
PHYSICAL REVIEW A 109, 022246 (2024)

Exploring the optimal cycle for a quantum heat engine using reinforcement learning
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Quantum thermodynamic relationships in emerging nanodevices are significant but often complex to deal
with. The application of machine learning in quantum thermodynamics has provided a new perspective. This
study employs reinforcement learning to output the optimal cycle of a quantum heat engine. Specifically, the soft
actor-critic algorithm is adopted to optimize the cycle of a three-level coherent quantum heat engine with the aim
of maximal average power. The results show that the optimal average output power of the coherent three-level
heat engine is 1.28 times greater than the original cycle (steady limit). Meanwhile, the efficiency of the optimal
cycle is greater than the Curzon-Ahlborn efficiency as well as efficiencies reported by other researchers. Notably,
this optimal cycle can be fitted as an Otto-like cycle, which illustrates the effectiveness of the method.
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I. INTRODUCTION

The rapid advancement of science and technology has
led to the miniaturization of devices, such as nanoprocess
chips and nanothermal engines [1]. Despite their small size,
thermodynamic relationships within these microdevices, such
as heat-dissipation and heat-work relationships (e.g., power,
efficiency), remain crucial due to the quantum effects at the
microscopic level. Quantum heat engines (QHEs) are de-
vices that convert thermal energy to mechanical energy in
a controlled way, using quantum-scale systems such as sin-
gle particles or qubits [2] as the working fluid. Studying
QHEs can contribute to the emerging interdisciplinary field of
quantum thermodynamics [3], elucidate the microscopic ther-
modynamic principles in miniaturized devices, and promote
the development of nanotechnology [4].

In the investigation of QHEs, an open question that re-
mains unresolved is whether quantum effects can be utilized
to enhance their performance [5–10]. Recently, several QHEs
have been constructed experimentally to investigate the afore-
mentioned query. These approaches involve the manipulation
of atomic spins [11,12], ionic spins [13–15], or particle pair
spins in crystals [16–18] through laser or magnetic field, the
regulation of particle pair spins utilizing nuclear magnetic
resonance (NMR) technology [19–21], and the control of a
single electron on a microcircuit cooled by dilution refrig-
eration [22–25]. These experiments achieved the cycle by
means of state manipulation of the quantum system (working
fluid) via electromagnetic pulse or voltage, with subsequent
measurement of the state changes before and after the cycle to
obtain the corresponding heat flux and power.

Although some positive conclusions, i.e., quantum ef-
fects enhancing the performance of QHEs, were reported

*shao@sdu.edu.cn
†zhengc@sdu.edu.cn

[16–18,20], the boosted performance typically requires a care-
ful operation or specific condition. For example, the enhanced
performance of QHE disappears when its thermal stroke time
exceeds the decoherence time [16]. Moreover, when consider-
ing a specific cycle (e.g., Otto cycle), the impact of quantum
effects on the performance becomes more ambiguous [10,26–
33]. This is primarily because these studies generally assume
a specific thermodynamic cycle and this cycle may not ensure
optimal power extraction on a long timescale.

Furthermore, prior theoretical studies on maximal power
extraction usually focused on slow or fast driving regimes
[34–40], assuming specific cycles [29,41–47] such as the Otto
cycle [29,44–47], designing adiabatic shortcuts [48–54], or
utilizing variational optimization [32,55,56]. The theoretical
derivation and calculation of quantum thermodynamics can
be extremely challenging, showing a need for numerous as-
sumptions and a narrowed scope in these theoretical studies to
obtain an analyzable solution. However, the utilization of rein-
forcement learning (RL) can potentially identify the optimal
long-term power extraction cycles without such limitations,
and may thereby alleviate the need for tedious computations.

RL [57] has made significant progress in various fields,
including computer games [58–60], robotics [61], and nat-
ural language processing [62]. These algorithms exhibit a
much stronger exploration ability than humans and have been
used for the quantum state preparation and quantum comput-
ing [63–71], surpassing the traditional methods used before.
Furthermore, RL algorithms have been applied to explore
the optimal cycle for two-level QHE and harmonic oscil-
lator QHE [72–74]. Despite the potential of RL algorithms
in many-body or multilevel quantum systems, their applica-
tion has been relatively unreported due to the lack of proper
dynamical evolution modeling that simplifies theoretical
analysis.

