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The maximum-entropy principle (max-ent) is a valuable and extensively used tool in statistical mechanics
and quantum information theory. It provides a method for inferring the state of a system by utilizing a
reduced set of parameters associated with measurable quantities. However, the computational cost of employing
max-ent projections in simulations of quantum many-body systems is a significant drawback, primarily due
to the computational cost of evaluating these projections. In this work, a different approach for estimating
max-ent projections is proposed. The approach involves replacing the expensive max-ent induced local geometry,
represented by the Kubo-Mori-Bogoliubov scalar product, with a less computationally demanding geometry.
Specifically, a new local geometry is defined in terms of the quantum analog of the covariance scalar product for
classical random variables. Relations between induced distances and projections for both products are explored.
Connections with standard variational and dynamical mean-field approaches are discussed. The effectiveness of
the approach is calibrated and illustrated by its application to the dynamic of excitations in a XX Heisenberg
spin- 1

2 chain model.
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The field of quantum simulation in physics has gained
significant attention in recent years [1–3] due to its profound
implications for the study of efficient and reliable control of
large-scale quantum many-body systems. Consequently, the
development of efficient simulation techniques for quantum
many-body systems has become closely intertwined with this
interdisciplinary domain, as understanding the evolution and
dynamical properties of such systems is crucial for effective
control strategies [4,5].

Nonetheless, studying the exact dynamics of open and
closed quantum many-body systems remains a fundamental
challenge in quantum mechanics [2,3,6,7]. The main obsta-
cle in solving exact dynamics lies in the coupling of the
equations governing the evolution of expectation values of
the observables of interest, encompassing all possible n-body
correlations.

The dynamics of noninteracting systems, as well as
the so-called Gaussian dynamics (i.e., free quantum field
theories) are exceptions, as the former preserves prod-
uct states, while in the latter case, any correlation is a
function of the pairwise correlations, giving rise to the fa-
mous Martin-Schwinger hierarchy of n-body correlations
[8]. For this reason, nonperturbative schemes like the mean
field theory (MFT), in its different flavors and variants
[9–12], offer (a family of) prescriptions for building approx-
imate and analytically solvable dynamics and equilibrium
states, by exploiting the features of these types of tractable
systems.

An extension of these nonperturbative methods was pro-
posed by Balian et al. [13], based on Jaynes’s max-ent
principle [14–16].

The max-ent principle posits that given knowledge about
the expectation values of a certain reduced set of relevant
and/or accessible observables, the state of the system is

the one with maximum (von Neumann) entropy, consistent
with the known expectation values. Each set of (linearly in-
dependent) relevant observables defines, therefore, a family
of max-ent states, continuously parametrized by the expec-
tation values. Then, the idea is to approximate the exact
dynamics by a max-ent dynamics, i.e., a restricted dynamics
over the family of the max-ent states. In a similar way to
the Nakajima-Zwanzig (NZ) projection technique [17–20],
the effective equations of motion are obtained via a lin-
earized projection over the original ones. However, unlike
the NZ formulation, it does not necessarily rely on the di-
vision system/environment, making it more versatile. Also,
unlike perturbative expansions, the accuracy of this approx-
imation not only depends on the number of terms in the
expansion but also on the choice of the relevant observ-
ables. Nevertheless, the main challenge in this approach lies
in the implementation of the constraint itself: the projection
is expressed in terms of an orthogonal expansion with re-
spect to the state-dependent Kubo-Mori-Bogoliubov (KMB)
scalar product [21]. This scalar product depends on the spec-
tral decomposition of the state that defines it, making its
evaluation computationally very expensive. This limits the
applicability of the approximation to cases covered by the
time-dependent mean field theory (TDMFT) approaches, i.e.,
where separable or Gaussian states are assumed.

In this work, we delve into an alternative method for im-
plementing the instantaneous projection, which enables the
efficient solution of restricted dynamics for a wider range of
sets of relevant observables. To accomplish this, we critically
reexamine the key properties of the KMB scalar product and
explore other computationally less demanding scalar prod-
ucts (and their induced geometries). Specifically, we focus on
the quantum generalization of the covariance scalar product
covar, which exhibits similar metric properties to the KMB
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scalar product, while, at the same time, being computationally
less demanding.

Furthermore, it is worth mentioning that both the KMB
scalar product, as well as the solutions of the restricted dy-
namics, play a role in several branches of physics, including
transport theory, linear-response theory, the Kondo problem,
noncommutative probability theory, and condensed-matter
physics [21–24], making the development of computable
bounds and approximations a valuable tool in these areas.

The work is organized as follows: In the first section,
we provide a brief review of the max-ent restricted dynamic
formalism. Then, in Sec. II, we thoroughly reexamine the
properties of the KMB and covar scalar products. Section III
presents a detailed comparison between the exact dynamics
and the approaches discussed. Finally, in Sec. IV, we present
a general discussion of the results and perspectives. The
Appendix contains proofs of the statements and mathematical
details.

I. MAXIMUM-ENTROPY DYNAMICS

In this section, a review of the main concepts and results
of the theory of max-ent states [14,16] and max-ent restricted
dynamics [13] is presented.

A. Maximum-entropy principle

a. The max-ent principle in quantum mechanics. Consider
a quantum many-body system with Hamiltonian H and an
algebra of observables A acting on a Hilbert space H, with
space of states

S (H) = {ρ | ρ ∈ B(H), ρ � 0, Trρ = 1}, (1)

with B(H) the set of bounded operators acting on H [3,25].
The expectation value of an observable O ∈ A is, then, given
by

〈O〉ρ = Tr(ρO). (2)

Conversely, if B = {Q1, . . . , Qdim(H)2−1}1 is a complete set of
linearly independent operators such that AB ≡ span(B) = A,
then knowledge about the system is complete. Therefore, ρ

is completely determined by the values of 〈Qα〉 [3]. How-
ever, in many-body systems, the dimension of the algebra A
grows geometrically with the number of components, mak-
ing it unfeasible to access the expectation values of even a
small fraction of the observables in A. On the other hand,
by choosing B = {Q1, . . . , QN }, with N < dim(H)2 − 1, as
an independent set of accessible observables, the information
of their expectation values does not specify a single density
operator but a convex subset of S (H):

CB(μα ) = {σ |σ ∈ S (H), TrσQα = μα, Qα ∈ B}, (3)

with μα = 〈Qα〉 the values of the known expectation values.
With respect to the operators Q ∈ B, CB(μα ) is an equivalence

1This basis has dimension dim(H)2 − 1 since the identity operator
idH is fixed due to the constraint Trρ = 1. Notice, however, that
for some infinity-dimensional algebras (like the bosonic algebra), in
order to satisfy the closeness condition, id ∈ A.

class, meaning that all of its elements are physically and statis-
tically equivalent. However, this is not true for other operators.
In particular, the dynamics of the state—and of its expectation
values—depends on [H, Q]/i, which in general is not in AB.

Subsequently, a crucial question arises: when estimating
the expectation value of any other observable Q /∈ B, which
state σ would provide the fairest and unbiased choice for ρ?
As shown in subsequent sections of this article, this question
holds particular significance in the context of the evolution of
expectation values.

One possible answer, and the one which will be explored in
this article, lies in the maximum entropy (max-ent) principle
[14,26]. This principle states that the optimal choice is the one
that maximizes the von Neumann entropy [3]

S(ρ) = −Trρ ln ρ, (4)

over CB(μα ). In other words,

σ � = argmax
σ∈CB (μα )

S(σ ). (5)

Note that, if AB = A (namely, the set is equal to its closure),
σ � = ρ is the unique element in CB(μα ). On the other hand,
for a generic basis B, σ � represents (in some sense) an even
statistical mixture of the states in CB(μα ). Due to the convex-
ity of this set, the convexity of the von Neumann entropy, and
the linearity of the map between states and expectation values,
it is easy to verify that PB(ρ) = σ ∗ defines a smooth nonlinear
projection map from S (H) onto a manifold of max-ent states
MB associated with B [27–29], i.e.,

PB : S (H) → MB, s.t. PB(PB(ρ)) = PB(ρ).

Moreover, one appealing property of the max-ent states,
and of the max-ent manifolds as well, is given by the follow-
ing proposition:

Proposition I.1 Let σ ∗ be the max-ent state associated with
the observables in B.

σ � = e−K, K ∈ AB ≡ span(B), (6)

where the K operator is chosen such that Trσ � = 1. Hence,
max-ent states are (quantum) Gibbs states for a system with
an effective Hamiltonian, K/β, given as a linear combination
of the operators B = {Qα} with real coefficients [26,30–32].
A rigorous proof of this statement is given in Appendix A. By
making use of these results, S (H) (MB) can be thought of as
the image of the exponential map onto A (AB), which is a real
vector (sub)space. Namely,

exp : A → S (H),

exp : AB → MB.

Moreover, the projection PB naturally induces a (nonlin-
ear) smooth projection operator �B : A → AB such that

exp (−�BK) = PB(e−K ). (7)

Notice that PB can also be characterized in terms of the
quantum relative entropy

S(ρ‖σ ) = Tr[ρ(ln ρ − ln σ )] (8)

as

PB(ρ) = argmin
σ∈MB

S(ρ‖σ ). (9)
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FIG. 1. Max-ent dynamics in the Bloch’s sphere. (left) Max-ent
construction. The max-ent manifold Mmax-ent spans all the states with
defined 〈Qx,y〉 = 〈Sx,y〉 mean values and maximum entropy. The state
σ is the state with maximum entropy that shares these averages with
ρ. (right) The ideas of exact and max-ent dynamics are contrasted,
where the latter is an approximation of the former.

characterizing σ as the less statistically distinguishable state
from ρ, provided a fixed number of copies of the state are
accessible, and for any observable [33].

b. Example. Consider the state space of a single spin- 1
2 sys-

tem, which is the well-known Bloch sphere. The full algebra
of observables A is generated by B = Sμ=x,y,z, representing
the spin components along the Cartesian axes. If the set of
accessible observables is restricted, for example, to only B =
{Sx, Sy}, then CB(μα=x,y) corresponds to the intersection of a
straight line, parallel to the z axis and containing ρ, with the
Bloch sphere. This intersection yields the max-ent manifold
as the intersection of the Bloch sphere with the xy plane, as
depicted in Fig. 1.

c. Comment. It is important to note that while CB(μα ) is
a convex set, this is not necessarily true for MB in general.
In particular, if S(H) represents the state space of a Spin-1
system and B = {Sx, Sy}, the states

ρμ=x,y = exp[− ln (3)Sμ]/Tr exp[− ln (3)Sμ]

belong to MB, while

ρ = 1
2ρx + 1

2ρy ∝ e−λ(Sx+Sy )−κ{(Sx,Sy )}−ξSzSz ,

with λ ≈ −0.526, κ ≈ 0.137, and ξ ≈ 0.125 does not belong
to MB because it cannot be written in the form of Eq. (6).

B. Linear projections and geometry of MB

Evaluating PB is, however, a challenging optimization
problem, primarily due to the high computational cost asso-
ciated with the exact evaluation of ρ. Nonetheless, in certain
cases, our interest lies in projecting states ρ = exp(−K) onto
the neighborhood of a specific ρ0 = exp(−K0) ∈ MB. In
such scenarios, it becomes reasonable to approximate �B(K)
using a linear projector π ≡ πB,ρ0 [20,27,34],

πB,ρ0 (�K) ≡ ∂

∂λ
�B(K0 + λ�K)|λ→0, (10)

for any �K ∈ A. To explicitly construct πB,ρ0 , observe that

〈O〉P (ρ) = 〈O〉ρ, ∀ O ∈ AB. (11)

Assuming that ρ ≈ P (ρ) → K ≈ �(K) (i.e., the exact
state of the system lies close to the max-ent manifold),
Eq. (11) can be linearized around P (ρ) using the following
property:

Proposition I.2. Let ρλ = exp(−K0 + λ�K) with K0 =
K†

0 ∈ A. Then,

∂

∂λ
TrρλO = (�K†, O)KMB

ρλ
, (12)

with

(Q1, Q2)KMB
σ =

∫ 1

0
Tr[σ 1−τ Q†

1σ
τ Q2]dτ, (13)

the Kubo-Mori-Bogoliubov (KMB) scalar product [21] rela-
tive to σ .

