣∣∣∣1 − 〈s j〉2

2
− Pexpt

coinc(I ) − Pexpt
coinc(σ j )

∣∣∣∣
2

, (19)

where Eq. (15) has been employed and exp stands for “exper-
imental.” It is worth mentioning that for this experiment and
the following one, which do not comprise external entangle-
ment, we expect to find near-zero values for Pexpt

coinc(I ).
The estimated error according to Eq. (19) for each arbitrary

state is depicted in Fig. 4. It is perceivable that our method
is reliable, regardless of the quantum state at hand, as there
is no correlation between error and position in the Bloch
sphere. The wide range in orders of magnitude is likely due
to statistical fluctuations on the estimation of the probabilities
and rounding errors.

B. Single-photon states with internal entanglement

Now we consider the case of two internal degrees of free-
dom, such as in the example of Fig. 2. In this case, we employ
the circuit shown in Fig. 5. Without loss of generality, we can
consider the cases where the states are given by, up to a global
unitary operation:

|ψ〉A = α0 |00〉 + α1 |11,〉
|φ〉B = β0 |00〉 + β1 |11,〉 (20)

where |α0|2 + |α1|2 = 1 and |β0|2 + |β1|2 = 1. It is possible
to show, using the results from Foulds et al. [30], that the prob-
ability of obtaining a result “01” or “10” on the measurement
of the ancillas is given by

Prob(“01”, “10”) = 1
2 |α0β1 − α1β0|2. (21)
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FIG. 4. (a) Heat map scatter plot of the proposed method’s error
ε, as defined in Eq. (19), vs the polar coordinates of the input state.
For the pure state input considered in this section, all states lie on
the shell of the Poincaré sphere, which enables this representation.
(b) Histogram of the error magnitude relative frequency, indicating
that the errors lie mostly in the range between 10−5 and 10−4.

FIG. 5. Swap test quantum circuit for two-mode inputs. Each de-
gree of freedom is simulated by a qubit. This circuit uses two ancilla
qubits, and the probability of obtaining a result of “01” or “10” is
equivalent to a coincidence measurement in a HOM interferometer.
Adapted from Ref. [30].

FIG. 6. Mean quadratic polarimetry error, simulated in a quan-
tum computer emulator using the schematic of Fig. 5, as a function
of the DOP of the input states. The mean was calculated over the
10 000 random states.

Note that, in agreement with the HOM interferometer, in
Fig. 1, whenever qubits A and B are identical (αi = βi), the
probability in Eq. (21) is zero, which corresponds to the zero
coincidence probability. Moreover, if A and B are mutually or-
thogonal (α0 = β∗

1 , α1 = −β∗
0 ) then the probability becomes

1/2, i.e., the photons are completely distinguishable.
The formula for the error estimation parameter ε from

Eq. (19) was also applied to this experiment, with a small
adaptation. In the first experiment, only pure states were con-
sidered, while this case concerns mixed states (from the point
of view of the polarization degree of freedom). In order to gen-
erate such states, we decreased the norm of every random pure
state, i.e., a Stokes vector with unit norm. This was performed
by multiplying the vector by the DOP. The resulting values of
the Stokes parameters s j were then obtained as follows:

s j =spure
j (DOPtheor), where (22)

DOPtheor =
√

1 − 4det(ρ), (23)

where spure
j are the coordinates of the initial random Bloch

vector and ρ is the reduced density matrix tracing over all
other degrees of freedom other than polarization. The re-
sults are shown in Fig. 6, which portrays the resulting mean
quadratic error for different DOP values. Each point in this
graph corresponds to an average taken over 10 000 points with
30 000 measurement rounds (number of shots × 3) for each
measurement round of each point. Please note that the error
bars in Fig. 6 (and in Fig. 8) are symmetric, but distorted by
the logarithmic scale.

C. Single-photon states with external entanglement

In this section we deal with the situations where the in-
coming single photons are mixed states, in the sense that
the polarization states are entangled with an external degree
of freedom—the “environment.” For simplicity, we assume
a single-dimensional environment for each input qubit. The
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FIG. 7. Swap test quantum circuit for single-mode inputs where
each input is entangled with an external and inaccessible degree of
freedom (the “environment”). Adapted from Ref. [29].

preparation procedure of the states is very similar to the inter-
nal entanglement case, but the measurement is identical to the
first case (pure polarization states). The setup can be found in
Fig. 7.

