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Nonadiabatic transitions in non-Hermitian PT -symmetric two-level systems
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We systematically characterize the dynamical evolution of time-parity (PT )-symmetric two-level systems
with spin-dependent dissipations. If the control parameters of the gap are linearly tuned with time, the dynamical
evolution can be characterized with parabolic cylinder equations which can be analytically solved. We find that
the asymptotic behaviors of particle probability on the two levels show initial-state-independent redistribution
in the slow-tuning-speed limit as long as the system is nonadiabatically driven across exceptional points. Equal
distributions appear when the nondissipative Hamiltonian shows gap closing. As long as the nondissipative
Hamiltonian displays level anticrossing, the final distribution becomes unbalanced. The ratios between the
occupation probabilities are given analytically. These results are confirmed with numerical simulations. The
predicted equal-distribution phenomenon may be used to identify the closing of the energy gap from anticrossing
between two energy bands.
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I. INTRODUCTION

The past few decades have witnessed the rapid growth of
research interest in non-Hermitian systems with parity-time
(PT ) symmetry [1–25]. These systems possess real (conju-
gate complex) spectra in the PT -symmetric (breaking) phases
[1–3]. The spontaneous breaking of PT symmetry by spin-
dependent dissipation (or gain and loss in optics) leads to the
emergence of an exceptional point (EP) with the coalescence
of eigenstates, which has been experimentally checked on
different platforms [4–17]. The singular character of EPs not
only is useful for sensing [26–28] but also has a profound
impact on the dynamics of the system, exemplified by the
phenomenon of chiral state transfer in the dynamical evolution
surrounding EPs [19,22–25,29].

Furthermore, when a PT -symmetric two-level system is
driven directly through EPs, the transition probability shows
anomalous asymptotic behaviors [30]. In the adiabatic limit,
an equal redistribution between the states coalescing at the
exceptional points is observed. Equal redistribution was nu-
merically shown to be independent of the initial states.
However, only a typical PT -symmetric model, H = ησz +
iγ σx, has been taken into account. In fact, a generic PT -
symmetric model should take the form of H = ησz + δ0σ0 +
δyσy + iγ σx [31]. The natural question then is whether these
phenomena are preserved for the generic PT -symmetric two-
level model. Other questions include whether the loss of initial
information can be analytically proven and how the additional
real σy term influences the asymptotic redistribution. To an-
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swer these questions, a systematic study of the nonadiabatic
transition of the generic PT -symmetric model is required.

In this work, we systematically characterize the nona-
diabatic time evolution of the generic PT -symmetric non-
Hermitian two-level model with spin-dependent dissipations.
The nondissipative Hamiltonian shows gap closing or anti-
crossing when it possesses PT symmetry and shows level
anticrossing when the PT symmetry is absent. A section of
imaginary spectra ending with EPs (PT -symmetry-breaking
bubble) emerges, provided that the PT symmetry is broken
and restored by tuning the gap-control parameter. When the
energy-gap-control parameter is tuned to cross the EPs, the
particle probabilities of nonadiabatic evolution are shown to
be redistributed on the two levels in the slow-tuning-speed
limit. The probability ratio between the two levels is a constant
determined by the Hamiltonian parameters which is indepen-
dent of the initial states.

We find that the asymptotic behavior of equal distribution
exists only when the nondissipative Hamiltonian shows the
closure of the gap, that is, the case studied in Ref. [30].
The redistribution becomes unbalanced if the nondissipa-
tive Hamiltonian displays level anticrossing, i.e., the current
case with the generic PT -symmetric model. These ana-
lytical results are confirmed by numerical simulations. For
comparison, cases without PT symmetries in which the
initial-state-independent asymptotic behavior disappears are
also addressed. It is worth emphasizing that the redistribution
asymptotic behavior is in sharp contrast to the Landau-Zener-
Stückelberg interference in a common Hermitian system,
where the final state sensitively depends on the initial
condition.

Many interesting physical processes, such as first-order
quantum phase transitions, are signaled by closing the energy
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TABLE I. The PT symmetry and the evolution of the energy gap when tuning the gap-control parameter η of the single-spin Hamiltonian
under different parametric settings.