The proof of this proposition can be found in Refs. [13,21]
and is included in Appendix C 1 for completeness. Proposition
I.2 allows for the characterization of πB,σ as an orthogonal
projector with respect to the KMB product.

Proposition I.3. Equation (10) is satisfied if πB,ρ0 is an
orthogonal projection with respect to (·, ·)KMB

ρ0
, meaning that,

for all states ρ0 ∈ MB,(
Q, πB,ρ0 O

)KMB
ρ0

= (Q, O)KMB
ρ0

∀ Q ∈ AB,

O ∈ A.
(14)

A proof of this proposition can be found in Appendix C 2.
Proposition I.3 is very important for several reasons. The

first one is practical because it allows for the explicit compu-
tation of the projection, πB,σ K, in terms of operators Qα ∈ B
as a Bessel-Fourier expansion

πB,σ K =
∑
αβ

[(
GKMB

B,σ

)−1]αβ
(Qα, K)KMB

σ Qβ, (15)

with [
GKMB

B,σ

]
αβ

= (
Qα, Qβ

)KMB
σ

, (16)

the Gram matrix of the basis of accessible observables with
respect to the KMB scalar product.

On the other hand, Proposition I.3 provides a way to re-
formulate Eq. (10) in geometrical terms, yielding very fruitful
results in the way of bounds, approximations, and other metric
properties. For example, we notice that Proposition I.3 implies
that

πB,ρ (K) = argmin
K′∈AB

‖K′ − K‖KMB
ρ , ρ = exp (−K), (17)

with

‖A‖KMB
ρ0

=
√

(A, A)KMB
ρ0

, (18)

being the KMB induced distance in the neighborhood of
ρ0. This metric is closely related to the relative entropy (8)
between states in the neighborhood of ρ0, which it bounds,
through the exponential map parametrization (see Lemma C.2
in the Appendix for further discussion on this subject).

C. Projected dynamics and restricted Schrödinger dynamics

Until now, we have considered the max-ent projection (and
its linearization) for an instantaneous state. Let us consider
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now a system whose state was initially described by ρ0 =
ρ(0) ∈ MB that undergoes a closed evolution governed by the
Schrödinger equation:

ih̄
dρ

dt
= [H, ρ], (19)

where H ∈ A represents the system’s Hamiltonian. For the
present developments, it is convenient to work with the dy-
namics of K(t ) = − ln[ρ(t )], through the following:

Lemma I.4. Let K(t ) = − ln[ρ(t )], with ρ(t ) a solution of
Eq. (19) for a certain Hamiltonian H. Then,

ih̄
dK
dt

= [H, K]. (20)

The proof of this lemma is shown in Appendix D.
Given that the accessible observables are limited to those

in AB = span(B), it is meaningful to examine the evolution of
the projection:

�B[K(t )] = − ln [PB(ρ(t ))], (21)

which offers a more concise representation of the state with
respect to the accessible observables. Evaluating �B[K(t )]
is, however, problematic since it necessitates solving the full
Schrödinger equation (19) and subsequently computing the
projection itself. Instead, in the neighborhood of the max-ent
manifold MB, or equivalently of AB, the linearization of the
max-ent projection �B yields an orthogonal projection with
respect to the KMB geometry πB, as shown in the preceding
sections. Thus, it makes sense to study the following (linear)
projected evolution:

πB,ρ(t )K(t ) = −πB,ρ(t ) ln [ρ(t )]. (22)

Note that evaluation of Eq. (22) still necessitates solving
the full Schrödinger equation and computing a (now linear)
projection. For many-body systems, solving the Schrödinger
equation is not possible, undermining the feasibility of
employing a projection approximation. Nevertheless, by as-
suming that ρ(t ) evolves in the neighborhood of MB, πBK(t )
can be approximated by a restricted dynamics K̃B(t ). If
σ̃ (t ) = exp[−K̃B(t )], then

ih̄
dK̃B

dt
= πB,σ̃ (t )([H, K̃B]), (23)

represents a Schrödinger evolution restricted to the max-ent
manifold MB [20,27,34,35].

By definition, Eq. (23) is a closed evolution on AB, since
πB acts trivially on it. Moreover, Eq. (23) is a nonlinear differ-
ential equation (since the projection itself is calculated with
respect to the KMB inner product) but local in time and has a
formal solution for K̃B(t ) (more on this below).

The relation between these operators is depicted in
Fig. 2(a). As the system evolves, the Hamiltonian evolution
pulls K(t ) out of the relevant subspace AB. The max-ent
projection �BK(t ) follows a trajectory, over AB, of (minus the
logarithm of) max-ent states, sharing the same instantaneous
expectation values with the free evolution. The linearized
projection πB,σ (t )K(t ) provides an approximation for �BK(t ),
valid provided K(t ) remains close to AB.

As far as K̃B is a good approximation to K, then K̃B(t ) ≈
πB,ρ(t )K(t ) ≈ �BK(t ). As shown below, this condition can be

(a)

(b)

FIG. 2. Different evolution schemes. (a) The solid curve (blue
online) represents the trajectory of K(t ) following the free
Schrödinger evolution. The dot-dashed line (green online) curve and
the dashed line (red online) represent the max-ent projection of the
free evolution �BK(t ) and its linearization πBK(t ), respectively. The
dotted line (orange online) represents the restricted evolution K̃B(t )
(23). (b) Relation among the distances �(t ) and �̃(t ) Eqs. (27) and
(28) between the instantaneous K(t ), �BK(t ), and K̃B(t ) and its
different approximations. In the scheme, intrinsic KMB geometry
around πB,ρ(t )K(t ) is identified with the Euclidean one. Note that the
different states do not lie in the same trajectory.

achieved by expanding the relevant set of observables through
a judicious choice of operators (see Appendix E 3), for short
enough times. For longer times, if K(t ) stays close to AB,
�BK(t ) ≈ πB,ρ(t )K(t ) ≈ K(t ), but K̃B(t ), due to the accumu-
lated differences in the derivatives, eventually moves away
from K. However, as detailed in Proposition E.1, given a sen-
sible choice of B, the restricted evolution K̃B, like with �BK,
conserves both the normalization and the relevant constants
of motion, even if K(t ) moves away from AB. Also, even if
the instantaneous states diverge, the qualitative behavior of the
orbits can remain similar.

a. Example. To illustrate how this approach works, let
us revisit the dynamics in the Bloch sphere. Consider B =
{Sx, Sy}, and let the Hamiltonian have the form H = ň · S =
�Sz + ωSx [see Fig. 1(b)]. The exact dynamics describe
circular trajectories around ň with an angular frequency of
(�2 + ω2)1/2. In this specific case, the natural projection over
MB (11) coincides with the Euclidean projection onto the x-y
plane. If ω = 0, the projection of the exact trajectory onto
MB coincides with the trajectory of the restricted dynamics.
However, if ω �= 0, the restricted dynamics would still be a
circular trajectory with an angular frequency of �, while the
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projection of the exact dynamics would result in an elliptical
trajectory with an angular frequency of (�2 + ω2)1/2. When
|ω/�| � 1, the restricted dynamics would closely approxi-
mate the projection of the exact dynamics. On the other hand,
if we would choose the basis B′ = {ln ρ(0),−i[H, ln ρ(0)]}
instead of B, the dynamics would be always exact, despite B′
being noncomplete, since AB′ is closed under the action of
[H, ·]/ih̄.

D. Explicit computation of the restricted dynamics

Using the orthogonal expansion (15) regarding a fixed basis
B, Eq. (23) can be expressed as a set of differential equa-
tions for the expansion coefficients φμ(t ) [where K̃B(t ) =∑

μ φμ(t )Qμ]:

∑
β

[
GKMB

B,σ (t )

]
αβ

dφβ

dt
=

∑
β

Hαβφβ (t ), (24)

with

Hαβ ≡ [
HKMB

σ (t )

]
αβ

= 1

ih̄
(Qα, [H, Qβ ])KMB

σ (t ) (25)

representing a real matrix that governs the dynamics of the
coefficients. It is important to note that both Hαβ and Gαβ are
nonlinear functions of the instantaneous state K, as (·, ·)KMB

B
depends on exp[−K̃B(t )]. Consequently, Eq. (24) becomes a
set of nonlinear coupled equations.

a. Convergency. In the previous analysis, it was assumed
that ρ(t ) ≈ P (ρ(t )), in order to approximate the nonlin-
ear projector �B by its linear approximation πB,σ , and the
projected dynamics—Eq. (22)—by the restricted dynamics—
Eq. (23). Let us discuss now more carefully how these
conditions are quantified.

�B and πB,σ are defined in terms of the minimization of
two functionals, the relative entropy and the KMB distance,
respectively. According to Lemma C.2, as long as the second-
order expansion is valid, both quantities are monotones of
each other, in a way that ‖�BK − K‖ρ(t ) and ‖πB,ρ(t )K −
K‖ρ(t ) are equal up to a higher order in ‖πB,ρ(t )K − K‖ρ(t ).
On the other hand, K̃B(t ) is a solution of Eq. (23) such that
K̃B(0) = �BK(0) = πB,σ (0)K(0), so for short times, K̃B(t ) ≈
�BK(t ). It is convenient then to introduce

�K(t ) = K(t ) − K̃B(t ) (26)

as the difference between the free and the restricted evolu-
tions. The KMB distance

�̃(t ) = ‖�K(t )‖KMB
σ (t ) , (27)

measures the effect of this difference in the estimation of
expectation values and the distinguishability of the associated
states. On the other hand, if we focus just on the relevant
observables, what we look for is to approximate �BK(t ), in a
way that the figure of merit is

�(t ) = ‖�B�K(t )‖KMB
σ (t ) . (28)

The relation between these quantities is depicted in
Fig. 2(b). Since we do not have direct access to K(t ), we
need an expression of �K as a functional of K̃(t ). From
the results in Appendix E 2, it follows that these quantities

can be bounded, during the simulation, without an important
overhead by

�̃(t ) <

∫ t

0
‖[H, K̃B(t ′)]‖KMB

σ (t ) dt ′. (29)

In general, along the evolution, the system develops corre-
lations not contained in B. For example, in typical interacting
many-body systems, an initially uncorrelated state develops
O(t n) nontrivial n-body correlations. Then, if B contains just
local observables, correlations are neglected in the evolution
of K̃B(t ), while it does affect the dynamics of ρ(t ).

Still, if these correlations do not affect the dynamics of
the relevant expectation values in an appreciable manner, then
exp[−K̃B(t )] provides a good approximation to P[ρ(t )], even
if it does not approximate correctly ρ(t ). On the other hand,
if some correlations do heavily affect the dynamics of the rel-
evant variables, those correlations can be seen as the actually
relevant observables, which can be inferred by looking at the
dynamics of other observables.

Therefore, by extending the basis B, including these new
relevant observables, it is possible to make the projected and
restricted dynamics closer. This statement can be made math-
ematically precise by considering a sequence of hierarchical
bases [36,37],

B0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ B� ⊂ · · · , (30)

in a way that, by construction,

‖K(t ) − π�K(t )‖KMB
ρ(t ) < ‖K(t ) − π�−1K(t )‖KMB

ρ(t ) ,

with π� ≡ πB�
being the orthogonal projector associated with

the subspace A� ≡ AB�
regarding the KMB scalar product

relative to ρ(t ). These so-called hierarchical bases are related
to the hierarchical Lie algebras, see Ref. [36], which arise
in the study of efficient solutions to differential equations on
manifolds. In our present case, however, the hierarchical bases
are not, in general, Lie algebras, only sharing an iterative
commutator-based structure.