The quantum circuit of Fig. 7 is essentially the same one
from Fig. 3, with the addition of two qubits representing the
environment. The probability of measuring “0” in the ancilla
qubit C is equivalent to projecting the two-qubit input state
over the singlet state |ψ−〉, such that

Prob(“0”) = 〈ψ−|ρA ⊗ ρB|ψ−〉 , (24)

where ρA,B are the reduced density matrices obtained by trac-
ing over the environment. Whenever the two input qubits are
the same, which corresponds to the situation where U = I , a
simple calculation shows that, whenever ρA = ρB = ρ, then

〈ψ−|ρ ⊗ ρ|ψ−〉 = det(ρ), (25)

which mimics the result previously given by Eq. (13).
As demonstrated in Figs. 6 and 8, the proposed method is

able to correctly characterize the input state independently of

FIG. 8. Mean quadratic polarimetry error, simulated in a quan-
tum computer emulator using the schematic of Fig. 7, as a function
of the DOP of the input states. The mean was calculated over the
10 000 randomly selected states.

FIG. 9. Mean quadratic error for the 10 000 randomly selected
states, according to the total number of measurement rounds (number
of shots × 3) performed for each point. QST: standard quantum state
tomography. ST: swap test (proposed method).

the degree of entanglement of the photons, be it internal or
external.

D. Benchmarking with standard QST

The results shown in Figs. 4, 6, and 8 demonstrate that
the proposed method performs similarly independently on the
input state; in other words, the robustness of the method is
validated against itself. In order to extend this analysis, we
introduce the standard quantum state tomography (QST) as a
reference for the performance. Without loss of generality, we
perform an extensive test using pure state inputs, i.e., those
discussed in Sec. IV A, on the standard QST and the method
depicted as a block diagram in Fig. 3. The approach to the
evaluation of the performance is the same: the input states
are varied to map different points on the shell of the Poincaré
sphere; but, now, the number of measurement rounds (or real-
ization of the same input state) is also varied; for each number
of measurement rounds, the error averaged over all input
states is computed following Eq. (19). The results, presented
in Fig. 9, demonstrate that the error achieved by the proposed
method and the standard QST method is comparable, which
validates the two-photon quantum state tomography of pho-
tonic qubits. Moreover, the standard QST implementation on
QISKIT introduces a step of regularization to ensure physically
meaningful tomographic results drawn from a finite set of
measurements. Due to this extra data processing step, the QST
is likely to achieve smaller errors, which is clearly reproduced
in the results depicted in Fig. 9.

It is worth noting that the results in Fig. 9 would not be at-
tainable in practice. For the standard QST, errors smaller than
10−4 would be achievable only in the case of a PBS with an
extinction ratio larger than 40 dB was available, which is very
far from actual commercial values of ∼ 20–27 dB [31]. On
the other hand, the proposed method of two-photon polarime-
try does not resort to polarization-selective components, but
the results correspond to a perfectly symmetrical BS being
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employed. A deviation of about 0.5 dB is expected between
the BS outputs; however, this deviation can be compensated
by adding the corresponding loss in its less-affected output,
meaning that the mean quadratic error ε is limited only by
calibration errors of the BS asymmetry, which can be made as
low as one requires.

V. GENERALIZATION OF THE METHOD

Throughout the paper we have considered that the polar-
ization state is to be determined; however, the method can
be equally applied to characterize any two-level encoding of
quantum information in single photons. The unitary operators
represented by U in Fig. 1 can straightforwardly be replaced
by Pauli operators that act on any two-dimensional Hilbert
space, henceforth performing a characterization of any other
degree of freedom, such as time-bin, spatial mode [32], or-
bital angular momentum [33], or frequency encoding [34].
Of course, the meaning of “DOP” would have to be adjusted
accordingly; generic terms such as “mutual coherence” may
be employed for these other cases, always corresponding to
the norm of the Bloch or Stokes vector in a two-dimensional
Hilbert space.