δx = δy = 0 δx = 0, δy �= 0 δx �= 0, δy = 0 δx �= 0, δy �= 0

PT symmetry Yes Yes No No
Energy gap of H0 varies with η Gap closing Anticrossing Anticrossing Anticrossing

gap between the ground and first excited states [32]. Based on
the unique dynamic consequence of EPs discovered here, we
propose to detect the gap-closing transition of the nondissipa-
tive system through a Landau-Zener-Stückelberg-like process:
the system parameters (i.e., the quasimomentum driven by
static force for an energy band [30]) are ramped across the
PT -symmetry-breaking bubble and then back to the original
values. The final state subsequently features equal populations
of the two eigenstates when the original Hermitian Hamilto-
nian experiences gap closing, regardless of the initial state.

The rest of this paper is organized as follows. In Sec. II, we
present an analysis of the energy spectra of two-level systems
in the presence of spin-dependent dissipations. In Sec. III, we
discuss the analytical solutions of the time-evolution equa-
tions. The numerical simulations of analytical results in terms
of the identification of gap closing are given in Sec. IV. A
brief summary is given in Sec. V.

II. SPECTRA OF TWO-LEVEL SYSTEMS
WITH PT -SYMMETRIC DISSIPATIONS

We are interested in the dynamics of the two-level system
H = H0 + Hp with the Hermitian model H0 = ησz + δxσx +
δyσy and spin-dependent dissipation Hp = iγ σx, where η,
γ , δx, and δy are real numbers. With spin rotation around
the y axis σx,z → ±σz,x, the perturbation term becomes
proportional to σz and can be implemented with state-
dependent loss, which has been realized on different platforms
[25,33–35]. The experimental implementation is discussed in
detail in Appendix B. As the dynamic behaviors of quantum
systems in general are associated with their spectral structures,
we will first introduce the spectral properties of these non-
Hermitian two-level systems in this section.

PT symmetry is defined as the product of parity sym-
metry P = σx and time-reversal symmetry T = iKσy, with
K being the complex-conjugate operator, i.e., PT = −Kσz.
When δx = 0, H , H0, and Hp all possess PT symmetry, and
H describes a generic PT -symmetric model. The two-level
nondissipative model shows that a gap-closing transition at
η = 0 is characterized by H0 = ησz when the gap control
parameter η is tuned across the zero point. When the terms
σx and σy are turned on, the nondissipative model shows
level anticrossing, although only when δx = 0 does the model
possess PT symmetry. The corresponding symmetries and
spectral characteristics are summarized in Table I.

As predicted by the perturbation analysis presented in
Appendix A, by fixing γ and tuning η, the transitions in
PT symmetry in the eigenstates are observed once H0 also
possesses PT symmetry, reflected in the transitions between
real and imaginary spectra, as exemplified in Fig. 1(a) with
δx = δy = 0. As discussed in the following, the spectral tran-
sition also emerges in another case with PT symmetry, δx = 0

and δy �= 0, but this gives rise to anticrossing rather than gap
closing when the dissipative perturbation is absent.

As shown in Fig. 1(a), a PT -symmetry-breaking bubble
is observed around η = 0 in the case where δx = δy = 0 (and
also in the case with δx = 0 and δy �= 0). The expectations of
the Pauli matrix σ z (σ x) disappear when γ < |η| (γ > |η|),
accompanying the closure of real spectra, although that of σ y

is always finite throughout the phase transition [Fig. 1(b)].
This implies that the threshold for triggering PT -symmetry
breaking should be determined by comparing the energy gap
between two eigenstates with opposite spin polarizations of
H0 (associated with 〈σz〉) and the imaginary perturbation (as-
sociated with 〈σx〉). This point is consistent with the linear
dependence of bubble size on γ , as shown in the inset of
Fig. 1(a).