Notice that, for finite-dimensional algebras, the distance
converges to zero for large enough �. However, the particular
way in which the convergence is achieved depends strongly
on the choice of B�. The discussion of these conditions in a
general context is out of the scope of this work. For the present
analysis, we are going to focus on the case of dynamics gener-
ated by a time-independent Hamiltonian H, and the sequence
b� ∈ B� with

b0 = K(0) and bm = [H, bm−1]

ih̄
. (31)

As such, the subspaces A�, spanned by the hierarchical
bases, can be understood as Krylov subspaces generated by
the initial operator b0 and the operator 1

ih̄ ad(�)
H (·). In E 3, it

is shown that the projected and the restricted dynamics are
consistent with an �th order perturbative expansion, and hence
for a fixed tmax > t , the KMB distances (and any other metric)
converge as t�+1

max . On the other hand, numerical simulations
presented in Sec. III seem to suggest that for larger times,
the KMB distance reaches an asymptotic value, that decreases
with �.
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II. COMPUTABLE GENERAL
MAXIMUM-ENTROPY DYNAMICS

With the method above, in principle, it is possible to solve
the restricted dynamics for any choice of the physical sys-
tem and set of relevant observables, involving just as many
dynamical variables as the considered relevant independent
observables. However, to explicitly solve the dynamics, the
challenge lies in computing the self-consistent projections
via the evaluation of the KMB scalar product of operators
with respect to the instantaneous state σ (t ): its computation
requires the construction and explicit diagonalization of the
instantaneous state σ (t ) at each step of the evolution. This
process can only be carried out explicitly for Gaussian and
product states, and for very-low-dimensional systems [38].

One way to overcome this limitation arises from the ob-
servation that the same projector can be orthogonal regarding
distinct scalar products. Moreover, even if two scalar products
lead to different but similar orthogonal projectors, choosing a
suitable basis B, it can be expected that the dynamics induced
by the projectors will be similar. In this section, the desired
requisites for a computable generalization of the KMB dy-
namics are discussed in depth, alongside a concrete proposal
fulfilling these requisites.

A. Required properties

In the upcoming sections, an alternative proposition to
solve the max-ent projected dynamics equation (24) is to
replace the KMB geometry with a mathematically similar
yet computationally efficient geometry. To this end, one must
first embark on a search for an alternative scalar product
(·, ·) that can serve as a replacement for the KMB scalar
product while possessing comparable metric properties. A
comprehensive analysis of the mathematical properties of this
scalar product can be found in Ref. [39]. Additionally, for a
more extensive exploration of the broader applicability of this
geometry, particularly from the perspective of operator theory,
refer to the comprehensive summary provided in Ref. [40]. By
pursuing this avenue, an improved approach for computing
scalar products and orthogonalization of bases of observables,
with higher computational efficiency, is desired. To achieve
results similar to those obtained using the KMB scalar prod-
uct, the proposed alternative must satisfy several significant
conditions.

a. Reality condition. First, a suitable candidate for a
scalar product (·, ·)′ must meet the reality condition(see
Appendix B 1),

(A, B)′∗ = (A†, B†)′ = (B, A)′. (32)

This condition ensures that πB(Q) = πB(Q)† ∈ AB for any
Q = Q† ∈ A and for any choice of B such that Q ∈ AB ⇒
Q† ∈ AB, see Appendix B 1. Both the KMB scalar product
and the Hilbert-Schmidt scalar product (HS), given by

(A, B)HS = TrA†B,

are real-valued scalar products [25].
b. Tensor-product compatibility condition. The HS scalar

product is particularly advantageous as it is much easier to
compute than the KMB scalar product when A† and B† repre-

sent k-body correlations. Furthermore, the HS scalar product
is compatible with the tensor product operation:

(O1 ⊗ O2, Q1 ⊗ Q2)HS = (O1, Q1)(O2, Q2). (33)

This property is not shared by the KMB product, even if σ (t )
is a product operator, which makes the evaluation of k-body
correlation functions much harder than in the HS geometry.

c. Statistical weight. However, simple substitution of the
KMB scalar product by the HS scalar product in Eq. (24) is not
always a viable approach. The KMB scalar product assigns
weights to operators based on their statistical significance,
while the HS scalar product is unitarily invariant. As a result,
two operators that are close in terms of the KMB-induced
norm may appear very different according to the HS-induced
norm. This discrepancy arises, for example, when the opera-
tors differ in the form |i〉〈 j|, with |i〉 and | j〉 being states with
very low occupation probabilities (〈i|ρ|i〉, 〈 j|ρ| j〉 � 1). For
instance, in a bosonic system where n̂ = a†a is the number op-
erator and ρ is a Gaussian state with 〈n〉 ≈ 1, |n̂2 − n̂|KMB =
2
√

13 ≈ 7.21, but |n̂2 − n̂|HS is unbounded.

B. Quantum covariance scalar product (covar)
and covar geometry

A more suitable choice of scalar product is given by the
quantum COVARiance scalar product with respect to a certain
reference state σ (from now on, covar),

(O, Q)covar
σ = Tr

[
σ

{O†, Q}
2

]
, (34)

which, for Hermitian inputs, is a real-valued scalar product.
This scalar product, up to a constant factor, reduces to the

HS when σ ∝ idH. On the other hand, for normalized refer-
ence states Trσ = 1, it has a simple statistical interpretation:
the scalar product of an operator with the identity operator
yields its expectation value,

(idH, Q)covar
σ = 〈Q〉σ ,

while the scalar product between two operators with zero
expectation value (i.e. orthogonal to the identity) is given by
its covariance:

Covσ (O, Q) =
〈 {O, Q}

2

〉
σ

− 〈O〉〈Q〉σ .

Additionally, the induced norm for an operator with zero
expectation value is given by its standard deviation:

||Q − 〈Q〉||covar
σ =

√
〈Q2〉σ − 〈Q〉2

σ .

Hence, the covar scalar product can be regarded as the quan-
tum analog of the covariance scalar product between classical
random variables.

Notably, the covar scalar product offers an advantage over
the KMB geometry, as its computation does not require the
diagonalized form of the reference state, making it more com-
putationally efficient. Furthermore, as it is a linear function
with respect to the reference state, it can be efficiently com-
puted for any separable reference state ρ0 = ∑

i qiρ
⊗
i .

Although it does not satisfy the tensor-product compat-
ibility condition (34), for self-adjoint operators, it can be
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computed as the real part of the Gelfand-Naimark-Sigal
(GNS) scalar product [25,41]

(O, Q)GNS
σ = Tr[σO†Q],

which does satisfy it. For instance, choosing σ = ⊗
i σi, the

scalar product between O = ⊗
i oi and q = ⊗

i qi is simply
given by

(O, Q)covar
σ = Re

[∏
i

(oi, qi )σi

]
.

Another important feature of the covar scalar product is that, if
one of the arguments commutes with the reference state, this
product yields the same result that the KMB scalar product
regarding the same reference state, i.e.,

[K, A] = 0 ⇒ (A, B)KMB
σ = (A, B)covar

σ .

Therefore, Proposition E.1 and Lemma B.7 are also valid
if the KMB product and orthogonal projectors are replaced by
their corresponding covar counterparts. As a result, if instead
of the KMB projector a covar projector is used in Eq. (23),
both the KMB and the covar trajectories lie over the same
constant entropy submanifold of MB and automatically pre-
serve the normalization.

On the other hand, the covar geometry shares with KMB a
common orthogonal basis of A, with the norms of each vector
related by a O(1) factor (see Appendix B 3):

(|i〉〈 j|, |k〉〈l|)KMB
σ = Wi j × (|i〉〈 j|, |k〉〈l|)covar

σ , (35)

Wi j = tanh[ln(pi/p j )/2]

ln(pi/p j )/2
� 1, (36)

where |i〉, | j〉, |k〉, |l〉 are eigenvectors of σ with eigenvalues
pi, p j , pk , pl , respectively. As a result, both scalar products
yield similar values for operators which connect states with
similar probabilities.

The following proposition provides a useful tool to com-
pare the induced geometries:

Proposition II.1. Let σ ∈ S (H) and A ∈ A. Then

‖A‖ � ||A||covar
σ � ||A||KMB

σ � |S(σ‖eln σ−A)|. (37)

Notice that, if Treln σ−A = 1, then the absolute value in the last
member is superfluous.

The proof of Proposition II.1 can be found in
Appendix B 3. From this proposition, and the minimum
distance property of orthogonal projectors regarding
the corresponding induced norm, the following chain of
inequalities holds:

‖πKMB(Q)‖KMB � ‖π covar (Q)‖KMB (38)

� ‖π covar (Q)‖covar (39)

� ‖πKMB(Q)‖covar, (40)

for any Q ∈ A. Equality holds when B ⊂ {|i〉〈 j|}, and hence
the associated orthogonal projectors over AB for π ≡ πKMB

B
and π covar

B are identical.
From Sec. II B and since

πKMBπ covarQ = π covarQ and π covarπKMBQ = πKMBQ,

if follows that

δKMB(Q) � δcovar (Q), (41)

for δ
KMB

covar (Q) = ‖πKMBQ − π covarQ‖ KMB
covar and, using the trian-

gular inequality,

δKMB(Q) < 2‖π covar
⊥ Q‖KMB,

δcovar (Q) < 2‖πKMB
⊥ Q‖covar, (42)

with π
covar
KMB

⊥ Q = Q − π
covar
KMB

Q the corresponding projection onto
the orthogonal complement of AB.

C. Connection with standard formulations of mean field theory
and equivalence of projections in the Gaussian case

As shown in Appendix F 1, for some special choices of
B, our formalism is equivalent to the (self-consistent) time-
dependent mean field theory (TDMFT).

The simplest case is the one in which H = H⊗ ≡ ⊗
i Hi

and the basis B of accessible observables is a basis of local
observables

B =
⊔

i

Bi, (43)

with Bi being the complete bases of the local algebras of
operators Ai acting over H(i). For this case, the formalism
is equivalent to the Hartree (product-state based) mean-field
approach [11,16,42,43].

In a similar way, if H = HFock, and

B = BF
1 � BF

2,

BF
1 = {q1, p1, q2, p2, . . .},

BF
2 = {

Q | Q = [zi, z j]∓ − 〈[zi, z j]∓〉, zi, j ∈ BF
1

}
,

with qi, pi, observables such that 〈pi〉 = 〈qi〉 = 0, ([A, B]+ =
[A, B] and [A, B]− = {A, B} correspond to the commutator
and anticommutator of the operators) satisfying canonical
commutation and anticommutation relations

[pi, p j]± = [qi, q j]± = 0, [qi, p j]± = ih̄δi j .

As a result, our formalism is equivalent to the time-
dependent Hartree-Fock-Bogoliubov (Gaussian-state-based)
mean field theory [9,10]. In both cases, the self-consistency
condition—for the stationary case—is given by

�MB (σ ) = σ, 〈H〉 = 〈πB(H)〉.
In other words, for the bosonic Gaussian case, both geometries
yield exactly the same projection.

a. Possible simplifications using fixed referential mean-field
states. While beyond the scope of this article, there are further
improvements that can be made to Eq. (24), besides altering
the inner product. Specifically, instead of considering time-
dependent scalar products with respect to the instantaneous
state of the system, σ (t ), a single fixed and carefully chosen
reference state σ0 can be considered.

This proposal offers several advantages. For instance, by
employing in Eq. (24) a covar scalar product with respect to
a fixed reference state σ0, the resulting system of differential
equations becomes linear. As a result, its solution becomes
analytically tractable and numerically stable.
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For this proposal to yield results comparable to the exact
ones, the reference state σ0 must exhibit a certain degree of
similarity to the instantaneous states σ (t ) throughout the evo-
lution. One way to achieve this is by considering a mean-field
state as the reference state, i.e., σ0 must be chosen such that

πMF(σ0) = σ0,

where πMF : A → AB is the mean-field projector for the rele-
vant basis of observables B. These ideas are discussed in depth
in Appendix F 1. In the upcoming sections, these ideas will not
be employed, and the scalar product will be computed with
respect to the instantaneous state of the system.

III. TEST EXAMPLE

By replacing the KMB scalar product with the correlation
scalar product as depicted in Eq. (16), one can derive expres-
sions completely analogous to those presented in Eq. (24) and
Eq. (25), albeit with respect to the aforementioned alterna-
tive scalar product. Although the correlation scalar product
exhibits mathematical similarity to the KMB scalar prod-
uct and offers computational advantages, it remains to be
seen whether it yields accurate results, when compared with
both exact outcomes and those obtained through the KMB
geometry. These ideas will be tested on a simple physical
system, specifically the one-dimensional Heisenberg spin- 1

2
chain, which will be summarized in the subsequent section.
The objective is, then, to compare the exact results, obtained
through numerical solutions of the Schrödinger equation (19),
with those derived from the KMB geometry and the geometry
induced by the correlation scalar product.