Moreover, the “polarization-dependent loss” introduced in
Appendix A would have to be changed accordingly. For exam-
ple, for time-bin qubits, a time-dependent loss element would
be needed. Again, the actual value of the loss does not have
any impact over the results.

Finally, a remarkable advantage of our method is that it
allows the evaluation of degrees of freedom that would other-
wise be inaccessible by direct measurement. For example, if
the Pauli operators σ j act on the time-bin Hilbert space, the
purity of the time-bin qubit and all its Bloch sphere compo-
nents can be determined even if the time delay between the
two bins is shorter than the timing resolution of the detectors,
whereas this degree of freedom would be traced out in any
direct measurement of individual single photons.

VI. CONCLUSION

We have presented a method for performing full quantum
state tomography in qubits encoded in single photons, such as
the polarization degree of freedom, that relies on the Hong-
Ou-Mandel effect. By interfering the original quantum state
in a BS with the image of the input state by each of the
three Pauli spin operators, and by measuring the coincidence
count rates between single photon detectors placed at each BS
output, the absolute values of the Bloch and Stokes parameters
can be obtained. By introducing three additional measure-
ments in rotated versions of the original state, the information
on the signs of the Bloch and Stokes parameters can be found.
Moreover, by simply interfering the unknown photon with a
copy of itself, the protocol is able to tell whether the polariza-
tion state is entangled with another internal degree of freedom,
such as time-bin, or entangled with an external degree of
freedom, as long as random time-varying unitary operations
or classical probability samplings can be ruled out. This is an
advantage over standard QST schemes that would not only
need to have access and the ability to resolve these degrees
of freedom but also introduce additional measurements that

scale exponentially with the number of degrees of freedom
under consideration. Simulations using quantum circuits in ST
configuration show that the errors introduced by the method
are negligible, on the same order of magnitude as standard
QST, provided that a sufficiently large number of copies are
measured.

For polarization qubits, we have shown that this method
does not rely on polarization-selective components, such as
polarizers or polarizing BSs, which means that the measure-
ments are not limited by the extinction ratio of any such
components. Therefore, we believe that the presented method
can be useful in measuring the degree of polarization of very
pure states.
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APPENDIX A: PROTOCOL FOR FULL QUANTUM
STATE TOMOGRAPHY

It remains to show how one can obtain information on
the signs of the Stokes parameters; indeed, the protocol de-
scribed so far is able to only measure |s j |, as shown in
Eq. (7). Graphically, this would mean a restriction to the
octant (s1 > 0, s2 > 0, s3 > 0) in Poincaré sphere. There is
a way, however, to circumvent this limitation and obtain full
information on the Stokes parameters: the first step is in-
creasing the number of measured observables. Instead of only
measuring (I, σ1, σ2, σ3) as before, we need to add three more
measurements. There are infinitely many solutions, and one of
them is depicted in Fig. 10.

Figure 10 shows the projection on the (s2, s3) plane of the
measured polarization state |ψ〉. As there is no information
on the signs of the Stokes parameters, all four red dots are
equally likely. Now, we introduce a small rotation angle θ

around the s1 axis, for both BS inputs, in the counterclockwise
direction, resulting in the state U (θ ) |ψ〉, which, again, has
four possibilities depending on the signs of (s2, s3). Now we
compare the measured values of (s2, s3) pre- and postrotation.
If s2 decreases and s3 increases, we are in the first or third
quadrant, whereas if s2 increases and s3 decreases, we can be
sure we are in the second or fourth quadrants. Therefore, we
have eliminated two out of four possible cases—in fact, we
have determined the sign of the s2s3 product. The angle θ

should be selected with care, in order to avoid mapping one
of the four red points into another red point. For this purpose,
the angle θ should not be fixed, bur rather be a function of
the measured Stokes parameters. Let ξ ≡ tan−1(|s3|/|s2|), as
depicted in Fig. 10. It suffices to select θ given by