This study employs the RL by the soft actor-critic (SAC)
algorithm aiming to explore the optimal cycles with max-
imal long-term performance for coherent three-level QHE.
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FIG. 1. Schematic of coherent three-level QHE. (a) Energy levels. |0〉, |1〉, and |2〉 are the eigenstates of the quantum system’s free
Hamiltonian, and ω0, ω1, and ω2 are the corresponding eigenfrequencies. The thermodynamics between these energy levels are given in
the main text. (b) Thermal processes. The quantum system undergoes three different processes: absorbing heat Qh from the hot reservoir at
temperature Th, releasing heat Qc to the cold reservoir at Tc, and outputting work W to the external field V (t ) = λeiωt |1〉〈2| + λe−iωt |2〉〈1|. λ,
ω, and t are the intensity, frequency, and evolution time of the external field, respectively.

Subsequently, the convergence of the SAC algorithm is an-
alyzed through five consecutive trainings and the power and
efficiency are discussed. Finally, applying the Boltzmann
function during the compression and expansion processes ap-
proximates the optimal cycle as an Otto-like cycle.

II. MODELS AND METHOD

A. Thermodynamic model of coherent three-level QHE

The thermal processes of the coherent three-level QHE
are governed by the dynamics of the transitions between
the energy levels of the quantum system. Figure 1 depicts
the thermodynamic model of the coherent three-level QHE.
Figure 1(a) shows three energy levels, i.e., |0〉, |1〉, and |2〉, of
the quantum system. The transition from |0〉 to |2〉, from |1〉
to |0〉, or between |1〉 and |2〉 occur when the quantum system
couples with a hot reservoir at temperature Th, a cold reser-
voir at temperature Tc, and an external field V, respectively.
Figure 1(b) illustrates that the coupling to the hot reservoir,
the cold reservoir, and the external field will lead to heat ab-
sorption Qh, heat release Qc, and work output W, respectively.

The quantum system S in this coherent three-level QHE
is governed by the Gorini-Kossakowski-Lindblad-Sudarshan
(GKLS) equation [75,76],

∂tρS = − i

h̄
[HS, ρS] +

∑
i=c,h

Di[ρS (t )], (1)

where HS denotes the Hamiltonian of the quantum system S,
Di is the dissipator which represents the heat dissipation to
the reservoirs, and the subscripts c and h, represent the cold
and hot reservoir, respectively. The corresponding dissipator
is defined as

Di =
∑

ε

�i(ε)

(
Lε

i (t )ρS
[
Lε

i (t )
]† − 1

2

{[
Lε

i (t )
]†

Lε
i (t )ρS

+ ρS
[
Lε

i (t )
]†

Lε
i (t )

})
, (2)

and the projected jump operator is

Lε
i (t ) = [

L−ε
i (t )

]†

=
2∑

m,n=0

δε,εm−εn |εn(t )〉〈εn(t )|Li|εm(t )〉〈εm(t )|, (3)

with Lc = |0〉〈1|, Lh = |0〉〈2|. Here, the coupling parameter
satisfies

�i(−ε) = e−βiε�i(ε), (4)

where βi = 1/kBTi is the inversed temperature of the reser-
voir; ε and |ε(t )〉 are the eigenvalues and eigenstates of HS ,
respectively. In the following sections, both the Boltzmann
constant kB and reduced Planck constant h̄ are set as 1.

B. RL model of coherent three-level QHE

This section presents the RL model of the coherent three-
level QHE based on the thermodynamic model, which begins
with outlining the basic setting for the RL model, followed
by the description of the long-term performance, the reward
function, and the training details.

1. Basic settings for the RL model

Figure 2(a) demonstrates a coherent three-level QHE
whose evolution is controlled by an RL agent. The objec-
tive of the RL agent is to identify the cycle that maximizes
the long-term performance of the QHE by optimizing
both the discrete control parameter, d (t ) = {hot, cold, work},
and the continuous control parameter, u(t ). It is notewor-
thy that the optimized combinations of a(t ) = {d (t ), u(t )} at
different times are the cycles that maximize the long-term
performance.

The discrete control parameter d (t ) = hot, cold, work
determines the thermal process, with the settings for different
thermal processes provided in Tables I and II. The frequency
difference between energy levels |1〉 and |0〉 is chosen as
reference and is written as follows:

ω10 = ω1 − ω0. (5)

Similarly, ω20 = ω2 − ω0.
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FIG. 2. Schematic of applying the RL algorithm to optimize the long-term performance of a coherent three-level QHE. (a) The RL agent
controls the evolution of the QHE through d (t ) = {hot, cold, work}, which determines the thermal process, and u(t ), which determines the
corresponding system state. a(t ) = {d (t ), u(t )} is a composite control parameter of d (t ) and u(t ). The specific definitions of d (t ) and u(t ) are
provided in the main text. (b) RL training processes of the coherent three-level QHE. “QHE” refers to the thermodynamic model of QHE,
representing the evolution of the quantum system with the control of the RL agent. “NNs” are the neural networks of the RL agent, which are
composed of Q-net Qθ and policy-net πφ . The quantum system takes an action at based on the policy given by the RL agent and then transitions
to a new state st+1 while receiving a reward rt+1. The NNs receive st+1 and rt+1 as input and then output a new action based on a new policy.
These steps are repeated until convergence to the optimal policy, which produces the optimal cycle with the maximal long-term performance.
See Sec. II C for more details.