A. XX Heisenberg model

As an illustrative instance of the preceding formalism,
let us contemplate a spin- 1

2 nearest-neighbor Heisenberg XX
model on a periodic chain one-dimensional lattice composed
of N sites. The system is governed by a Hamiltonian given by

H = −J

⎛
⎝ N∑

j=1

Sx
jS

x
j+1 + Sy

jS
y
j+1

⎞
⎠. (44)

such that Sx,y,z
N+1 ≡ Sx,y,z

1 and where {Sx
j, Sy

j, Sz
j} are the usual

spin- 1
2 operators and where J is the strength of the flip-flop

term Sx
jS

x
j+1 + Sy

jS
y
j+1. Note that the Sx,y,z

n operators act non-
trivially just on the nth site. This state of the system can be
described using (linear combinations of) tensor products of
Nsu(2) representations, with the identity operator, added for
each lattice site. Its Hilbert space is 2N dimensional, where
one possible configuration is |↑1↑2 · · · ↓N 〉. In a quantum
information context, these states are known as the compu-
tational basis vectors. Moreover, both the XX and the more
general, XY model can be analytically diagonalized via a
Jordan-Wigner transformation [44,45]. However, computing
time-dependent numerical correlations, which are important
for understanding these model’s low-temperature behavior—
among other important physical features [46,47]—requires a
numerical computation, wherein the previous technological
difficulties readily become apparent.

a. Observables and quantum numbers. Since the total mag-
netization Sz

T = ∑
i Sz

i commutes with the Hamiltonian, all
states may be labeled with an additional quantum number,
indicating the total number of excitations present in a given
configuration, relative to the reference state [9]

|↓↓ · · · 〉 ≡ |0〉.
Furthermore, the magnetization is a conserved quantity and,
hence, the Schrödinger evolution preserves it, i.e., a state
with n excitations will evolve in time to states with exactly
n excitations, as well.

Consider, then, the following operator, basically a redefini-
tion of the global magnetization,

n =
N∑

j=1

(
Sz

j + 1

2

)
. (45)

This operator, the occupation operator, measures how many
flipped excitations the system contains, with respect to to the
reference state | ↓↓ . . .〉, and is a constant of motion. In partic-
ular, consider a system with initial state ρ0 such that 〈n̂〉ρ0 =
1, undergoing a Schrödinger evolution. Then, 〈n̂〉ρ(t ) = 1 at
all times.

A second quantum number of interest is the average (nor-
malized) localization of the excitations, given by a position
operator

x =
N∑

j=1

(
2

j − 1

N − 1
− 1

)(
Sz

j + 1

2

)
, (46)

which measures which lattice site contains the excitation. This
accessible observable will be of relevance in the following
section.

B. Numerical exploration of the projected dynamics

Thus far, two potential alternatives for dynamics involving
projections have been introduced, the projected and restricted
evolutions. The former are derived by projecting the exact
(free) dynamics (20) onto the max-ent manifold, as described
in equation (15). On the other hand, the restricted evolutions
are obtained by solving the restricted equation of motion,
as stated in Eq. (24), utilizing different types of linear pro-
jectors, π s

B with s = KMB/covar. This also serves to gauge
how well justified the hypothesis of substituting the KMB
geometry by the covar geometry is. For the comparisons, we
are going to consider the ferromagnetic case J = 1 of a six-
site chain with periodic boundary conditions (here, physical
quantities are given in natural units, so h̄ = 1). The cor-
responding Hilbert space H⊗ = ⊗ jH( j) is 64-dimensional,
high-dimensional enough for exact numerical methods to be
applicable but cumbersome and computationally expensive as
well. The free dynamics was obtained by numerically solving
Eq. (20), using the Quantum Toolbox in Python’s (QuTip)
function master equation solver [48]. Restricted dynamics
were computed using the explicit Runge-Kutta fifth-order
solver, from the Scipy library.

a. Max-ent manifold. In the examples, it was considered
a basis of relevant observables including the constants of
motion n, n2, and H, as well as the position operator x and its
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square x2. From Lemma B.7, idH must be included to ensure
that, in the asymptotic limit, the action of the projection does
not modify the expectation value of any operator. On the other
hand, the constants of motion n, n2, and H are included both
because we want to study its behavior in the projected dynam-
ics, and because from Proposition E.2, its inclusion ensures
its conservation also in the KMB restricted dynamics. Finally,
the pseudoposition operator x and its square are included as
an example of relevant quantity that is not conserved in the
free dynamics.

This set is enlarged by including the iterated commutators
ad(�)

H (K) up to � = 4 (see Appendix E 3), in a way that B = Bit
4

with

B� = B0 + Bit
� ,

B0 = {idH, n, n2, x, x2, K0},

Bit
� =

⎧⎨
⎩[H0, K0]/(i), [H0, [H0, K0]]/(i)2, . . .︸ ︷︷ ︸

a total of � times

⎫⎬
⎭. (47)

b. Initial conditions. The initial state of the system ρ0 =
ρ(0) is chosen to lie in the max-ent manifold and is given by

ρ(0) ∝ e−K(0),

K(0) = βH + c1(n̂ − ζ )2 + c2(x̂ − x0)2, (48)

where β is the inverse temperature. Two values of β are of
interest: β = J and β = J/10. Here, ρ(0) is a max-ent state
regarding the observables B = {H, n, n2, x, x2}. The other co-
efficients are chosen such that 〈n̂〉ρ0 ≈ 1. In the first case,
c1 = 3β, c2 = 3β, ζ = 1, and x0 = −0.3 have been chosen,
while in the second case, c1 = 10β, c2 = 10β, ζ = 1, and
x0 = −0.3.

1. Projected evolutions

Having defined the test case, the first question is whether
linearized projections provide a sensible approximation to the
max-ent projection. From the analysis in Sec. II B, this is
assured if the projections σ = π (ρ(t )) are close enough to the
original state ρ(t ). For our choice of basis B, this is asymptot-
ically true for the short-time evolutions. This is also assured
when the restricted evolution is close to the free dynamics.

a. Geometric distance between different projections. As a
first step, we are interested in quantifying the loss of accuracy
in the results when switching from the KMB to the covar ge-
ometry, for different temperatures. These results are depicted
in Fig. 3. It is evident from the data that, for short-term evo-
lutions, all three evolutions exhibit minimal, albeit nonzero,
differences. Given our choice of basis, B = B� in Eq. (47),
which includes up to the �th iterated commutator of K(0) and
the Hamiltonian H, πB acts trivially over the K-power expan-
sion up to O(t�). As a result, the projected dynamics (and the
expectation values derived from it) deviate from the exact free
evolution in amounts of the same order. On the other hand,
as the evolutions extend to longer durations, the discrepancy
between the projected states and the exact states increases,
eventually reaching a saturation point at around the tJ � 10
mark. In contrast, the geometric distance between the covar-
and KMB K states remains minuscule, in comparison, during

0 2 4 6 8 10
t J

10 5

10 3

10 1

= 1

10 5

10 3

10 1

= 0.1
Exact vs KMB
Exact vs covar
KMB vs covar

FIG. 3. Evolution of the KMB-induced norms between the exact
logarithm of the states and their KMB or correlation projections, in
logarithmic scale, obtained from a t = 10/J simulation with 200
steps. We show these results for two inverse temperatures, β =
J/10 (top) and β = J (bottom). For the short-term evolution, both
the KMB and covar projected states exhibit remarkable similarities
among themselves and with the exact state.

the entirety of the simulation. In general, one notes that the
projected states remain in close proximity to the exact states,
albeit at a growing distance. These observations support our
proposal of substituting the computationally expensive KMB
geometry with the covar geometry, at least for short-term
evolutions.

b. Time evolution of expectation values. As established by
Proposition I.3, KMB distances provide bounds to the devia-
tions in the estimation of any possible observable regarding
the original and the projected state. In Figs. 4–7 the time
evolution of the expectation values associated with some rep-
resentative observables, regarding the different projections,
are depicted. These plots correspond to a simulation of du-
ration t = 10/J , employing a grid of 200 points.

By construction, the max-ent (nonlinear) projection (11)
preserves the expectation value of any observable in the rel-
evant space AB. On the other hand, linear projections πKMB

and π (covar) satisfy Eq. (11) only in the neighborhood of MB.
Before the tJ = 2 mark, all three frameworks exhibit

highly similar constant outcomes, indicating a strong agree-
ment between the projected and exact frameworks. However,
as the simulation progresses, discrepancies between the pro-
jected and exact frameworks become more pronounced and
eventually reach a saturation point around the t = 10/J mark.
Notice that the no-conservation of n and H is an effect of
the linearization of the max-ent projection PB, which is more
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t J
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Exact
KMB
covar
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FIG. 4. Evolution of the expectation values for the occupation
operator n at inverse temperatures β = 0.1 (top) and β = 1 (bottom),
regarding the exact state and their linearized max-ent projections
[see Eq. (15)] concerning the basis B = B4 given by Eq. (47). In
the short-term regime (tJ � 2), the three dynamics yield highly
similar outcomes. The subsequent lack of conservation is a con-
sequence of the departure of the exact state trajectory from the
corresponding max-ent manifold MB and the limitations of the linear
approximation.

important as the state moves away the max-ent manifold MB.
Nevertheless, the difference between the KMB- and covar-
projections remain small throughout the evolution, meaning
that both projections produce comparable results. Moreover,
for the larger deviations, it can be noticed that covar projection
sometimes produces better results than the KMB projection.
This is a consequence of the competition of the error in-
troduced by the linearization, and the one resulting from
approximating the KMB projection by the covar projection.

Additionally, notice that we have not established any
asymptotic behavior for the covar scalar product. This is not
problematic since we are examining large regions of A in
short-term evolutions. In the three cases, it is observed that the
deviations from the exact values are larger at lower tempera-
tures (larger β). This is an expected behavior since the error
bound (29) is proportional to K and therefore, to the inverse
temperature β.

For the case of the occupation number n (see Fig. 4),
which commutes with both H and K(t ), deviations can only be
attributed to the effect of neglecting the nonlinear terms in the
projectors. For β = 0.1 the nonconservation is below 1.5%,
while for β = 1 it is under 4% of the initial value. Notice
that these fluctuations are also affected by the nonconservation
of the normalization TridH exp[−πBK(t )] �= �B exp[−K(t )]

0 2 4 6 8 10
t J

0.330

0.325

0.320

0.315

0.310

H

= 0.1 Exact
KMB

H

covar

FIG. 5. Evolution of the expectation values for the Hamilto-
nian operator H at inverse temperatures β = 0.1 (top) and β = 1
(bottom), regarding the exact state and their linearized max-ent
projections [see Eq. (15)] concerning the basis B = B4 given by
Eq. (47). In the short-term regime (tJ � 2), the three dynamics yield
highly similar outcomes. The subsequent lack of conservation is a
consequence of the departure of the exact state trajectory from the
corresponding max-ent manifold MB and the limitations of the linear
approximation.

which suffers the same effect. We also notice that the de-
viations obtained from both the KMB and the covar linear
projections lead to very similar values.

For the case of the Hamiltonian H (see Fig. 5), which does
not commute with K(t ), the behavior is similar, but differ-
ences between the values obtained with the two projectors
become larger, especially at the lower temperature. Deviations
regarding the initial value are below 7% for both temperatures.

The case of the (pseudo) position operator x, which
commutes with neither H nor K(t ) (Fig. 6), presents a sim-
ilar behavior, with an excellent agreement in the short-term
regime, but with larger deviations for longer times, which
for β = 1 becomes close to the 30%. Interestingly, the covar
projection provides in this case closer values to the exact ones
than the KMB. Again, this seems to be the result of error
cancellations happening beyond the linear regime.

Finally, in Fig. 7, the expectation value of the 5-times iter-
ated commutator b5 = ad(5)

H/iK0 is depicted for the free state,
its (nonlinear) max-ent projection, and the linear projections.
In this case, the operator does not belong to AB, and hence, the
expectation value for the free state and its max-ent projection
do not necessarily match. Again, as predicted, all the averages
coincide in the short-time regime (t � 1/J) but start showing
deviations at shorter times. For larger times, the expectation
values corresponding to different projection schemes show
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0.00

0.05

= 0.1
Exact
KMB
covar

FIG. 6. Evolution of the expectation values for the operator x at
inverse temperatures β = 0.1 (top) and β = 1 (bottom), regarding
the exact state and their linearized max-ent projections [see Eq. (15)]
concerning the basis B = B4 given by Eq. (47). In the short-term
regime (tJ � 2), the three dynamics yield highly similar outcomes.
The subsequent lack of conservation is a consequence of the de-
parture of the exact state trajectory from the corresponding max-ent
manifold MB.

larger fluctuations than those corresponding to the free state.
Interestingly, deviations from the free dynamics result larger
for the KMB projection, and even for the true max-ent projec-
tion, than those obtained from the covar projection.