θ = π

4
− ξ

2
, ξ < π/4

= −ξ

2
, ξ � π/4, (A1)
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FIG. 10. Method for obtaining the signs of Stokes parameters.
Originally the projection of the measured polarization state on the
(s2, s3) plane could be in any of the four locations shown in red. A
small rotation angle θ around the s1 axis is introduced on both BS
inputs, and the four images of the previous possibilities are shown in
blue. Depending on the change of the absolute value of (s2, s3) one
can rule out two of the four possibilities, effectively obtaining the
sign of the product s2s3. Repeating the same reasoning for rotations
around one of the other axes, together with the knowledge of the sign
of s1 (see text for details), suffices to determine all signs.

where the rotation is positive in the counterclockwise direc-
tion. Note that π/8 � |θ | � π/4. Such a choice for θ will
never result in redundancies, as the rotation will never result
in a quadrant change. Then we have

sgn(s2s3) =
{+1 if |s2| increases with θ

−1 otherwise . (A2)

If we repeat the same procedure introducing rotations
around the other Poincaré sphere axes, we will obtain the
signs of all products s1s2, s1s3, s2s3; however, this is still
insufficient, as the sign of s2s3 can be determined from the
knowledge of the signs of s1s2 and s1s3. In other words, there
is a system of three equations and three variables, but one of
the equations is linearly dependent of the other two. Indeed,
we still have a redundancy of a global factor of ±1 in the
Stokes vector, which means we don’t know whether the input
polarization state is |φ〉 or |φ⊥〉.

For this reason, we introduce a polarization-dependent loss
(PDL) in one of the modes, e.g., in front of detector SPD0, as
shown in Fig. 1. This PDL element should be aligned such that
its axes coincide with the horizontal and vertical polarization
directions, for example, with a transmission coefficient ηH for
|H〉 different from the value ηV associated with polarization
|V 〉. This addition will change the probability of single clicks
on SPD0, depending on whether the incoming photons have
positive or negative values of Stokes parameter s1, thus pro-
viding the missing information for full state characterization.
Note that the actual value of the PDL (i.e., the extinction ratio
of the polarizer) plays no role in the calculations of the Stokes
parameters.

In order to illustrate the effect of the PDL, let Ci be the
single counts in detector SPDi and C01 be the coincident
counts during the detector’s integration time window. Now
let n be the number of photon pairs that have impinged on
the BS during the detection time window under consideration.
We have

C0 = n

2
[1 − (1 − η0)2]ηPDL,

C1 = n

2
[1 − (1 − η1)2],

C01 = nPcoincη0η1ηPDL, (A3)

where Pcoinc is the probability of “bunching” in the BS, which
is given by Eq. (2), η0(1) is the quantum efficiency of SPD0(1)

and ηPDL is the (average) transmission coefficient of the PDL
element. Recalling that the PDL has transmissions ηH and ηV

in the horizontal and vertical polarizations, respectively, then

ηPDL = ηH | 〈ψ |H〉 |2 + ηV | 〈ψ |V 〉 |2. (A4)

Note that the horizontal and vertical polarizations can be
distinguished by measuring the ratio C0/C1, i.e., the single
counts in the detectors. This provides enough information for
determination of the sign of Stokes parameter s1: it suffices
to compare ηPDL with the average value of the horizontal and
vertical transmission coefficients:

sgn(s1) =
{+1 if ηPDL � (ηH + ηV )/2
−1 otherwise , (A5)

where ηH > ηV was chosen without loss of generality. Note
that in the equality case that the sign is irrelevant as s1 = 0.

In summary, the protocol works in the following way: first,
we measure the absolute values of the Stokes parameters |s j |
by measuring the coincidence rates according to Eq. (7), in
each case choosing U = σ j ; then we proceed by calculat-
ing two angles ξ1 ≡ tan−1(|s3|/|s2|) and ξ2 ≡ tan−1(|s3|/|s1|).
Using Eq. (A1), we calculate the required angles of rotation
around each axis—R1(θ1) and R2(θ2)—and apply the same
rotation in both inputs, repeating the measurements of σ1 and
σ2. By calculating the single counts ratio C0/C1 we have the
sign of s1; combining this information with the increase or
decrease of the Stokes parameters after the rotations R1(θ1)
and R2(θ2), according to Eq. (A2), we finally obtain the signs
of all Stokes parameters and the protocol is finished.