The continuous control parameter, denoted as u(t ), is ini-
tialized at the onset of each thermal process (t) and remains
constant until the process concludes (t + t). This parameter
dictates the free Hamiltonian and energy gaps of the quan-
tum system, thereby indicating how the agent manipulates
the states of the quantum system throughout each thermal
process. The Hamiltonians of the quantum system S at t and
t + t can be denoted, respectively, as

HS (t ) = u(t )Hfree + V (0) =

⎛
⎜⎝

u(t )ω0 0 0

0 u(t )ω1 λ

0 λ u(t )ω2

⎞
⎟⎠,

(6)

HS (t + t ) = u(t )Hfree + V (t )

=

⎛
⎜⎝

u(t )ω0 0 0

0 u(t )ω1 λeiωt

0 λe−iωt u(t )ω2

⎞
⎟⎠, (7)

TABLE I. Parameters of the reservoirs and external field for
the coherent three-level QHE in different processes. g1 and g2 are
coupling functions, which respectively represent the coupling to the
cold and hot reservoir, ε21 = ε2 − ε1.

Process βcω10 βhω10 ω20/ω10 λ/ω10 ω [76]

Hot 0 1 2.5 0 0
Cold 5 0 2.5 0 0

Work 0 0 2.5 0.5
ε2

21+ 1
4 (g1+g2 )2

ω2−ω1

where the nonzero value of the nondiagonal elements in the
Hamiltonians induces coherence within the QHE. Here,

Hfree =
⎛
⎝ω0 0 0

0 ω1 0
0 0 ω2

⎞
⎠ (8)

is the free Hamiltonian, and

V (τ ) = λeiωτ |1〉〈2| + λe−iωτ |2〉〈1|

=
⎛
⎝0 0 0

0 0 λeiωτ

0 λe−iωτ 0

⎞
⎠, τ ∈ [0,t],

V (τ + t ) = V (τ ). (9)

This implies that the external field is initialized at the
commencement of each thermal process to avert phase accu-
mulation across distinct processes. As per the configurations
in Table I, the external field is activated solely during the work
process, while it is deactivated during both the hot and cold
processes.

TABLE II. Coupling parameters of the coherent three-level QHE
in different processes.

Process �c(ε10)/ω10 �h(ε20 )/ω10 �c(ε20)/ω10 �h(ε10 )/ω10

Hot 0 2 0 0
Cold 2 0 0 0
Work 0 0 0 0
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As long as d (t ) and u(t ) are given by the RL agent, the
evolution of S from t to t + t can be obtained by solving
Eq. (1). By applying Eqs. (6) and (7), and substituting the cor-
responding parameter values for different thermal processes
as provided in Tables I and II, the value of ρS (t + t ) can be
determined.

Figure 2(b) illustrates the RL training processes of the co-
herent three-level QHE shaded in green, while the RL agent,
modeled by the neural networks (NNs) updating through the
SAC algorithm, is shaded in blue. The quantum system takes
an action at based on the policy provided by the RL agent
and then transitions to a new state st+1 and receives a reward
rt+1. Here, the thermodynamic model of the coherent QHE
is designed to generate state transitions and rewards for the
actions provided by the RL agent.

2. Long-term performance

The output power Phe is generally used as the performance
metric for heat engines,

Phe =
∑
α=c,h

Jα (t ), (10)

where J is the heat current and the subscripts c and h refer
to the cold reservoir and hot reservoir, respectively. How-
ever, the aim of this research is to obtain the optimal cycle
with maximal long-term performance. Hence the average
power [72],

〈Phe〉 = γ̃

∫ ∞

0
e−γ̃ t Phe(t )dt (11)

was chosen as the long-term performance metric. The
timescale of interest can be manipulated by adjusting γ̃ , with
smaller γ̃ and larger γ̃ corresponding to a longer and shorter
timescale, respectively.

3. Reward function

In reinforcement learning, rewards are generally returned
through a designed reward function. The designed reward
function needs to possess a clear physical meaning and ensure
convergence as well as maximizing the average power in
Eq. (11).