This underscores the effectiveness of linearization as a
reliable quantitative approximation.

c. Relative entropies. Finally, we are interested in quanti-
fying relative entropies between the exact free evolution and
both kind of projections. In particular, the following relative
entropies are of interest:

(1) the relative entropy between the exact and the KMB-
projected states, S(ρ||σKMB)

(2) the relative entropy between the exact and the
correlation-projected states, S(ρ||σcovar )

(3) both types of relative entropies between the
correlation- and KMB-projected states, S(σcovar||σKMB)
and S(σKMB||σcovar )

In Fig. 8, the evolution of the relative entropies are depicted
for two different temperatures. Consistent with the findings
presented in Fig. 3, it can be observed that for short-term evo-
lutions, the relative entropies between different states exhibit
very small values, indicating a high level of similarity among
these states. However, for larger times, the relative entropies
between the exact and projected states become more notice-
able, eventually reaching a saturation point. This behavior
aligns closely with the trends observed in the geometric dis-

0 2 4 6 8 10
t J
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K(
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= 0.1 Exact
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covar

5

FIG. 7. Evolution of the expectation values for the 5-times
iterated commutator of the Hamiltonian with K(0) at inverse temper-
atures β = 0.1 (top) and β = 1 (bottom), regarding the exact state
and their linearized max-ent projections (15) concerning the basis
B = B4 (47). In the short-term regime (tJ � 2), the three dynamics
yield highly similar outcomes. The subsequent lack of conservation
is a consequence of the departure of the exact state trajectory from
the corresponding max-ent manifold MB.

tances between the three classes of states, as shown in Fig. 3.
Furthermore, it is worth noting that the relative entropies
between the KMB-projected and correlation-projected states
remain consistently negligible throughout the entire evolution,
further underscoring the strong agreement between these two
frameworks.

C. Projected vs restricted dynamics

So far, the comparison has been focused on the exact (free)
dynamic and its KMB and covar projections over the max-
ent manifold. Let us compare them, now, against the solutions
to the restricted equation of motion [see Eq. (24)] obtained
from the KMB and covar instantaneous projections, computed
using the orthogonal expansion of Eq. (15).

Figure 9 illustrates the KMB-induced norm between the
state of the system (top) and the expectation value of the x
operator (bottom) for both the exact and projected dynamics
and the KMB and covar restricted dynamics.

As is expected, for short times, the exact free dynamic
is asymptotically close to both the KMB projected and the
restricted dynamics, disregarding the choice of the projectors.
For longer times, the behavior of the restricted dynamics
is similar among them, being sometimes the covariance-
restricted evolution is slightly closer to the exact dynamics
than the KMB. In the figure, it happens at tJ ≈ 8. In all the
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covar

covar

covar

FIG. 8. Relative entropies between exact and projected states,
and between the projected states at inverse temperatures β = 0.1
(top) and β = 1 (bottom). Once again, for short-term evolutions,
the three frameworks yield very similar results. For longer-term
evolutions, the relative entropies saturate.

cases, as expected from Eq. (17), the KMB linear projection
is always closer to the exact than any one of the restricted evo-
lutions. On the other hand, the instantaneous states obtained
from the restricted evolutions are typically closed between
them than to the exact state.

Similar conclusions can also be drawn concerning the
expectation value of the position operator: In this case, the
projected dynamic reproduces its behavior more closely than
the restricted evolutions, both in phase and amplitude. Width
and distances between peaks and valleys in the expectation
value also present differences among the exact and the differ-
ent restricted evolutions but keep a qualitative agreement.

Notice, however, that the computational cost of solving
(23) with the KMB projector is much larger than the required
effort to solve it using the covar projector. For example, to
compute the values depicted in Fig. 9, solving the KMB re-
stricted dynamics involved 36 hours of computations, against
the 10 minutes required to solve the same equation for the
covar projection.2

While not addressed in depth in this article, it is worth
mentioning that both the covar-restricted and KMB-restricted
evolutions could be enhanced in terms of computational ef-
ficiency by approximating the instantaneous reference state
with product states by means of a mean-field approximation of

2All the computations were implemented using Qutip 4.7.1 and
ODE solver of Scipy 1.10.1 over Python 3.11, on a Intel i5-12400
core.
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0.2

x

exact (free)
exact projected
KMB restricted
covar restricted

FIG. 9. Comparison of the KMB-induced distance between the
state, the projected state, and the state arising from the restricted
evolution according to the KMB and covar geometries (top). Evolu-
tion of the expectation value of the x operator for the corresponding
states for β = 1 (bottom). For short-term evolutions, lasting less than
tJ = 2, all four evolutions yield highly similar results. Subsequently,
noticeable distinctions become apparent in the outcomes.

the instantaneous state. Additionally, the covar enables the in-
troduction of additional correlations using separable states as
reference states. These approximations could allow us to solve
much larger problems without significant overhead. However,
the aim here is to compare the effect of the different choices
of projections, which could be masked by these further sim-
plifications.

On the other hand, to understand and quantify the origin
of the deviation between the exact free evolution and the
projected and restricted evolutions, it is worth inspecting the
effect of the projections over the expansion of K as a power
series on t . As we have mentioned before, by including the ba-
sis elements BL, see Eq. (47), the free, projected, and restricted
evolutions coincide up to O(tL ). The restricted evolution case
can be seen as an approximation of the exact evolution that
consists of inferring the (L + 1)-order time-derivative of the
observables defining the state in terms of the lower-order
derivatives. Figure 7 depicts how the estimation of this deriva-
tive obtained by projection departs from the obtained from
the free evolution. The results of the simulations suggest that
the estimation resulting from the KMB and covar linearized
projections are similar in accuracy, which allows us to choose
just the more computationally convenient.

IV. DISCUSSION

In this article, we discuss a framework for construct-
ing stable and efficient approximations for max-ent states
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and the associated dynamics. To achieve this, we reformu-
late the max-ent optimization problem in terms of nonlinear
projecting functions and their linear approximations, in the
neighborhood of the corresponding max-ent manifold. The re-
quirement of local exactness in the linearized projection leads
to identifying it with the orthogonal projection associated with
the KMB metric space. The substantial computational cost in
the evaluation of this projection motivates us to reexamine
the relevant features of the KMB geometry and propose a
different linearization scheme, which was the main subject of
this work.

Following this line, the covar geometry (II B) was intro-
duced. This scalar product shares fundamental characteristics
with the KMB product, while offering analytical properties
that allow a more stable and efficient evaluation, and for a
larger class of reference states, such as the separable states.
This stems from the fact that its evaluation does not rely on
the explicit evaluation of the spectral decomposition of the
reference state.

Thereafter, analytical relations and bounds between the
induced geometries of both products were studied. In partic-
ular, the equivalence of the induced orthogonal projections,
for max-ent manifolds of product and Gaussian states, was
shown. It has also been proven that the self-consistent and
time-dependent mean-field approximation can be equivalently
expressed in terms of orthogonal projectors, defined with ei-
ther of the two scalar products.

Based on these results, the application of this formalism
to the study of the dynamics of closed quantum systems
projected on max-ent manifolds was considered, and its ap-
proximation by the restricted dynamics on said manifolds.
Also, convergency criteria among the exact, the max-ent pro-
jected and the proposed restricted evolutions were discussed.
This led to expressions analog to those discussed in Ref. [13],
but regarding the covar product.

As an application, the dynamics of excitations over a spin
chain evolving with a Heisenberg XX Hamiltonian were ana-
lyzed.

Similarities and differences between the evolved state and
the result of applying various linear projectors over it were
investigated. As expected, for the considered cases, it was
observed that, according to the relative entropy, for short
times, both schemes of projection are indistinguishable from
the free evolving state, while at longer times, the deviation
between the projected and exact dynamics reached saturation
values, significantly larger than the discrepancies between
the two projections. The estimation of expectation values
presents a consistent behavior with the distinguishability
measures.

Another noteworthy observation in these plots is that the
expectation values obtained under the KMB projection, are
not consistently closer to those obtained from the original
state than the values obtained from the covar projection. This
observation may initially appear counterintuitive, since as the
KMB-based projection is locally exact, it would be the best
approximation to the true projector. However, the regions
where this inversion in the expected order happens coincide
with the parts of the trajectory in which both approximations
are furthest from the exact value. This suggests that for states
not-too-close to the max-ent manifold, i.e., the region where

nonperturbative effects happen, both linear projectors provide
similarly robust approximations.

Subsequently, the free dynamics, its KMB projection, and
the restricted dynamics regarding KMB and covar projections
were compared. Once again, it was observed that the restricted
dynamics are qualitatively similar and converge asymptoti-
cally for short times. Nevertheless, the dynamics diverge at
longer times, until a saturation distance is reached. Addition-
ally, note that, although the plots of the expectation values
exhibit similar behaviors, the observed oscillations in the
graphs are noticeably different. This observation aligns with
the discussion about the restricted dynamics for an individual
spin. Furthermore, it was found that the restricted dynamics
obtained from both geometries are remarkably more similar
to each other than either of them in the exact projection. This
supports the hypothesis that the covar-restricted dynamics is
a good approximation to the KMB dynamics.

These findings suggest that, while the KMB orthogonal
projection represents the actual, consistent local linearization
of the max-ent projection, the covar orthogonal projection can
yield similar results with less computational cost. Moreover,
when the exact dynamics are not strictly confined in the close
neighborhood of the max-ent manifold, both approximations
to the max-ent projection are similarly good.

To make this approach suitable for efficiently computing
quantum simulations of larger quantum systems, the next step
would involve replacing the reference states with more effi-
cient approximations of the instantaneous, correlated states.
Exploring such alternatives is the focus of our upcoming
work, which is currently in preparation.

Another aspect that deserves future work is how this for-
malism can be applied to open quantum systems. For the sake
of clarity, in this work, all the discussion was constrained to
the case of closed quantum systems, which do not present
nontrivial fixed points. This avoided making stronger state-
ments about the convergence in the long-time dynamics. In
return, it helped to highlight aspects related to the effect of the
choice of the geometry and the linearized projections in the
max-ent approximate dynamics, the main topic of the article.
The relevant case of open dynamics is going to be addressed
in forthcoming research.
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APPENDIX A: PROOF OF PROPOSITION I.1

To provide a self-contained presentation, in this section, a
proof of Proposition I.1, which can be found in other refer-
ences (see for instance, Refs. [14,16]), is reproduced.

Proof. Given that σ � ∈ B(H), an open set, and given
that both the target function and the constraints are contin-
uous, differentiable functions, σ � must satisfy the stationary
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condition

δ

(
S(σ ) −

N∑
α=0

λαCα (σ )

)∣∣∣∣∣
σ=σ�

= 0,

where λα are Lagrange multipliers reinforcing the conditions
Cα (σ ) = TrσQα − μα = 0 that define CB(μα ). For simplic-
ity, Q0 = idH is included in A, in a way that the normalization
of σ is fixed by taking 〈idH〉 = μ0 = 1. Notice again, how-
ever, that Q0 is not a true observable.

Using the identity

〈i|δ ln(σ )| j〉 = ln(pi ) − ln(p j )

pi − p j
〈i|δσ | j〉,

where σ = ∑
i pi|i〉〈i|, it follows that

δS(σ ) = −Trδσ ln (σ ) − Trδσ,

and hence,

−Tr

[
δσ

(
ln (σ ) + (λ0 + 1) +

N∑
α=1

λαQα

)]∣∣∣∣∣
σ=σ�

= 0.

As a result, it follows that

σ � = e−K−(λ0+1) = e−K

Tre−K
,

with K = ∑N
α=1 λαQα ∈ AB and λ0 = ln(Tre−K ) − 1 to fix

the normalization. �

APPENDIX B: PROPERTIES OF THE
KUBO-MORI-BOGOLIUBOV PRODUCT

This section presents a compilation of properties pertaining
to the KMB scalar product.