APPENDIX B: CALCULATION OF COINCIDENCE RATES

In this Appendix we provide calculations for the coinci-
dence rate in Eq. (2) and the coincidence probability when the
input state is given by Fig. 2.

Let a†(ψ ) and b†(ψ ) be the bosonic creation operators for
the two input modes of a symmetrical BS. The BS transfor-
mation reads

a†(ψ ) → a†(ψ ) + ib†(ψ )√
2

, (B1)

b†(ψ ) → b†(ψ ) + ia†(ψ )√
2

. (B2)

Modes a and b then transform according to

022402-9



GUILHERME P. TEMPORÃO et al. PHYSICAL REVIEW A 109, 022402 (2024)

a†(ψ )b†(ψ ′) → 1

2

⎛
⎜⎝ia†(ψ )a†(ψ ′) + ib†(ψ )b†(ψ ′)︸ ︷︷ ︸

(i) no coincidences

+ a†(ψ )b†(ψ ′) − b†(ψ )a†(ψ ′)︸ ︷︷ ︸
(ii) possible coincidences

⎞
⎟⎠. (B3)

Note the first two terms do not contribute to the coincidence rate, while the remaining ones do. Since

|ψ〉 =
√
F |ψ ′〉 + √

1 − Feiϕ |ψ ′
⊥〉, (B4)

where F = F (U ), we may write the same relation in second-quantization notation,

a†(ψ ) =
√
Fa†(ψ ′) + √

1 − Feiϕa†(ψ ′
⊥), (B5)

b†(ψ ) =
√
Fb†(ψ ′) + √

1 − Feiϕb†(ψ ′
⊥). (B6)

Substituting these relations in Eq. (B3) we find for the (ii) terms

√
F

2

⎛
⎝a†(ψ ′)b†(ψ ′) − b†(ψ ′)a†(ψ ′)︸ ︷︷ ︸

interference

⎞
⎠ +

√
1 − F

2
eiϕ

⎛
⎜⎝a†(ψ ′

⊥)b†(ψ ′) − b†(ψ ′
⊥)a†(ψ ′)︸ ︷︷ ︸

no interference

⎞
⎟⎠. (B7)

Coincidences arise from noninterfering terms, hence we have

Pcoinc = | ± 1

2

√
1 − Feiϕ|2 × 2 = 1 − F

2
. (B8)

Now we proceed to the calculation of the coincidence rate for the internal entanglement case. Consider the interference of
two photons, one in state |ψ〉 and the other in state (U ⊗ I ) |ψ〉, where I is the identity operator acting on the time-bin Hilbert
space. The state after the BS will be given by

|ψ〉01 =
[

i |ψ〉0 + |ψ〉1√
2

]
⊗

[
(U ⊗ I )(|ψ〉0 + i |ψ〉1)√

2

]
, (B9)

where the subscripts 0 and 1 correspond to the spatial modes where detectors SPD0 and SPD1 are located, respectively.
Considering |ψ〉 = α |H〉 |t0〉 + β |V 〉 |t1〉 as in Fig. 2 and replacing in Eq. (B9), we obtain an expression comprising 16 terms
from all possible combinations of spatial modes, polarization states, and time bins, which is given by, up to a normalization
constant:

|ψ〉01 = iα2 |H, t0〉0 |U (H ), t0〉0 + iαβ |H, t0〉0 |U (V ), t1〉0 + iαβ |V, t1〉0 |U (H ), t0〉0 + iβ2 |V, t1〉0 |U (V ), t1〉0

−α2 |H, t0〉0 |U (H ), t0〉1 − αβ |H, t0〉0 |U (V ), t1〉1 − αβ |V, t1〉0 |U (H ), t0〉1 − β2 |V, t1〉0 |U (V ), t1〉1

+α2 |U (H ), t0〉0 |H, t0〉1 + αβ |U (V ), t1〉0 |H, t0〉1 + αβ |U (H ), t0〉0 |V, t1〉1 + β2 |U (V ), t1〉0 |V, t1〉1

+ iα2 |H, t0〉1 |U (H ), t0〉1 + iαβ |H, t0〉1 |U (V ), t1〉1 + iαβ |V, t1〉1 |U (H ), t0〉1 + iβ2 |V, t1〉1 |U (V ), t1〉1 , (B10)

where the notation |ψ, t1〉 ≡ |ψ〉 |ti〉 has been employed for
simplicity, and U (H )/U (V ) are simplified notations for de-
noting the image of the unitary operation on the H/V
polarization states.