Therefore, according to Eqs. (10) and (11), the reward
function for the RL model of a coherent three-level QHE
should be

rQHE = δd,d̄
1

t
〈ES〉, (12)

which shows that the average internal energy change rate
of quantum system S changes from t to t + t . Here, d =
{hot, cold, work}, d̄ = {hot, cold}, t is the time step,

δd,d̄ =
{

1, d = hot or cold
0, d = work , (13)

and

〈ES〉 = 〈ES (t + t )〉 − 〈ES (t )〉 (14)

is the change of internal energy 〈E〉 = tr(ρH ).
The optimization of average power can be regarded as a

discounted RL task [57,77], which operates in both continu-
ous and discrete spaces. This approach has been demonstrated

to be effective in learning far-from-equilibrium finite-time
thermodynamics [69,72]. Specifically, the RL agent aims to
maximize the total future reward [57,78],

ri+1 + γ ri+2 + γ 2ri+3 + · · · =
∞∑

k=0

γ kri+1+k, (15)

where i + 1 is the next step, and γ ∈ [0, 1) is the discount
factor with smaller γ and larger γ corresponding to a shorter
and longer future reward, respectively. According to Eq. (14),
the reward ri+1 is given by

ri+1 = δd,d̄
1

t
〈ES〉 = δd,d̄

1

t
{tr[ρS (t + t )HS (t + t )]

− tr[ρS (t )HS (t )]}, (16)

where

t = it . (17)

Substituting Eq. (16) into Eq. (15) brings us to the conclu-
sion that the aim of the RL agent is to maximize Eq. (11) with
γ̃ = −ln γ /t [72]. Consequently, the future average power,
〈Phe〉, in Eq. (11) and the average power of the current step i,
〈Phe〉i, can be, respectively, expressed as

〈Phe〉 = (1 − γ )
∞∑

k=0

γ kri+1+k, (18)

〈Phe〉i = (1 − γ )
i∑

k=0

γ kri−k . (19)

It can be demonstrated that Eqs. (18) and (19) exhibit
consistent convergence, indicating that they converge to the
same value. This implies that maximizing either Eq. (18) or
(19) will yield the same effect. Thus, it turns out that the aim
of the RL agent is to find the optimal cycle that maximizes the
average power defined in Eq. (11).

4. Training details

The training parameters of RL for the coherent three-level
QHE are listed in Table III.

C. SAC algorithm of RL

The SAC algorithm is a type of actor-critic (AC) RL al-
gorithm that can be divided into three parts: optimization
objective, policy evaluation, and policy improvement. The
SAC algorithm improves its stability and exploration by intro-
ducing an entropy term in the optimization objective [78,79].
As for the iteration steps, firstly, policy evaluation—the actor
in this algorithm—selects an action based on a given policy,
and the critic scores this selected action. Subsequently, in
policy improvement, the actor improves its policy based on
the scores from the critic. The “policy” which takes the form
of a probability refers to how the actor chooses actions, and
“scores” from the critic can be expressed as a Q function.

In order to avoid ambiguity, it is necessary to note that the
following symbols and terms have no relation to those used in
the preceding text. For instance, the symbol “H” in the SAC
algorithm refers to the entropy of a specific policy, not the
Hamiltonian.
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TABLE III. Training parameters.

Parameter Coherent three-level QHE

Optimizer Adam
Learning rate 3 × 10−4

Number of hidden layers 2
Number of hidden units per layer 256
Activation function ReLU
Size of buffer R 160 × 103

Batch size 512
Discount γ 0.995
Time step t 0.5
“Polyak” coefficient τ 0.005
Update steps 50
Lower and upper limit of u [0.3, 1.5]
H̄D,init 0.98 × ln3
H̄D,final 0.03
H̄D,decay 144 × 103

H̄C,init −0.72
H̄C,final −3.8
H̄C,decay 144 × 103

Training steps 500 × 103

1. Optimization objective

The optimization objective can be expressed as

π∗ = arg max
π

∞∑
t=0

E(st ,at )∼ρπ
{r(st , at ) + αH[π ( �|st )]}, (20)

where ρπ is the state-action marginals of the trajectory dis-
tribution induced by a policy π . The current reward obtained
by the actor taking an action at in the state st is denoted as
r(st , at ), or rt for simplicity. Additionally, H is the entropy of a
probability distribution, and π (�|st ) represents the probability
distribution of choosing an arbitrary action “�” in the state
st . The temperature α represents the weight of entropy in the
expected reward.