Lemma B.1. The KMB scalar product. Let σ > 0 be a
normalized density operator such that Trσ = 1. Then

(A, B)KMB
σ =

∫ 1

0
dτTrσ 1−τ A†σ τ B,

is a scalar product.
Proof. Linearity in B and antilinearity in A is evident. To

show the positivity, let us consider the following basis on
A: {bi j/bi j = |i〉〈 j|} such that σ |i〉 = pi|i〉. Then, the Gram
matrix[

GKMB
σ (t )

]
i j,kl

= (bi j, bkl )
KMB
σ =

∫ 1

0
dτTrσ 1−τ b†

i jσ
τ bkl

=
∫ 1

0
dτ 〈 j|l〉〈i|k〉pi(p j/pi )

τ

= 〈 j|l〉〈i|k〉 p j − pi

ln(p j/pi )
,

is diagonal in this basis, with positive entries

p j − pi

ln(p j/pi )
,

in a way that the associated form is positive definite. �
Lemma B.2. For any σ , the associated KMB scalar prod-

uct satisfies, for any operator Q ∈ A, (idH, Q)σ = TrσQ =
〈Q〉σ . In particular, if Q = idH, then (idH, idH) = Trσ = 1.

Proof. The proof is straightforward from the definition. �
Lemma B.3. The KMB scalar product, regarding the state

σ , is a real scalar product

(O, Q)KMB
σ = (

(O†, Q†)KMB
σ

)∗
.

Proof. Using the cyclic property of the trace,

(O, Q)KMB
σ =

∫ 1

0
dτTr(σ 1−τ O†σ τ Q)

=
∫ 1

0
dτTr(σ τ Qσ 1−τ O†)

=
∫ 1

0
dτTr(σ 1−τ Qσ τ O†)

= (Q†, O†)KMB
σ = (

(O†, Q†)KMB
σ

)∗
,

meaning that (·, ·)KMB
σ is a real scalar product. �

Lemma B.4. Let (·, ·) a real scalar product, and A = A†,

B = B† ∈ A. Then, (A, B) = (A, B)∗ ∈ R.
Proof.

(A, B) = (A†, B†) = (A, B)∗ ⇒ (A, B) ∈ R.

�

1. Orthogonal projections and real scalar products

That π is an orthogonal projection with respect to a real
scalar product is an important property because, assuming that
its image is closed under †, it means that π maps self-adjoint
operators onto self-adjoint operators.

Lemma B.5. Let π a linear orthogonal projector
with respect to a real scalar product (·, ·) such that
π ((πA)†) = (πA)† for any A ∈ A. Then π (A†) = (πA)†, for
any A ∈ A.

Proof. Every operator in A ∈ A admits a decomposition

A = A+ + iA−, (B1)

A± = A ± A†

2
√±1

= A†
± ∈ A. (B2)

Then, using the linearity of π ,

πA† = (πA+) + i(πA−) = (πA)† ⇒ πA± = (πA±)†.

Hence, the proof is reduced to show that for A = A† ∈ A,
πA − (πA)† = 0 or, using the positivity of the scalar product,

0 = (πA − (πA)†, πA − (πA)†)

= (πA, πA) + ((πA)†, (πA)†) − 2Re(πA, (πA)†)

= (πA, πA) + ((πA), (πA))∗ − 2Re(πA, (πA)†)

= 2Re((A, πA) − (A, π (πA)†)),

where, in the third line, we use the property of reality of the
scalar product to rewrite the second term, and in the last line
the orthogonality of π regarding the scalar product. Finally,
using the hypothesis π (πA)† = (πA)†,

0 = Re((A, πA) − (A, (πA)†))

= Re((A, πA) − (A†, πA)∗)
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= Re((A, πA) − (A, πA)∗)

= Re(iIm(A, πA)) = 0.

�
Observation B.6. The condition π (πA)† = (πA)† is equiv-

alent to asking that, for any A ∈ A, A ∈ π (A) ⇔ A† ∈ π (A),
i.e., AB = π (A) is closed under †.

Lemma B.7. Let Q ∈ A a certain observable, ρ a given
state, B a set of independent operators such that idH ∈ AB

and πB,ρ an orthogonal projector regarding the KMB (cover)
scalar product associated with ρ. Then,

〈πB,ρQ〉ρ = 〈Q〉ρ. (B3)

Proof. Writing the expectation value as a KMB covar
scalar product, and using the orthogonality property of the
projector,

〈πB,ρQ〉ρ = (idH, πB,ρQ)ρ

= (πB,ρ idH, Q)ρ

= (idH, Q)ρ = 〈Q〉ρ.
�

2. Kubo-Mori-Bogoliubov scalar product
and Heisenberg evolution

The following lemma is going to be useful in the discussion
of when a quantity conserved in the Schrödinger dynamics is
also conserved in its restricted counterpart:

Lemma B.8. Let A, B, K ∈ A and σ = exp(−K) a nor-
malized state such that Trσ = 1. Then, (A†, [B, K])KMB

σ =
(idH, [A, B])KMB

σ .
This lemma is also useful to show the equivalence between

the Schrödinger’s and the Heisenberg’s pictures at the level of
the K dynamics, as well as to explore the effect of infinitesi-
mal symmetry transformations.

Proof. From the linearity in A and B, it is enough to show
the identity for elements of the orthogonal basis bii′ = |i〉〈i′|
associated with the eigenvectors of σ = ∑

m pm|m〉〈m|. Since
σ = exp(−K), K ∈ A can be expanded with respect to this
basis as K = −∑

m ln(pm)|m〉〈m|. Then, if A = |i〉〈 j|, B =
|k〉〈l|,
(A†, [B, K])KMB

σ =
∑

m

(| j〉〈i|, [|k〉〈l|,−ln (pm)|m〉〈m|])KMB
σ

= (| j〉〈i|, |k〉〈l|[ln (pk ) − ln (pl )])

= pk − pl

ln (pk/pl )
δikδ jl (ln (pk ) − ln (pl ))

= (pk − pl )δikδ jl

= Trσ |k〉〈l|| j〉〈i| − Tr|k〉〈l|σ | j〉〈i|
= Trσ |k〉〈l|| j〉〈i| − Trσ | j〉〈i||k〉〈l|
= Trσ [A, B] = (idH, [A, B])KMB

σ .

�

3. Spectral norm and induced norm inequalities

Along the work, we have considered three different
metrics in the space of operators, the spectral norm

‖A‖ = max|ψ〉 |〈|A|〉|/〈ψ |ψ〉, and the norms associated

with the KMB and covar scalar products ‖A‖ KMB
covar
σ =

[(A, A)
KMB

covar
σ ]1/2. Some relations among them are presented

here, including the proof of Proposition II.1.
Lemma B.9. The KMB distance as an upper bound for

the relative entropy. Let ρ = exp(−K0) and σ = exp(−K0 −
�K) with K0 = K†

0,�K = �K† ∈ A, such that Trρ =
Trσ = 1. Then,

S(ρ‖σ ) � ‖�K‖KMB
ρ0

. (B4)

Proof. The relative entropy between ρ and σ can be written
as the expectation value of A:

S(ρ‖σ ) = Trρ((−K0) − (−K0 − �K)) = Trρ0�K, (B5)

which, by Lemma B.2 can be written as S(ρ‖σ ) =
(idH,�K)ρ0 . Then, by the Cauchy-Schwarz inequality,

S(ρ‖σ ) = (idH,�K)ρ0
� ‖idH‖KMB

ρ0
‖�K‖KMB

ρ0

= ‖�K‖KMB
ρ0

,

since (‖idH‖KMB
ρ0

)2 = Trρ0idH = 1. �
Now, we are in conditions to show Proposition II.1:
Proof. The first inequality is a direct consequence of the

spectral norm definition and the spectral decomposition of
σ = ∑

k pk|k〉〈k|:
(||A||covar

σ

)2 = Trσ
A†A + AA†

2

=
∑

k

pk
〈k|A†A|k〉

2
+

∑
k

pk
〈k|AA†|k〉

2

�
∑

k

pk
‖A‖2 + ‖A†‖2

2

=
∑

pk‖A‖2 = ‖A‖2.

For the second inequality, it is enough to show that GKMB
σ �

Gcovar
σ . Also, as both matrices are diagonal in the canonical

basis associated with the eigenvectors of σ , it is enough to
show that (|| |i〉〈 j| ||σKMB

)2 �
(|| |i〉〈 j| ||σcovar

)2
, (B6)

or, in terms of the eigenvalues pi of σ ,

(pi − p j )/ ln(pi/pk )

(pi + p j )/2
� 1.

Now, without loss of generality, let us assume that pi � p j

and hence, ln(pi/p j ) = x � 0. Then,

(pi − p j )/ ln(pi/pk )

(pi + p j )/2
= 1 − e−x

x/2(1 + e−x )

= tanh(x/2)

x/2
� 1.

Finally, the last inequality follows directly from
Lemma B.9. �
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APPENDIX C: KUBO-MORI-BOGOLIUBOV GEOMETRY
AND SERIES EXPANSIONS

After having introduced the fundamental properties of the
KMB product, and its induced distance, we are in a position
to use its definition to write the first nontrivial orders in the
series expansion of the relevant quantities of this work, like
expectation values and relative entropies.

1. Proof of Proposition I.2

Proof. Replacing ρλ in the left-hand side (LHS) of Eq. (12)
by its series expansion around λ yields

ρλ+δλ = ρλ

(
idH + δλ

∫
dτρ1−τ

λ �Kρτ
λ + O(δλ2)

)
. (C1)

It follows that

Trρλ+δλO = TrρλO + δλTr
∫

dτρ1−τ
λ �Kρτ

λO + O(δλ2),

or, in terms of the KMB scalar product regarding ρλ (13),

Trρλ+δλO = (idH, O)KMB
ρλ

+ δλ(�K†, O)KMB
ρλ

+ O(δλ2),
(C2)

Notice that the Hermiticity of K0 is required to ensure that
ρ0 > 0 and (·, ·)KMB

ρ0
be a scalar product. The right-hand side

(RHS) can be read then from the linear term. �

2. The πB projector is an orthogonal projector with respect
to the Kubo-Mori-Bogoliubov scalar product

Proof. To show the statement, it is enough to show the
equivalent statement that, for any Q = πB,ρ0 Q ∈ AB,(

Q,�K
)KMB

ρ0
= (

Q, πB,ρ0�K
)KMB

ρ0
.

To show it, lets start by defining the (non-normalized) state
ρλ = exp(−K0 + λ�K) such that Trρ0 = 1 and ρ0 ∈ MB.
Using Proposition I.2 and the condition (11),

(Q,�K)KMB
ρ0

= ∂

∂λ
TrQρλ

= ∂

∂λ
TrQ(PBρλ)

= ∂

∂λ
TrQ exp [−�B(K0 − λ�K)],

where in the last line we have used the definition of �B (7).
Now, using again Proposition I.2,

TrQ exp(−K0 + λ�K′) = (Q, λ�K′ + O(λ2))KMB
ρ0

,

with �K′ = ∂
∂λ

[�B(λ�K − K0) − K0]. Finally, using the
definition (10),

�K′ = πB,ρ0�K,

and therefore,

(Q,�K)KMB
ρ0

= (
Q, πB,ρ0�K

)KMB
ρ0

.

�

3. Kubo-Mori-Bogoliubov product and series expansion
for the relative entropy

Lemma C.1. Taylor’s series of Trρλ. Let ρλ = exp(−K +
λ�K). Then

Trρλ+δλ = Trρλ + δλ(idH,�K)KMB
ρλ

+ δλ2

2
(�K†,�K)KMB

ρλ
+ O(δλ3). (C3)

Proof. By tracing out on both sides of Eq. (C1), the well-
known relation d

dλ
Trρλ = Trρλ�K follows. Therefore, the

term of order k in Eq. (C2) is linked to the (k + 1)th term,
multiplied by k + 1, in Eq. (C2). �

Lemma C.2. KMB distance as an approximation to the
relative entropy. Let ρ0 = exp(−K0) such that Trρ0 = 1, and

ρλ = exp(−K0 − λB)

Tr exp(−K0 − λB)

and

σλ = exp(−K0 − λA)

Tr exp(−K0 − λA)

with A, B ∈ A such that TrAρ0 = TrBρ0 = 0. Then,

S(ρλ‖σλ) = λ2

(‖A − B‖KMB
ρ0

)2

2
+ O(λ3). (C4)

Proof. Using the identity (B5),

S(ρλ‖σλ) = (idH,�K)KMB
ρλ

= Tr�Kρλ, (C5)

with

�K = ln ρλ − ln σλ

= λ(A − B) + ln
Tr exp (−K0 − λA)

Tr exp (−K0 − λB)
idH.