Note that the first four and last four terms in Eq. (B10)
correspond to the cases where both photons are found in
the same detector, whereas the remaining eight middle terms
correspond to the cases where one photon is found at each
detector. In the case where U = I , note that the eight middle
terms cancel each other out, which is exactly the bunching
effect that is expected in such case; we will come back to this
result later.

In the case where U = σ1, which corresponds to the
measurement of Stokes parameter s1, we have U (H ) = H
and U (V ) = −V , which leads to the cancellation of several
terms in Eq. (B10), particularly the terms with coefficients

±α2, ±β2 and iαβ. Therefore, the coincidence probability
Pcoinc(σ1) is given by

Pcoinc(σ1) = 4|α|2|β|2
2|α|4 + 2|β|4 + 4|α|2|β|2 . (B11)

Now replacing in Eq. (7) and using |α|2 + |β|2 = 1, we finally
obtain

s2
1 = (2|α|2 − 1)2, (B12)

which coincides with the value obtained by standard quantum
state tomography. Indeed, when α = β = 1/

√
2, we obtain

s1 = 0 and Pcoinc(σ1) = 1/2 as expected, since |ψ〉 and σ1 |ψ〉
become mutually orthogonal. For any value of α, on the other
hand, we have s2 = s3 = 0.

022402-10



TWO-PHOTON QUANTUM STATE TOMOGRAPHY OF … PHYSICAL REVIEW A 109, 022402 (2024)

[1] N. Gisin and R. Thew, Nat. Photon. 1, 165 (2007).
[2] C. Couteau, S. Barz, T. Durt, T. Gerrits, J. Huwer, R. Prevedel,

J. Rarity, A. Shields, and G. Weihs, Nat. Rev. Phys. 5, 354
(2023).

[3] J. L. O’Brien, Science 318, 1567 (2007).
[4] J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, in Photonic State

Tomography, edited by P. R. Berman and C. C. Lin, Advances
in Atomic, Molecular, and Optical Physics (Academic Press,
2005), Vol. 52, pp. 105–159.

[5] K. J. Resch, P. Walther, and A. Zeilinger, Phys. Rev. Lett. 94,
070402 (2005).

[6] H. Takesue and Y. Noguchi, Opt. Express 17, 10976 (2009).
[7] J. G. Titchener, M. Gräfe, R. Heilmann, A. S. Solntsev, A.

Szameit, and A. A. Sukhorukov, npj Quantum Inf. 4, 19 (2018).
[8] N. Peters, J. Altepeter, E. Jeffrey, D. Branning, and P. Kwiat,

Quantum Inf. Comput. 3, 503 (2003).
[9] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044

(1987).
[10] R. B. A. Adamson, L. K. Shalm, and A. M. Steinberg, Phys.

Rev. A 75, 012104 (2007).
[11] A. K. Ekert, C. M. Alves, D. K. L. Oi, M. Horodecki, P.

Horodecki, and L. C. Kwek, Phys. Rev. Lett. 88, 217901 (2002).
[12] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Phys. Rev.

Lett. 87, 167902 (2001).
[13] F. Sgobba, D. K. Pallotti, A. Elefante, S. Dello Russo, D.

Dequal, M. Siciliani de Cumis, and L. Santamaria Amato,
Photon. 10, 72 (2023).

[14] N. Harnchaiwat, F. Zhu, N. Westerberg, E. Gauger, and J.
Leach, Opt. Express 28, 2210 (2020).

[15] C. L. Cortes, P. Lefebvre, N. Lauk, M. J. Davis, N. Sinclair,
S. K. Gray, and D. Oblak, Phys. Rev. Appl. 17, 034067 (2022).

[16] H.-Y. Huang, M. Broughton, J. Cotler, S. Chen, J. Li, M.
Mohseni, H. Neven, R. Babbush, R. Kueng, J. Preskill, and J. R.
McClean, Science 376, 1182 (2022).