The emergence of the PT -symmetry-breaking bubble can
be formally understood with the perturbation theory discussed
in Appendix A. The total Hamiltonian H = H0 + Hp has PT
symmetry PT = Kσ z. For the Hermitian single-spin sys-
tem H0, if we set the imaginary σ x term as a perturbation
when γ � η, it leads to a second-order correction γ 2/(2η)
[−γ 2/(2η)] for the lower (upper) nonperturbation eigenvalues
of H0, as we discussed above. On the other hand, when η � γ ,
a second-order correction iη2/(2γ ) [−iη2/(2γ )] is added to
the imaginary lower (upper) nonperturbation eigenvalues of
Hp by the real σ z term as a perturbation instead. Approaching
the EP points, the energy gap monotonously decreases and
finally closes at the EP points to smoothly connect the real
and imaginary spectra, although the perturbation conditions
gradually become invalid. We would like to note that, again,
this is completely different from conventional Hermitian sys-
tems, where perturbation coupling between two energy levels

FIG. 1. Illustration of PT -symmetry breaking in the single-spin
system H0. (a) The spectra and (b) spin structure of a single-spin sys-
tem with PT -symmetry breaking. The red solid (blue dash-dotted)
curves in (a) denote the real (imaginary) parts of the spectra. The
variation of bubble size (horizontal diameter) with γ is shown in the
inset of (a).
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usually opens or enlarges a gap rather than leading to gap
closing.

It is worth noting that we mainly focus on the microscopic
mechanism for the emergence of EPs and imaginary-spectrum
bubbles from the point of perturbation theory here [e.g., we
answer why the spin-dependent dissipation term leads to
the decrease (increase) of the real (imaginary) energy gap],
although this phenomenon itself is already known in the com-
munity [36–40]. However, previous studies mainly focused
on the symmetry protection and topological properties of a
nodal line ending with EPs (or EP surfaces enclosing imagi-
nary spectra, i.e., the PT -symmetry-breaking bubble in high
dimensions) on energy bands by directly diagonalizing the
quasimomentum Hamiltonians of lattice models [36–40].

III. NONADIABATIC TRANSITIONS

The focus of this work is the dynamical time evolution of
non-Hermitian Hamiltonians introduced in the previous sec-
tion. The dynamical process is nonadiabatic, provided the gap
control parameters η(t ) = αt are linearly tuned through the
EPs and PT -breaking bubble without a real-energy gap. The
observable involved is the asymptotic transition probability
between the two levels for t → ∞ in the slow-tuning-speed
limit of η, that is, α → 0, which is also called the adiabatic
limit [30]. In the absence of a non-Hermitian term, the nona-
diabatic transition is reduced to the celebrated Landau-Zener
transition of two-level systems.

In a previous work [30], the authors studied the dynami-
cal evolution of a typical PT -symmetric model, H = ησz +
iγ σx, and predicted that the asymptotic behaviors of the tran-
sition probability in the long-time limit t → ∞ would have an
equal distribution when η is slowly tuned. In other words, the
long-time occupation probabilities of the two levels become
the same in the adiabatic limit. It has been shown numerically
that the equal-distribution behavior is independent of the ini-
tial state. However, a generic PT -symmetric two-level model
may include a relevant δy term, that is, H = ησz + δyσy +
iγ σx, after ignoring the unimportant diagonal term δ0σ0 [31].
Then it is natural to ask what will happen when the δy term is
turned on, which drives us to extend the theory developed in
Ref. [30].

As shown below, we find that the asymptotic behavior of
equal distribution is actually absent for the case with δy �= 0,
although the PT symmetry is preserved and EPs also exist.
Instead, the ratio between the final occupation probabilities
of the two levels is given by rp = |(γ − δy)/(γ + δy)|, which
is independent of the initial states. It should be noted that
the independence of the initial state has been proven only
numerically for the case without the δy term in the previous
work [30]. In contrast, our results prove this point analytically
for the generic PT -symmetric model H = ησz + δyσy + iγ σx

here. For comparison, we also briefly discuss the case without
PT symmetry, i.e., when δx �= 0, where the initial state-
independent asymptotic behavior is absent.