2. Policy evaluation

The SAC algorithm employs Q to evaluate the policy π :

Qπ = E(st , at )∼ρπ

{ ∞∑
t=0

γ t r(st , at ) +
∞∑

t=1

γ tαH[π (�|st )]|s0

= s, a0 = a

}
. (21)

Here, γ ∈ [0, 1) is the discount factor with the consid-
eration that the weight of the early training data should be
reduced, and s0 (a0) is the initial state (action). The value of Q
will be converged through iteration according to the Bellman
backup operator,

BπQ(st , at )
= r(st , at ) + γ Est+1∼R{Ea′∼π [Q(st+1, a′)

− α ln π (a′|st+1)]}, (22)

where R is the replay buffer which is used to replace the
unknown distribution ρπ , st+1 is the state of next step, and
a′ is the action of next step (improved action). The iteration

based on Bellman backup between training step k and step
k + 1 is

Qk+1 = BπQk . (23)

The SAC algorithm adopts two NNs with parameters θ1

and θ2 to fit the Q function, which is the “double Q-learning
trick” for continuous control and other improvements [78].
These NNs are generally called Q-net and are denoted as Qθ j ,
with j = {1, 2}. Specifically, the inputs of Qθ j are (s, a) and
the outputs are the value of the Q function. The outputs of Qθ j

will be converged by minimizing the loss function,

LQ(θ j ) = E (st ,at ,rt ,st+1 )∼R
a′∼π

1
2 [Qθ j (st , at ) − y(rt , st+1)]2, (24)

where

y(rt , st+1) = BπQθ̄ (st , at )

= r(st , at ) + γ Est+1∼R
{
Ea′∼π

[
min
j=1,2

Qθ̄ j
(st+1, a′)

− α ln π (a′|st+1)
]}

, (25)

and θ̄ j is the parameters of the target Q-net Qθ̄ j
. Here, the

parameters of Qθ̄ j
are not updated during the backpropagation

but are updated through “Polyak”, i.e.,

θ̄ j ← τθ j + (1 − τ )θ̄ j, (26)

to improve learning [78]. Here, τ is a hyperparameter and is
listed in Table III.

The iteration step of policy evaluation is shaded in green
in Fig. 3. The Q-net Qθ j and the target Q-net Qθ̄ j

take data
fetched from the replay buffer as input to output correspond-
ing values and then update θ j and θ̄ j by minimizing the loss
function LQ(θ j ) given in Eq. (24) and by (26), respectively.

3. Policy improvement

The policy improvement step in the RL algorithm is im-
plemented to obtain the optimal policy π∗. Ideally, the policy
obeys the following probability distribution form:

π (at |st ) ∼ exp [−ε(st , at )],

ε(st , at ) = − 1

α
Q(st , at ). (27)

Equation (27) is the energy-based distribution function for
complex tasks, but it cannot be sampled or provide a specific
action. Therefore, the Gaussian distribution, denoted by π , is
used to approximate the above energy-based distribution. This
approximated probability distribution π should minimize the
Kullback-Leibler (KL) divergence,

πnew = arg min
π∼�

DKL

[
π ( �|st )‖exp [1/αQπold (st , at )]

Zπold (st , at )

]
, (28)

where DKL(P‖Q) = −∑
i pi ln(qi/pi ), � represents all pos-

sible sets of policy π , and Z is a normalization constant which
can be ignored during the backpropagation. Consequently,
the loss function of the policy neural network (policy-net for
simplicity) πφ can be obtained as

Lπ (φ) = E st+1∼R
a′∼πφ

[α ln πφ (a′|st+1) − Q(st+1, a′)], (29)

where φ is the set of the parameters of πφ . Sampling from the
Gaussian distribution π (a′|st+1) will produce the improved
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FIG. 3. Steps of SAC algorithm. Batch-sized data, which include the current state st , current action at , current reward rt , and next state
st+1, were firstly fetched from the replay buffer R for the training. The training of the SAC algorithm can be divided into two main steps: policy
evaluation and policy improvement. (1) Policy evaluation (green). First, (st , at ) are inputted into Q-net whose parameters are θ1 and θ2, and
outputting Qθ1 (st , at ) and Qθ2 (st , at ) to evaluate the current action at . After that, Qθ̄ (st+1, a′) is obtained by inputting st+1 and the next action
a′ given by the policy-net into the target Q-net whose parameters are θ̄ . Subsequently, substitute policy π (a′|st+1), rt , and Qθ̄ (st+1, a′) into
Eq. (25) to obtain y(rt , st+1), and yield the loss function of Q-net LQ(θ ) through Eq. (24). Lastly, the gradient of LQ(θ ) is backpropagated (dotted
arrow) to update θ1 and θ2, and θ̄ is “soft” updated through “Polyak” (dotted arrow). (2) Policy improvement (orange). First, the policy-net
receives the next state st+1 and outputs the policy πφ (a′|st+1); then the next (improved) action a′ is sampled from πφ (a′|st+1). Subsequently,
substituting πφ (a′|st+1) and Q(st+1, a′) outputted by the Q-net into Eq. (29) gives the loss function of policy-net, Lπ (φ), which was used lastly
in backpropagation (dotted arrow) to update φ.