Next, we use a second-order Taylor expansion in λ around
λ = 0. Using the condition TrAρ0 = TrBρ0 = 0 and Lemma
C.1, the logarithm of the quotient of traces in �K is given by

ln
Tre−K0−λA

Tre−K0−λB
= λ2

(‖A‖KMB
ρ0

)2 − (|B‖KMB
ρ0

)2

2
+ O(λ3).

Since �K ≈ O(λ), the second-order expansion of Eq. (C5)
is obtained by expanding the last member up to first order in
λ for �K fixed, and replacing then �K by its second-order
expansion, thus yielding

S(ρλ‖σλ) = Tr�Kρ0 + (�K,�K)KMB
ρ0

+ O(λ3)

= λ2

(‖A‖KMB
ρ0

)2 − (|B‖KMB
ρ0

)2

2

+ λ2(B, A − B)KMB
ρ0

+ O(λ3)

= λ2
(‖A − B‖KMB

ρ0

)2

2
+ O(λ3).

�
Observation C.3. By rescaling, it is possible to identify the

expansion parameter λ with the KMB norm of the difference
‖A − B‖KMB

ρ0
, giving the same asymptotic behavior.

Observation C.4. As mentioned in Sec. I A, the relative
entropy is a measure of indistinguishability of two states,
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and therefore, the KMB distance has the same role for
asymptotically close states. Moreover, Proposition I.2 and the
Cauchy-Schwarz inequality provide another operational inter-
pretation of this metric. Suppose that we want to discriminate
two close states ρ0 = exp(−K0) and ρλ = exp(−K0 + λ�K)
by looking at the expectation value of some operator Q.
From Proposition I.2, �〈Q〉 ≈ |(λ�K, Q)KMB

ρ0
| + O(λ2). A

rough estimation of how difficult is to distinguish both states
through this measurement is by comparing �〈Q〉 with σQ =
(〈Q2〉)1/2 ≈ ‖Q‖(cov)

ρ0
> ‖Q‖KMB

ρ0
. Then, using the Cauchy-

Schwarz inequality,

�Q√
〈Q2〉

�
‖Q‖KMB

ρ0

‖Q‖(cov)
ρ0

‖K‖KMB
ρ0

� ‖K‖KMB
ρ0

, (C6)

where we used Proposition II.1 to eliminate the dependence
of Q in the last member. Despite a more careful analysis of
the role of these norms in state-discrimination tasks is beyond
the scope of this work, the previous argument is enough to say
that the KMB-norm (as well as the covar-norm) is a measure
of how difficult it is to discriminate between two states by
comparing expectation values.

Observation C.5. The relative entropy is asymptotically
symmetric for states close to each other.

Observation C.6. Different from Lemma B.9, Lemma C.2
is a statement valid beyond the limit ‖�K‖KMB

ρ0
→ 0, be-

ing valid always Tr exp(−K0 − �K) < ∞. Nevertheless, it
makes sense to check that both statements are equivalent in
the asymptotic limit. To see this, it is convenient to identify
�K ≡ �K1 in Lemma C.2 with

�Kλ = λA + idH ln (Tr exp (−K0 − λA)),

with Trρ0A = 0. Assuming A small, �K is too and vice versa,
and from Eq. (C3),

�Kλ = λA + λ2 ‖A‖2

2
idH + O(λ3).

Hence,

‖�Kλ‖KMB
ρ0

= ‖λA‖KMB
ρ0

+ O(λ3),

in a way that in the asymptotic limit, the conditions Trρ0A =
0 and Trρ0 exp(−K0 − λA) = 1 are equivalent.

APPENDIX D: SCHRÖDINGER EQUATION ON K

Lemma I.4 establishes that, if ρ(t ) is a solution of Eq. (19)
then K(t ) = − ln ρ(t ) is too.

Proof. To see this, we observe that the solution of Eq. (19)
can be written as

ρ(t ) = U(t )†e−K(0)U(t ) = e−U(t )†K(0)U(t ) = e−K(t ),

with K(t ) = U(t )†K(0)U(t ) and U(t ) a unitary operator, so-
lution of the equation

ih̄
d

dt
U = HU,

with initial condition U(0) = idH. But then,

dU
dt

U† = −dU†

dt
U = H

ih̄
,

and hence,

dK
dt

= dU
dt

U†(t )K(t ) + K(t )U(t )
dU†

dt
= [H, K]

ih̄

satisfies Eq. (20) with K0 = − ln(ρ(0)) as initial condition.�

APPENDIX E: PROPERTIES OF
THE RESTRICTED DYNAMICS

1. Conserved quantities of the restricted dynamics

The Schrödinger equation on ρ, given by Eq. (19), and
the Schrödinger equation on K, given by Eq. (20), are com-
pletely equivalent, since the mapping exp : A → S (H) has
an everywhere-well-defined inverse mapping. As such, they
share the same dynamical properties, e.g., the conservation of
the von Neumann entropy among others. It is not clear a priori
which of these dynamical properties hold for the restricted
dynamics as well.

Proposition I.2 leads to the following:
Proposition E.1. Conservation quantities of interest. Let B a

basis of operators such that idH ∈ B and ρ(t ) = exp[−K̃B(t )],
with K̃B(t ) a solution of Eq. (23) such that Trρ(0) = 1. Then,
we have the following:

(1) Trρ(t ) = Trρ(0),∀ t .
(2) S(ρ(t )) = S(ρ(0)), with S(ρ) being the von Neumann

entropy (4).
Proof. Let us start by noticing that, since [ρ(t ), K̃B(t )] = 0,

〈[H, K̃B]〉ρ(t ) = (id, [H, K̃B])KMB
ρ = Trρ(t )[H, K̃B] = 0.

Then, the trace-preserving property follows from

dTrρ

dt
=

(
idH,−∂K̃B

∂t

)KMB

ρ

=
〈
−∂K̃B

∂t

〉
ρ

=
〈
πB

−[H, K̃B]

ih̄

〉
ρ

= −〈[H, K̃B]〉ρ
ih̄

= 0.

On the other hand, the conservation of the von Neumann
entropy follows by noticing that

S(ρ) = TrK̃Bρ = 〈K̃B〉ρ,
with a time derivative given by

d

dt
〈K̃B〉ρ =

〈
d

dt
K̃B

〉
ρ

−
(

K̃B,
dK̃B

dt

)KMB

ρ

.

The first term, which comes from the change of K, can be
rewritten as 〈

d

dt
K̃B

〉
ρ

=
〈
πB

[
H, K̃B

]
ih̄

〉
ρ

= 〈[H, K̃B]〉ρ = 0,
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while the second term, coming from the change in ρ, is(
K̃,

dK̃
dt

)KMB

ρ

=
(

K̃, πB
[H, K̃]

ih̄

)KMB

ρ

=
(

πBK̃,
[H, K̃]

ih̄

)KMB

ρ

=
(

K̃,
[H, K̃]

ih̄

)KMB

ρ

=
∫

dτ
Trρ1−τ K̃ρτ [H, K̃]

ih̄
dτ

=
∫

dτ
TrρK̃[H, K̃]

ih̄
= 0.

�
It follows that, in general, if πBQ = Q (namely, Q ∈ AB),

then the restricted evolution of its expectation value follows a
free Ehrenfest evolution.

Proposition E.2. Let ρ(t ) = exp[−K̃B(t )] with K̃B(t ) be
a solution of Eq. (23), πB a KMB orthogonal projector re-
garding ρ(t ) over a subspace AB ⊂ A, and Q ∈ A such that
πBQ = Q. Then,

d

dt
TrρQ = Trρ[Q, H].

In particular, if [Q, H] = 0, TrρQ is a constant of motion for
the restricted evolution.

Proof. Using Proposition I.2,

d

dt
TrρQ =

(
A†, πB

[H, K]

ih̄

)KMB

ρ

,

and from Proposition I.3,(
A†, πB

[H, K]

ih̄

)KMB

ρ

=
(

πBA†,
[H, K]

ih̄

)KMB

ρ

.

Then, from Proposition E.2, and using the property πBA† =
(πBA)† = A†,(

A†, πB
[H, K]

ih̄

)KMB

ρ

=
(

idH,
[A, H]

ih̄

)KMB

ρ

= Trρ
[A, H]

ih̄
.

�
As a result, πBK provides an explicit approximate solution

for the max-ent optimization problem (9), converging to the
exact solution provided K is close enough, in the sense of the
KMB distance, to some K′ ∈ A.

2. Error estimations

In Sec. I D, we studied the problem of estimating the er-
rors introduced when approximating the projected dynamics
by the restricted dynamics—see Eq. (23). This led us to in-
troduce �̃—Eq. (27)—and �—Eq. (28)–, which depend on
the difference �K—Eq. (26)—between the solutions K(t ) of
the free Schrödinger equation—Eq. (20)—and K̃B(t ) of the
restricted evolution. In the general case of large many-body
systems, we only have access to K̃B(t ) (or at least, some kind

of approximation to it), but not for K(t ), which requires an
exponentially large number of parameters. To estimate �K,
the idea is to build an integral equation for it, in terms of the
given solution K̃B(t ), the Hamiltonian of the original system
H, and the projections πt ≡ πB,exp[−K̃B (t )]. To do that, we start
by noticing that

d�K
dt

= dK
dt

− dK̃B

dt
= 1

ih̄
([H, K] − πt [H, K̃B]),

which, by adding and subtracting [H, K̃B]/(ih̄), can be rewrit-
ten as

d�K
dt

= 1

ih̄
([H,�K] + π⊥

t [H, K̃B]), (E1)

with π⊥
t = idH − πt being the instantaneous linearized pro-

jection onto the orthogonal space to AB in the neighborhood
of σ̃ (t ) = exp[−K̃B(t )]. Hence, �K(t ) is the solution of a
linear differential equation, with an inhomogeneity controlled
by K̃B(t ), which at any t lies in the orthogonal complement to
AB. Now, using that �K(0) = 0, we can rewrite Eq. (E1) as a
Volterra’s second kind equation,

�K =
∫ t

0
dt ′ π

⊥
t ′ [H, K̃B]

ih̄
+

∫ t

0
dt ′ [H,�K]

ih̄
, (E2)

with the formal solution

�K =
∞∑

m=0

�Km(t ), (E3)

�K0(t ) =
∫ t

0
dt ′ π

⊥
t ′ [H, K̃B]

ih̄
, (E4)

�Km+1(t ) =
∫ t

0
dt ′ [H,�Km(t ′)]

ih̄
. (E5)

The first term K0(t ) can be kept small by choosing a suit-
able basis B, while for large but finite-dimensional systems,
(any) norm of �K(t ) can be bounded by Mt maxt ‖�K(t )‖,
for a certain positive constant M. In the short-time limit
t → 0, the leading order of the expansion is given by K0(t )
which, for a time-independent Hamiltonian and hierarchical
basis B ≡ B�, defined in Eq. (31), grows as t�+1. Keeping this
term, �̃(t ) can be estimated by

�̃(t ) = ‖�K(t )‖KMB
σ (t ) ≈ ‖�K‖KMB

ρ(t )

� ‖K − �BK‖KMB
ρ(t ) ≈ ‖K − πB,ρ(t )K‖KMB

ρ(t ) ,

which provides a criteria for the correctness of using K̃B(t ) as
an approximation of K(t ). On the other hand, if the goal is to
approximate �BK(t ),

�(t ) = ‖K̃B − �BK‖KMB
σ (t )

≈ ‖K̃B − πB,σ (t )K‖KMB
σ (t )

= ‖πB,σ (t )�K(t )‖KMB
σ (t )

� �̃(t ),

bounds the errors incurred by the approximation.
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3. Convergence and hierarchical basis

At the end of Sec. I C was introduced the notion of hierar-
chical basis to discuss how the projected dynamics converges
to the one obtained from the restricted evolution, as the basis
defining MB is enlarged by adding new relevant operators.