The route is to solve the time-evolution equation directly
with η = αt . Fortunately, the time-evolution equations of the
generic PT -symmetric model H = ησz + δyσy + iγ σx can be
reduced to the celebrated parabolic cylinder equations (Weber
equations) [41]. Although the solutions are associated with the

complicated confluent hypergeometric functions (Kummer
functions), the asymptotic behavior we are concerned with can
be obtained with the conclusions derived by a mathematician.
In the following, we will discuss the generic PT -symmetric
case with δy �= 0 and δx = 0 and then discuss the case with
δx �= 0 and δy �= 0 without PT symmetry for comparison.

A. Generic PT -symmetric model: δy �= 0 and δx = 0

In this case, the Hamiltonian H = η(t )σz + δyσy + iγ σx

possesses PT symmetry. As shown in Table I, the energy
gap of the Hermitian zeroth-order Hamiltonian H0 = η(t )σz +
δyσy closes only when δy = 0. In general, the level anticross-
ing appears when δy �= 0 for H0. But regardless of whether the
gap of H0 closes or not, the loss of initial-state information
appears entirely in the presence of a dissipative perturbation.

The two-level model is described by a two-component
wave function � = (ψ1, ψ2)T . The time-evolution equation of
� is given by

i∂t

(
ψ1

ψ2

)
=

( −αt i(γ − δy)
i(γ + δy) αt

)(
ψ1

ψ2

)
. (1)

This is a group of coupled first-order differential equations.
Fortunately, this equation group can be decoupled by taking
the second derivative on the two sides. Specifically, the de-
coupled second-order differential equation is given by i∂2

t � =
(∂t H − iH2)�, that is,

i∂2
t ψ1,2 = { ∓ α − i

[
(αt )2 − (

γ 2 − δ2
x − δ2

y

) + 2iδxγ
]}

ψ1,2.

(2)
These equations are actually the standard forms of the
parabolic cylinder equations (Weber equations) [41]

d2ψ2
ν

dz2
−

(
1

4
z2 + aν

)
ψν = 0, ν = 1, 2, (3)

with the definition of the new argument z = e−iπ/4
√

2αt and
constants

a1,2 = i
(
γ 2 − δ2

y

)
2α

∓ 1

2
(4)

and can be solved analytically with the confluent hyper-
geometric functions (i.e., the Kummer functions). In the
following, we will first discuss special solutions of Eq. (4).
Then a generic solution can be written with the combination
of these special solutions. The combination coefficients can
be fixed with the initial conditions (i.e., the initial states and
the initial first-order derivative of the wave functions). Finally,
the asymptotic behaviors of the wave function can be derived
with the asymptotic behaviors of the confluent hypergeomet-
ric functions. Although the procedure is tedious, the idea is
very straightforward.

Before moving to the solutions of the evolution equation,
let us first make some comments on the difference from the
analysis of the special PT -symmetric model in Ref. [30].
In fact, the forms of the time-evolution equations are all the
parabolic cylinder equations shown in Eq. (3). Only the forms
of aj=1,2 are different, as shown in Eq. (4). According to the
theory in [30], this actually implies the nonadiabatic transi-
tions also show equal-distribution asymptotic behavior even
for the case with δy �= 0 discussed here. However, we will
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show below that the equal-distribution asymptotic behavior is
actually absent in the current case, which is also confirmed by
our numerics.

The parabolic cylinder equations (3) all have two particular
exact symmetric solutions, i.e., the even-parity solution,

yν1 = e− 1
4 z2

M

(
1

2
aν + 1

4
,

1

2
,

1

2
z2

)

= e− 1
4 z2

{
1 +

(
aν + 1

2

)
z2

2!
+

(
aν + 1

2

)(
aν + 5

2

)
z2

2!

+ · · ·
}
, (5)

and the odd-parity solution,

yν2 = ze− 1
4 z2

M

(
1

2
aν + 3

4
,

3

2
,

1

2
z2

)

= e− 1
4 z2

{
z +

(
aν + 3

2

)
z3

3!
+

(
aν + 3

2

)(
aν + 7

2

)
z5

5!