action a′ for the next state st+1. The orange area in Fig. 3
illustrates the processes of the policy improvement step.

4. Modifications of SAC algorithm

Given that the SAC algorithm is designed for continuous
action space, the optimization in this research is carried out
both in discrete and continuous spaces. Therefore, it becomes
necessary to make the following modifications to the SAC
algorithm.

The temperature α is separated into two components: αD

for the discrete action d (t ) and αC for the continuous action
u(t ). The values of αD and αC can be updated by minimizing
the following loss functions [73,78]:

LαD (αD) = αDEs∼R
[
Hπ

D (s) − H̄D
]
,

(30)
LαC (αC ) = αCEs∼R

[
Hπ

C (s) − H̄C
]
,

where

Hπ
D (s) = −

∑
d

πD(d|s) ln πD(d|s),

Hπ
C (s) = −

∑
d

πD(d|s)Eu∼πC (�|d,s)[ln πC (u|d, s)] (31)

is the current entropy of the discrete policy πD and the contin-
uous policy πC , respectively, and

H̄D = H̄D,final + (H̄D,init − H̄D,final ) exp(−nsteps/H̄D,decay),

H̄C = H̄C,final + (H̄C,init − H̄C,final ) exp(−nsteps/H̄C,decay) (32)

is the target entropy of the discrete and continuous policy,
respectively; nsteps is the current trained step. It is notewor-
thy that both αD and αC are the parameter and the output
of the NNs. Consequently, they are typically initialized as
zero-dimensional tensors before training.

Replacing Ea′∼π [−α ln π (a′|st+1)] in Eq. (25) with
αDHπ

D (st+1) + αCHπ
C (st+1) yields the loss function for the

Q-net:

LQ(θ j ) = E (st ,at ,rt ,st+1 )∼R
a′∼π

1
2 [Qθ j (st , at ) − y(r, st+1)]2. (33)

Here,

y(rt , st+1) = r(st , at ) + γ Est+1∼R
{
Ea′∼π

[
min
j=1,2

Qθ̄ j
(st+1, a′)

]
+ αDHπ

D (st+1) + αCHπ
C (st+1)

}
, (34)
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FIG. 4. Training results of the entangled three-level QHE. (a) Average output power Phe during the training. The solid line represents the
average output power obtained by the RL agent and the dashed line represents the “Steady” limit derived in Ref. [76]. One step corresponds
to time step t in Table III. (b) Different policies (cycle) given by the RL agent during different training periods marked in (a). The red, blue,
and green points represent hot, cold, and work processes, respectively, and u denotes the corresponding system state of these processes. See
Table III for details of the training parameters.

and the value of the target Q-net is [77,80]

Ea′∼π

[
min
j=1,2

Qθ̄ j
(st+1, a′)

]
=

∑
d ′

πD(d ′|st+1)Eu′∼πC (�|d,st+1 )
[

min
j=1,2

Qθ̄ j
(st+1, d ′, u′)

]
.

(35)

The entropy of the current policy is

αDHπ
D (st+1) + αCHπ

C (st+1)

= −αD

∑
d ′

πD(d ′|st+1) ln πD(d ′|st+1)

− αC

∑
d ′

πD(d ′|st+1)Eu′∼πC (�|d ′,st+1 )[ln πC (u′|d ′, st+1)].

(36)

Similarly, replacing Eat π̃φ[α ln πφ (at |st )] in Eq. (29)
with αDHπφ

D (s) + αCHπφ

C (s) gives the loss function of the
policy-net:

Lπ (φ) = E st ∼R
at ∼πφ

[α ln πφ (at |st ) − Qθ (st , at )]

= Est ∼R

[ ∑
d

πD,φ (d|st )αD ln πD,φ (d|st )

+ αC ln πC,φ (u|d, st )

−
∑

d

πD,φ (d|st ) min
j=1,2

Qθ j (st , d, u)

]
. (37)

III. RESULTS AND DISCUSSIONS

A. Training results

The average output power 〈Phe〉 and the policies during
the training are given in Figs. 4(a) and 4(b), respectively.
Figure 4(a) demonstrates that the maximum average output
power of the “RL Cycle” (solid line) converges to about
0.91, which is approximately 1.28 times greater than 0.399
of the “Steady” limit (dashed line). The reason is that the
agent designs different u for different processes d , strength-
ening or weakening the corresponding processes to improve
the average output power. Additionally, Fig. 4(b) shows the
convergence of different policies (cycles) provided by the RL
agent as the number of training steps increases.