[17] G. C. Amaral and G. P. Temporão, Quantum Inf. Process. 18,
342 (2019).

[18] A. J. Berglund, arXiv:quant-ph/0010001.
[19] E. Jeffrey, N. A. Peters, and P. G. Kwiat, New J. Phys. 6, 100

(2004).
[20] N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G.

Kwiat, Phys. Rev. Lett. 94, 150502 (2005).
[21] I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N.

Gisin, Nature (London) 421, 509 (2003).
[22] B. Jing, X.-J. Wang, Y. Yu, P.-F. Sun, Y. Jiang, S.-J. Yang, W.-H.

Jiang, X.-Y. Luo, J. Zhang, X. Jiang et al., Nat. Photon. 13, 210
(2019).

[23] M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross,
S. D. Bartlett, O. Landon-Cardinal, D. Poulin, and Y.-K. Liu,
Nat. Commun. 1, 149 (2010).

[24] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod.
Phys. 74, 145 (2002).

[25] C. Nawrath, R. Joos, S. Kolatschek, S. Bauer, P. Pruy, F.
Hornung, J. Fischer, J. Huang, P. Vijayan, R. Sittig et al., Adv.
Quantum Technol. 6, 2300111 (2023).

[26] Y. Arakawa and M. J. Holmes, Appl. Phys. Rev. 7, 021309
(2020).

[27] Qiskit contributors, QISKIT: An open-source framework for
quantum computing, https://doi.org/10.5281/zenodo.8190968.

[28] J. C. Garcia-Escartin and P. Chamorro-Posada, Phys. Rev. A 87,
052330 (2013).

[29] P. Ripper, G. Amaral, and G. P. Temporão, Quantum Inf.
Process. 22, 220 (2023).

[30] S. Foulds, V. Kendon, and T. Spiller, Quantum Sci. Technol. 6,
035002 (2021).

[31] F. Calliari, P. Tovar, C. Nascimento, B. Perlingeiro, G. Amaral,
and G. P. Temporao, Appl. Opt. 58, 4395 (2019).

[32] B.-C. Ren, F.-F. Du, and F.-G. Deng, Phys. Rev. A 88, 012302
(2013).

[33] A. Z. Khoury and P. Milman, Phys. Rev. A 83, 060301(R)
(2011).

[34] H.-H. Lu, J. M. Lukens, B. P. Williams, P. Imany, N. A. Peters,
A. M. Weiner, and P. Lougovski, npj Quantum Inf. 5, 24 (2019).

022402-11

https://doi.org/10.1038/nphoton.2007.22
https://doi.org/10.1038/s42254-023-00589-w
https://doi.org/10.1126/science.1142892
https://doi.org/10.1103/PhysRevLett.94.070402
https://doi.org/10.1364/OE.17.010976
https://doi.org/10.1038/s41534-018-0063-5
https://doi.org/10.26421/QIC3.s-4
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1103/PhysRevA.75.012104
https://doi.org/10.1103/PhysRevLett.88.217901
https://doi.org/10.1103/PhysRevLett.87.167902
https://doi.org/10.3390/photonics10010072
https://doi.org/10.1364/OE.382622
https://doi.org/10.1103/PhysRevApplied.17.034067
https://doi.org/10.1126/science.abn7293
https://doi.org/10.1007/s11128-019-2445-9
https://arxiv.org/abs/quant-ph/0010001
https://doi.org/10.1088/1367-2630/6/1/100
https://doi.org/10.1103/PhysRevLett.94.150502
https://doi.org/10.1038/nature01376
https://doi.org/10.1038/s41566-018-0342-x
https://doi.org/10.1038/ncomms1147
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1002/qute.202300111
https://doi.org/10.1063/5.0010193
https://doi.org/10.5281/zenodo.8190968
https://doi.org/10.1103/PhysRevA.87.052330
https://doi.org/10.1007/s11128-023-03961-y
https://doi.org/10.1088/2058-9565/abe458
https://doi.org/10.1364/AO.58.004395
https://doi.org/10.1103/PhysRevA.88.012302
https://doi.org/10.1103/PhysRevA.83.060301
https://doi.org/10.1038/s41534-019-0137-z