+ · · ·
}
, (6)

where the M functions are the confluent hypergeometric func-
tions. Any general solutions of Eq. (1) are superpositions of
these two particular solutions, i.e.,(

ψ1

ψ2

)
=

(
α11y11 + α12y12

α21y21 + α22y22

)
. (7)

In the next step, we will solve these coefficients with the initial
conditions.

The systems are assumed to be prepared in an arbitrary
initial state at t = 0,

�(0) =
(

ψ1(0)
ψ2(0)

)
=

(
A
B

)
. (8)

Considering y1(0) = 1 and y2(0) = 0, we have α11 = A and
α21 = B. The initial conditions of the first-order differential
equations give rise to

d

dz
�(z)

∣∣∣∣
z=0

= eiπ/4

√
2α

(
0 γ − δy

γ + δy 0

)(
A
B

)
. (9)

It is easy to confirm that dy1(0)/dz = 0 and dy2(0)/dz = 1
from the expansion series in Eqs. (5) and (6). With these
conditions, we have

(
α12

α22

)
=

⎛
⎝ eiπ/4√

2α
(γ − δy)B

eiπ/4√
2α

(γ + δy)A

⎞
⎠. (10)

Therefore, the solutions of the time-evolution equations (1)
are given by

� =
⎛
⎝Ay11 + eiπ/4√

2α
(γ − δy)By12

By21 + eiπ/4√
2α

(γ + δy)Ay22

⎞
⎠. (11)

We are mainly concerned with the asymptotic behavior in
the large-t limit. Our aim is to employ the asymptotic behav-
iors of the M functions to analyze the asymptotic behaviors
of �. Fortunately, the asymptotic behaviors of the confluent
hypergeometric functions [41] can be written down as

M(a, b, x)

�(b)
= e±iπax−a

�(b − a)

{
R−1∑
n=0

(a)n(1 + a − b)n

n!
(−x)−n

+ O(|x|−R)

}
+exxa−b

�(a)

{
S−1∑
n=0

(b − a)n(1 − a)n

n!
x−n

× O(|x|−S )

}
(12)

when |x| → ∞, where

( f )n = f ( f + 1)( f + 2) · · · ( f + n − 1), ( f )0 = 1. (13)

The signs ± correspond to the argument of x in the
ranges − 1

2π < arg(x) < 3
2π and − 3

2π < arg(x) � − 1
2π , re-

spectively.
Now let us discuss the leading-order terms for the asymp-

totic behaviors of the generic solutions in Eqs. (7). From
Eqs. (5) and (6), we find that y1 and y2 involve different
coefficients a and b but the same argument x = z2/2 appearing
in Eq. (12). Since arg(z2/2) = −π/2, we always need to take
the minus sign in Eq. (12). The leading-order terms of the y
functions are determined by the magnitudes of −a and (a − b)
since only the zeroth-order terms of the expansion series in
Eq. (12) need to be considered. The values of −a and (a − b)
are listed in Table II. It is shown that, for y11 and y12 (y21 and
y22), the first terms with power −a [the second terms with
power (a − b)] in Eq. (12) are dominant. Relative to y11 and
y21, although y12 and y22 have an additional x argument before
the M function from Eqs. (5) and (6), they are counteracted
by the real parts of −a and (a − b). Therefore, the asymptotic
behaviors of the y functions are all proportional zeroth-order

TABLE II. The values of −a and (a − b) for different y functions.

a b −a a − b

y11
1
2 a1 + 1

4
1
2 − i(γ 2−δ2

y )

4α

i(γ 2−δ2
y )

4α
− 1

2

y12
1
2 a1 + 3

4
3
2 − i(γ 2−δ2

y )

4α
− 1

2

i(γ 2−δ2
y )

4α
− 1

y21
1
2 a2 + 1

4
1
2 − i(γ 2−δ2

y )

4α
− 1

2

i(γ 2−δ2
y )

4α

y22
1
2 a2 + 3

4
3
2 − i(γ 2−δ2

y )