The well-trained RL agent produces the optimal cycle as
shown in Fig. 5. The optimal u’s for the hot and cold processes
are fixed at 1.5 and 0.3, respectively. However, optimal u for
the work processes varies with time between 0.4 and 1.5. At
the same time, the corresponding process time steps for the
hot, cold, and work processes are 1, 1, and 5, respectively.
A further discussion on these results will be provided in the
following section.

B. Convergence of the SAC algorithm

The SAC algorithm incorporates randomness within its
operations. For example, the “batch” used for training is
randomly sampled from a dynamically changing “replay
buffer” [57]. Moreover, the agent’s policy is derived from
probability sampling of the output probability distribution
[78]. Therefore, its stability needs to be scrutinized. Thus,
Fig. 6 gives the average power of five consecutive trainings
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FIG. 5. Optimal cycle produced by the NNs trained by the RL
algorithm. One step corresponds to t in Table III, controlling pa-
rameter u represents the system state, and the different processes are
denoted by different colors. The red, blue, and green markers indicate
the hot, cold, and work processes, respectively.

of the coherent three-level QHE. These results demonstrate a
similar converged average power of all five trainings, which
indicates the reliability of this algorithm.

C. Comparative analysis of average power
across different cycles

In the section, the hot process and cold process were un-
changed, but the work process was modified based on the
cycle given by the RL agent. Figures 7(a)–7(c) show the
patterns of cycle 1, cycle 2, and cycle 3, respectively. Each
cycle shares the same hot and cold processes, but the work
process varies. The u’s of the work processes in cycles 1 and
2 change linearly, with the work process of cycle 2 enduring
longer to achieve sufficient work. Conversely, cycle 3 adopts
the work processes given by the RL agent.

FIG. 6. Averaged power curves of five consecutive trainings for
the coherent three-level QHE.

The system is initialized to the Gibbs state,

ρS (0) = e−βS (0)HS (0)

tr(e−βS (0)HS (0) )
, (38)

where

βS (0) = 3/ω10,

HS (0) =
⎛
⎝ω0 0 0

0 ω1 0
0 0 ω2

⎞
⎠. (39)

The final average power over 1k steps, corresponding to the
three cycle modes discussed above, is depicted in Fig. 7(d).
It can be seen from the figure that the average power of
cycles 1, 2, and 3 is 0.204, 0.591, and 0.837, respectively.
This indicates that cycle 3 given by the RL agent, holds a
significant advantage over cycles 1 and 2. Specifically, when
compared to cycle 2, cycle 3 can improve the performance by
approximately 41.6%.

D. Efficiency of RL cycle

The quantum system is initialized to the same Gibbs state
given in Eq. (38) and then evolves for 1k steps according to
the RL cycle. After the evolution is over, the cycle efficiency
is calculated by the following formula [73],

η = ηC

1 + 〈σ 〉
βc〈Phe〉

, (40)

where Carnot efficiency ηC = 1 − βh/βc, average power 〈Phe〉
is given by Eq. (11), and average entropy production,

〈σ 〉 = γ̃

∫ ∞

0
e−γ̃ tσ (t )dt . (41)

Here, the instantaneous entropy production is given by

σ (t ) =
∑
α=c,h

βαJα (t ). (42)

According to Eq. (40), the efficiency of the RL cycle
can be obtained at approximately 65.4%. This efficiency
is greater than the Curzon-Ahlborn efficiency which is the
efficiency at maximum power (EMP) derived by Curzon
and Ahlborn [81], with ηEMP = 1−√

βh/βc = (1−√
1/5) ×

100% = 55.3%. However, recent research [45,82–84] shows
that the EMP of QHE may exceed ηEMP, which is consistent
with our results.