Lemma E.3. Let K(t ) a solution of Eq. (20) with a time-
independent Hamiltonian H, and bl the sequence of iterated
commutators defined in Eq. (31). Then,

‖|K(t ) − π�K(t )‖| ≈ O�+1(t ). (E6)

for any operator norm ‖| · ‖| defined over A.
Proof. Just like Eq. (19), Eq. (20) can be solved in the form

of a Dyson’s series

K(t ) =
∑

m

Km(t ),

with

K0 = K(0) and Km+1(t ) = 1

ih̄

∫ t

0
[H, Km(t ′)]dt ′.

For a time-independent H, this implies that

Km(t ) = tm

m!
bm.

Therefore,

π�K(t ) =
∑

m

tm

m!
π�bl

=
∑

m

tm

m!
(bm − bm + π�bm)

= K(t ) +
∑
m>�

tm

m!
(π�bm − bm)

= K(t ) + O�+1(t ),

meaning that

‖|K(t ) − π�(K(t ))‖| ∼ O�+1(t ),

for any operator norm ‖| · ‖| defined over A. �
In a similar fashion, we have the following lemma:
Lemma E.4. Let K(t ) a solution of Eq. (20) with a

time-independent Hamiltonian H, bl the sequence of iterated
commutators defined in Eq. (31), and K̃B(t ) the solution of
Eq. (23) with πB ≡ πB�

such that K̃B(0) = K(0). Then

‖|K(t ) − K̃B(t )‖| ≈ O�+1(t ), (E7)

for any operator norm ‖| · ‖| defined over A.
Proof. The solution of Eq. (23) can be spanned as K̃B(t ) =∑
m K̃m(t ), with

K̃m(t ) = πB([H, K̃m−1(t )]) = tm

m!
π�bm.

Since π�bm = bm for m � �,

K(t ) − K̃B =
∑
m>�

tm

m!
(bm − π�bm) ≈ O�+1(t ).

Therefore, ‖|K(t ) − K̃B‖| ≈ O�+1(t ). �
Corollary E.5. ‖|π�K(t ) − K̃B�

(t )‖| ≈ O�+1(t ).

TABLE I. Induced norms for the KMB and the correlation scalar
products for the elements of the basis B′. Here, i �= j, and the last
line just applies for bosons.

KMB Covar

idH 1 1
ai 1/�i ni

aia j
1+ni+n j

�i+� j
nin j + ni+n j+1

2

a†
i a j

n j−ni

�i−� j
nin j + ni+n j

2

a†
i ai − ni ni(ni + 1) ni(ni + 1)

a2
i

1/2+ni
�i

2(ni + 1/2)2 + 1/2

Proof. The proof follows from Lemmas E.3 and E.4 and
the triangular inequality. �

APPENDIX F: KUBO-MORI-BOGOLIUBOV
AND CORRELATION SCALAR PRODUCTS

IN THE GAUSSIAN CASE

If σ is a (bosonic or fermionic) Gaussian state, it is pos-
sible to choose a basis for the quadratic forms on creation
and annihilation operators ai, a†

i satisfying canonical commu-
tation (anticommutation) relations [a j, a j]± = [a†

i , a j]± = 0
and [ai, a†

j ]± = δi j such that

〈ai〉 = 〈a†
i 〉 = 0, 〈a†

i a†
j 〉 = 〈aia j〉 = 0,

〈a†
i a j〉 = δi jn j,

with n j = (e� j − ζ )−1, ζ = ±1 for the bosonic and fermionic
case, respectively. With these operators thus defined, the
basis B′ = {idH, ai, a†

i , aia j, a†
i a†

j , a†
i a j − δi jni} provides an

orthogonal basis with respect to both the KMB and correlation
scalar products. These products differ only on the induced
norm over the operators, shown in Table I.

Using this property, it is straightforward to span the projec-
tor as

π (O) =
∑
Q∈B

(Q, O)s

(Q, Q)s Q,

where s = KMB/covar and where π the orthogonal projector
with respect to the scalar product (·, ·)s.

1. Mean field approximation and Gaussian-state-based mean
field theory as max-ent dynamics

Standard mean-field treatment for composite quantum
systems, both in the case of product-state-based and Gaussian-
state-based versions, can be stated in terms of max-ent
projections. In the product-state case, the subspace AB is
defined by the local operators, in a way such that B = ⊔

i Bi

wherein the ABi sets define closed subalgebras of A. The
max-ent states are, then, product states ρ = ⊗

i ρi. Moreover,
general operators O ∈ A can be written as linear combina-
tions of products of local operators, with their expectation
values written in terms of products of local expectation values.
In this way, for product states, the expectation value of any
observable is a functional of the expectation values of an
independent set of local observables.
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On the other hand, for Gaussian-state-based MFT (both for
the bosonic and the fermionic cases), AB is the subalgebra of
quadratic forms in creation and annihilation operators, making
the max-ent states Gaussian states. Thanks to the Wick’s theo-
rem, expectation values can be written as linear combinations
of products of expectation values of operators in B.

In both cases, the projection πMF : A → AB can be written
as

πMF
σ (O) =

∑
Q∈B

(Q − 〈Q〉σ )
∂〈O〉σ
∂〈Q〉σ + 〈O〉σ , (F1)

with mean values evaluated regarding σ ∈ MB. The self-
consistency equation for the stationary case can be written as

σ = exp
[−πMF

σ (H)
]

Tr exp
[−πMF

σ (H)
] , (F2)

while the time-dependent equations can be written as

dK
dt

= πMF
σ

(
[H, K]

ih̄

)
.

We claim the following:
Proposition F.1. πMF represents an orthogonal projection

regarding both the KMB and the correlation scalar product.
It is convenient, first, to consider some special basis of

operators which simplifies the analytical evaluation of expan-
sions and scalar products. In particular, for product state based
MFT, σ = ⊗

i σi, we are going to use the local basis

Bi =
{(

|α〉〈α′| − 〈α′|α〉 id(i)

Trid(i)

)
⊗ idi

}
,

with |α〉, |α′〉 orthogonal eigenvectors of σi, idi the identity
operator on the subsystem i and idi the identity operator over
subsystem complementary to i. These operators are not all
Hermitian. However, since Q ∈ Bi ⇔ Q† ∈ Bi, it is possible
to build a Hermitian basis by replacing Q, Q† by their lin-
ear combinations Q± = (Q ± Q†)/

√±1. Also, since we are
interested in the connection with real-valued scalar products,
most of the results can be obtained from a restriction over the
complexified version of A and AB. The main advantage of
these bases is that, regarding σ ,

σ τ Qσ−τ = e�Qτ Q, (F3)

with �Q = −�Q† ∈ R.
In a similar way, for Gaussian-state-based MFT, we are

going to consider the basis B = BGaussian generated by the
identity idH, the canonical raising and lowering operators
a†

i , ai and their pairwise products ({a†
i a j, aia j, a†

i a†
j }). With

respect to the state ρ0 ∝ e−∑
i �ia

†
i ai these operators satisfy

〈ai〉 = 〈a†
i 〉 = 〈aia j〉 = 〈a†

i a†
j 〉 =

〈
a†

i a j − δi j

e�i − ζ
idH

〉
= 0,

where ζ = ±1 corresponds to bosonic (fermionic) statistics.
This basis also generates the corresponding algebra A, and
satisfies Eq. (F3).

Regarding these bases, it is possible to prove the following:
Lemma F.2. Let (Q, O) ≡ (Q, O)KMB or (Q, O) ≡

(Q, O)covar, and let Q ∈ B for Bprod or Bsep regarding the same

state σ . Then, the following holds:

(Q, O) = (Q, Q)
〈Q†O〉σ
〈Q†Q〉σ . (F4)

Proof. The property given in Eq. (F3) verifies the following
for the KMB product,

(Q, O)KMB
σ =

∫ 1

0
Tr[σ 1−τ Q†σ τ O]dτ = e�Q − 1

�Q
〈Q†O〉σ ,

where the first factor in the RHS does not depend on O.
Replacing this identity in Eq. (F4) yields the equality.

In a similar way,

(Q, O)covar
σ = Tr[σ {Q†, O}]/2

= Tr[σQ†O + σOQ†]/2

= Tr[σQ†O + Oσσ−1Q†σ ]/2

= Tr[σQ†O + e�Q OσQ†]/2

= e�Q + 1

2
Tr[σQ†O] = e�Q + 1

2
〈Q†O〉σ .

�
From the previous lemma, is easy to verify that Bprod and

Bgaussian are orthogonal basis regarding the corresponding or-
thogonal products: the basis were chosen in a way that any
pair of operators in B are not correlated regarding the state σ .

To proceed with the proof of Proposition F.1, we are going
to need the following two lemmas:

Lemma F.3. Let σ = ⊗
i σi, B = Bprod = �Bi, Q ∈ Bi, and

O ∈ A. Then,

〈Q†O〉 =
∑
Q′∈B

〈Q†Q′〉 ∂〈O〉
∂〈Q′〉 .

Proof. Since any O ∈ AB can be expanded as a linear com-
bination of products of operators in B, and Q ∈ Bi for certain
i, it is enough to prove the restriction to the case O = OiOi,
with Oi ∈ Bi. Then,

〈Q†O〉 = 〈Oi〉〈Q†Oi〉

= ∂〈Oi〉〈Oi〉
∂〈Oi〉 〈Q†Oi〉

= ∂〈O〉
∂〈Oi〉 〈Q

†Oi〉

=
∑
Q′∈B

∂〈O〉
∂〈Oi〉

∂〈Oi〉
∂〈Q′〉 〈Q

†Q′〉

=
∑
Q′∈B

∂〈O〉
∂〈Q′〉 〈Q

†Q′〉.

�
Lemma F.4. Let σ = ⊗

i σi, B = Bgauss, Q ∈ B, and O ∈ A.
Then,

〈Q†O〉 =
∑
Q′∈B

〈Q†Q′〉 ∂〈O〉
∂〈Q′〉 .

Proof. This case follows a similar line that the proof of
Lemma F.3, but based on the Wick’s theorem [49]. We start
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by assuming that O = z1 . . . zn and Q belongs to one of the
following cases:

(1) Q = wa;
(2) Q = wawb − 〈wawb〉;

with z1, . . . , zn, wa, wb the elementary excitation operators ai,
a†

i . Let us start by the first case:

〈Q†O〉 =
∑

k

〈w†
azk〉〈z1 . . . zk . . . zn〉

= 〈Q†Q〉∂〈O〉
∂〈Q〉

=
∑
Q′∈B

〈Q†Q′〉 ∂〈O〉
∂〈Q′〉 ,

with zk meaning that the factor is removed from the product.
To understand the last line, we notice first that 〈w†

azk〉 = 0
except for the case in which zk ≡ wa. Then, only these terms
contribute to the sum. On the other hand, from the Wick’s
theorem, 〈z1 . . . zn〉 is a linear combination of products of the
form 〈zi1 zi2〉 · · · 〈zi2m−1 zi2m〉〈z2m+1〉 · · · 〈zin〉 with {in} a permu-
tation over the original indices. Removing the operator zk

changes each of these terms by removing the corresponding
〈zk〉 factor, or by changing a 〈zkzim〉 by a factor proportional
to 〈zim〉. The second change produces vanishing factors when
are evaluated over σ , while the first just produces a finite
contribution if there is just one factor 〈wa〉 in the product,
which happens just when n is an odd number. Finally, the last
line follows from 〈Q†Q′〉 = 0 except for Q = Q′.

In a similar way, the second case can be written as

〈Q†O〉 =
∑
k<k′

〈Q†ziz j〉〈z1 . . . zk . . . zk′ . . . zn〉

= 〈Q†Q〉∂〈O〉
∂〈Q〉

=
∑
Q′∈B

〈Q†Q′〉 ∂〈O〉
∂〈Q′〉 .

�

2. Proof of Proposition F.1

Now we are in conditions to show the proof of
Proposition F.1.

Proof. We start from the general condition for being π an
orthogonal projector regarding the scalar product (·, ·) is given
by

(Q, π (O)) = (Q, O)

for any Q such that π (Q) = Q. Replacing π by πMF and the
scalar product with the KMB or the correlation scalar product,
and using the result from Lemma F.2, the condition reads∑

Q′∈B

∂〈O〉
∂〈Q′〉 〈Q

†Q′〉 = 〈Q†O〉. (F5)

Using Lemmas F.3 and F.4, the RHS takes the same form as
the LHS, which completes the proof. �
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