4α
− 1

i(γ 2−δ2
y )

4α
− 1

2

022245-4



NONADIABATIC TRANSITIONS IN NON-HERMITIAN … PHYSICAL REVIEW A 109, 022245 (2024)

terms of z, which are given by

y11 ∼ e− 1
4 x2 �

(
1
2

)
eπ (γ 2−δ2

y )/4α

�
(

1
2 − i(γ 2−δ2

y )
4α

)
(

x2

2

)−i(γ 2−δ2
y )/4α

, y12 ∼ −ie− 1
4 x2

√
2�

(
3
2

)
eπ (γ 2−δ2

y )/4α

�
(
1 − i(γ 2−δ2

y )
4α

)
(

x2

2

)−i(γ 2−δ2
y )/4α

,

y21 ∼ e
1
4 x2 �

(
1
2

)
�

(
1
2 + i(γ 2−δ2

y )
4α

)
(

x2

2

)i(γ 2−δ2
y )/4α

, y22 ∼ e
1
4 x2

√
2�

(
3
2

)
�

(
1 + i(γ 2−δ2

y )
4α

)
(

x2

2

)i(γ 2−δ2
y )/4α

.

(14)

Further, by substituting the expressions in Eq. (14) into Eq. (11), we get

ψ1

ψ2
∼ eπ (γ 2−δ2

y )/4α

(
z2

2

)− i(γ 2−δ2
y )

2α

⎡
⎣A

�
(

1
2

)
�

(
1
2 − i(γ 2−δ2

y )
4α

) + Be−iπ/4 γ − δy√
α

�
(

3
2

)
�

(
1 − i(γ 2−δ2

y )
4α

)
⎤
⎦

÷
⎡
⎣B

�
(

1
2

)
�

(
1
2 + i(γ 2−δ2

y )
4α

) + Aeiπ/4 γ + δy√
α

�
(

3
2

)
�

(
1 + i(γ 2−δ2

y )
4α

)
⎤
⎦. (15)

By defining γ̃ 2 = (γ 2 − δ2
y )/α and considering �(1/2) =

2�(3/2), we have

∣∣∣∣ψ1

ψ2

∣∣∣∣ ∼
eπ

γ̃ 2

4

∣∣∣∣( z2

2

)− iγ̃ 2

2

∣∣∣∣
∣∣∣∣ 2A

�

(
1
2 − iγ̃ 2

4

) + γ−δy√
α

e−iπ/4B

�

(
1− iγ̃ 2

4

) ∣∣∣∣∣∣∣∣ 2B

�

(
1
2 + iγ̃ 2

4

) + γ+δy√
α

eiπ/4A

�

(
1+ iγ̃ 2

4

) ∣∣∣∣

=

∣∣∣∣∣∣∣
2
√

α�
(
1 + iγ̃ 2

4

)
eπ

γ̃ 2

4
(

z2

2

)− iγ̃ 2

2

(γ + δy)�
(

1
2 − iγ̃ 2

4

)
∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣
A + Be−iπ/4 γ−δy

2
√

α

�

(
1
2 − iγ̃ 2

4

)
�

(
1− iγ̃ 2

4

)
A + Be−iπ/4 2

√
α

γ+δy

�(1+ iγ̃ 2

4 )

�

(
1
2 + iγ̃ 2

4

)

∣∣∣∣∣∣∣∣∣
. (16)

Since �(ξ ) = ∫ ∞
0 dττ ξ−1e−τ , �(ξ )∗ = �(ξ ∗), and then the

ratio between the coefficients before B in the above equation is
given by

γ̃ 2

4

�
(

1
2 − iγ̃ 2

4

)
�

(
1
2 + iγ̃ 2

4

)
�

(
1 − iγ̃ 2

4

)
�

(
1 + iγ̃ 2

4

) = γ̃ 2

4

∣∣�(
1
2 + iγ̃ 2

4

)∣∣2∣∣�(
1 + iγ̃ 2

4

)∣∣2 . (17)