E. Fitting of RL cycle

The cycle (Fig. 5) obtained by the RL agent in this study
can be fitted to a periodic cycle as shown in Fig. 8. The du-
rations of working-1, heating, working-2, and cooling process
are τ1, τ2, τ3, and τ4, respectively. As can be observed from
the figure, u remains unchanged at 1.495 and 0.300 during
the heating and cooling processes, respectively. Meanwhile,
the value of u during the working-2 process can be fitted
by the Boltzmann function [85], as described in Eq. (43).
The specific fitting parameters are provided in Table IV. The
coefficient of determination, R2, for the working-2 process is
0.999, demonstrating an approximation of good acceptance.
Consequently, we hypothesize that the working-1 process
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FIG. 7. Different cycle modes and their average power. (a)–(c) represent cycles 1–3 as described in the main text, respectively. Each step
signifies a time of 0.5. The hot, cold, and work processes are represented by red, blue, and green, respectively, while u denotes the system
state. (d) depicts the average power under three distinct cycle modes over 1k steps. The black, red, and blue solid lines show the evolution of
average power changes under cycles 1–3, respectively. The dotted lines indicate the final average power of corresponding cycle.

FIG. 8. Fitted cycle based on the RL cycle depicted in Fig. 5. The
red, blue, and green solid lines represent the heating, cooling, and
working processes, respectively. The translucent markers indicate the
RL cycle. A single cycle of the fitted Otto cycle is marked by dashed
lines, with τ1, τ2, τ3, and τ4 representing the duration of the working-
1, heating, working-2, and cooling processes, respectively.

could also be approximated by the Boltzmann function. It
should be note that the working-1 process only has one data
point within one period, meaning it could be fitted by any
function. We attempted to reduce t to obtain more data
points, but the SAC algorithm failed to converge.

u(t ) = A1 − A2

1 + e(t−t0 )/dt
+ A2. (43)

TABLE IV. Parameter values of the fitted Boltzmann function
for different processes. t denotes the duration of the process with
a unity of t , while A1, A2, t0, and dt are the fitted Boltzmann
function parameters; R2 is the coefficient of determination. The last
row displays the parameters of the general working process, where
the values outside and inside the brackets refer to the working-1 and
working-2 processes, respectively.

Process t A1 A2 t0 dt R2

Working-1 [6, 7.5] 0.300 1.495 6.75 0.05

Working-2 [8.5, 12] 1.497 0.300 10.25 0.25 0.990

Working [tmin, tmax] 0.3(1.5) 1.5(0.3) tmin+tmax
2 0.05(0.25)
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This fitted cycle can be regarded as an Otto-like cycle. The
quantum Otto cycle generally includes four processes: adi-
abatic compression, isochoric heating, adiabatic expansion,
and isochoric cooling [86]. The working-1 and working-2
processes, respectively, increase and decrease the energy gap,
which are similar to the compression and expansion processes
within the quantum Otto cycle. Therefore, this fitted cycle is
analogous to the Otto cycle for they both maximize the power,
demonstrating the effectiveness of our method.

F. Discussion with the finite-time Otto cycle

Applying the RL algorithm also provides a new perspective
for investigating the finite-time Otto cycle with the advan-
tage of alleviating tedious analysis. The finite-time Otto cycle
[29,37,38,44–54,87] is proposed to deal with the practical
application defects of the ideal Otto cycle. The ideal Otto
cycle generally needs to meet two assumptions. Firstly, the
compression and expansion process should be quasistatic to
prevent heat leakage. Secondly, the system should be in the
Gibbs state after the isochoric processes. However, in actual
processes, the quasistatic processes and the slow isochoric
processes required by the Gibbs state could lead to a de-
creased power. To this end, some finite-time Otto cycles, such
as those utilizing the “adiabatic shortcut” [48–54] to speed
up the adiabatic processes, are designed to improve output
power. However, most of these shortcuts rely on experience
or require complex theoretical derivations which hinder the
corresponding research.

It should be noted that due to the complexity of theoretical
derivation and calculation, research on the finite-time Otto
cycle of the three-level QHE is currently challenging and
limited [4,46,76,82,88]. Thus this study only compares the

power of the steady state and does not delve into the power
of the Otto cycle.

IV. CONCLUSIONS

This research employed the RL via the SAC algorithm to
optimize the long-term performance of the coherent three-
level quantum heat engine (QHE), specifically aiming to
maximize the average output power. Remarkably, the RL
agent gave a cycle with an average output power of approx-
imately 1.28 times greater than the steady limit. Furthermore,
the convergence of the SAC algorithm was verified through
five consecutive trainings and the efficiency of this cycle was
found to be larger than the Curzon-Ahlborn efficiency. Finally,
the results also showed that the optimal cycle could be fitted as
an Otto-like cycle by adopting the Boltzmann function during
the compression and expansion processes. This demonstrates
the feasibility of utilizing reinforcement learning within the
power optimization of QHE.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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