Further, by employing the properties of the � function,

∣∣∣∣�
(

1

2
+ λi

)∣∣∣∣
2

= π

cosh(πλ)
, |�(1 + λi)|2 = πλ

sinh(πλ)
,

(18)
the above equation can be rewritten as

γ̃ 2

4

∣∣�(
1
2 + iγ̃ 2

4

)∣∣2∣∣�(
1 + iγ̃ 2

4

)∣∣2 = tanh

(
π

γ̃ 2

4

)
. (19)

In the adiabatic limit γ̃ 2 → ∞, this ratio becomes 1. Thus, we
finally have

lim
γ̃→∞

∣∣∣∣ψ1

ψ2

∣∣∣∣ ∼ lim
γ̃→∞

∣∣∣∣∣∣∣
2
√

α�
(
1 + iγ̃ 2

4

)
eπ

γ̃ 2

4
(

z2

2

)− iγ̃ 2

2

(γ + δy)�
(

1
2 − iγ̃ 2

4

)
∣∣∣∣∣∣∣

= lim
γ̃→∞

∣∣∣∣∣∣
2
√

α

γ + δy
eπ

γ̃ 2

4

(
e−i π

2
|z|2
2

)− iγ̃ 2

2

∣∣∣∣∣∣
×

∣∣∣∣ γ̃ 2

4 tanh(πγ̃ 2/4)

∣∣∣∣
1/2

=
∣∣∣∣γ − δy

γ + δy

∣∣∣∣
1/2

. (20)

This proves that the ratio between the occupation proba-
bilities of the two states is a constant, rp = |(γ − δy)/(γ +
δy)|, which is independent of the initial states. In addition,
only when δy = 0 does rp = 1, which proves the equal-
distribution asymptotic behavior elaborated at the beginning
of this section. Although the PT -symmetry-breaking bubble
also emerges for finite δy, the equal-distribution asymptotic
behavior does not exist in this case.

B. Case without PT symmetry: δy �= 0 and δx �= 0

When δx �= 0, regardless of whether δy is finite or not, the
PT symmetry is absent. We study this case just for compari-
son. In this case, the time-evolution equation is given by

i∂t

(
ψ1

ψ2

)
=

( −αt δx + i(γ − δy)
δx + i(γ + δy) αt

)(
ψ1

ψ2

)
. (21)

The second-order differential equation takes the form

i∂2
t ψ1,2 = { ∓ α − i

[
(αt )2 − (

γ 2 − δ2
x − δ2

y

) + 2iδxγ
]}

ψ1,2,

(22)
which corresponds to the parabolic cylinder equation

d2ψ2
ξ

dz2
−

(
1

4
z2 + aξ

)
ψξ = 0, ξ = 1, 2, (23)
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with

a1,2 = i
(
γ 2 − δ2

x − δ2
y

) + 2δxγ

2α
∓ 1

2
. (24)

The only difference is the form of the a factor.
For simplicity, we take the special initial state �(0) =

(0 1)T as an example. Like in the previous section, with
these initial conditions, it gives rise to the solution

� =
(

e−iπ/4 δx+i(γ−δy )√
2α

y12

y21

)

= e− 1
4 z2

(
e−iπ/4 δx+i(γ−δy )√

2α
zM( 1

2 a1 + 3
4 , 3

2 , 1
2 z2)

M( 1
2 a2 + 1

4 , 1
2 , 1

2 z2)

)
. (25)

In the limit z → ∞, for ψ1, because

−a = −
(

a1

2
+ 3

4

)
= −1

2
− i

(
γ 2 − δ2

y − δ2
x

) + 2δxδy

4α
,

a − b = a1

2
− 3

4
= −1 + i

(
γ 2 − δ2

y − δ2
x

) + 2δxδy

4α
(26)

have large real parts δxδy/α in the adiabatic limit, we need
to compare their real parts in order to determine the domi-
nant terms in the asymptotic expansion of the M functions
[see Eq. (12)]. This can be divided into two cases; when
δyδx/α < 0.5, the first term in Eq. (12) is dominant, and when
δyδx/α > 0.5, the second term becomes dominant. For ψ2,
similarly, we have

−a = −
(

a2

2
+ 1

4

)
= −1

2
− i

(
γ 2 − δ2

y − δ2
x

) + 2δxδy

4α
,

a − b = a2

2
− 1

4
= i

(
γ 2 − δ2

y − δ2
x

) + 2δxδy

4α
. (27)

When δyδx/α < −0.5, the first term in the asymptotic expan-
sion is dominant, but when δyδx/α > −0.5, the second term
becomes dominant. These results are reasonable because the
EPs are absent when δx �= 0 and the two levels always have
a gap when η is tuned, and thus, the time evolution becomes
adiabatic in the slow-tuning-speed limit.

In summary, when δyδx/α < −0.5, by defining

ε = i
(
γ 2 − δ2

y − δ2
x

) + 2δxδy

4α
, (28)

we have

M

(
1

2
a1 + 3

4
,

3

2
,

1

2
z2

)
= �( 3

2 )e−iπ ( 1
2 +ε)( z2

2 )−( 1
2 +ε)

�(1 − ε)
,

M

(
1

2
a2 + 1

4
,

1

2
,

1

2
z2

)
= �( 1

2 )e−iπ ( 1
2 +ε)( z2

2 )−( 1
2 +ε)

�(−ε)
, (29)

which implies ψ1 ∝ z−2ε and ψ1 ∝ z−1−2ε and thus |ψ1

ψ2
|2 ∝

z2 → ∞. Similarly, when −0.5 < δyδx/α < 0.5, ψ1 ∝ z−2ε ,
and ψ1 ∝ z−2ε , which implies that only when δyδz = 0 is it
possible to get |ψ1

ψ2
|2 → 1. As we showed in the previous sec-

tion, actually, only when δy = δz = 0 do we have this result,
i.e., the equal-distribution asymptotic behavior. For the case
with δyδx/α > 0.5, we have ψ1 ∝ z−2−2ε and ψ1 ∝ z2ε , and

|ψ1

ψ2
|2 also cannot give rise to the equal-distribution asymptotic

behavior.
Therefore, although the PT symmetry and the initial-state-

independent asymptotic behavior are both preserved when
δy �= 0, the equal-distribution asymptotic behavior disappears.
In contrast, only when δx = δy = 0 do the nonadiabatic transi-
tions show the equal-distribution asymptotic behavior. When
δx �= 0, we have adiabatic transitions because the EPs are
absent. These are the main conclusions of this article.

For H0, only when δx = δy = 0 does the variation of η give
rise to the gap-closing transition. If δx or δy becomes finite, the
gap closing is replaced by an anticrossing of the two levels.
Therefore, the equal-distribution asymptotic behavior may be
employed as a way to identify gap closing. We will show the
numerical simulations in terms of this application below.

IV. IDENTIFICATION OF GAP CLOSING
WITH THE DYNAMICAL METHOD

As shown above, we find the equal-distribution behav-
ior is present when the nondissipative Hamiltonian has a
gap-closing transition and disappears when the nondissipa-
tive Hamiltonian displays level anticrossing even when the
PT symmetry and thus EPs are still present. By employing
these unique properties, we propose to identify the energy gap
closing in the nondissipative Hamiltonian with a cyclic time
evolution covering the PT -symmetry-breaking bubble, mim-
icking Landau-Zener-Stückelberg interference [42]. It can be
implemented by driving particles on the Bloch bands through
a static force [30,42]. Specifically, we propose to start from
a parametric point, e.g., η = −1, and tune η across the PT -
symmetry-breaking bubble at around η = 0 and back to the
start point η = −1. By observing the projection probabilities
of the final state for the instantaneous ground and excited
states, which are connected to the states that coalesce at the
EPs, we can gain the signature of the gap closing. As long
as the tuning speed is slow enough, we can observe almost
equal projection probabilities when H0 indeed experiences a
gap-closing transition.

The instantaneous projection probabilities and spectra (in-
sets) of the cyclic time evolution [η(t ) = −1 + αt when t <

t f and η(t ) = 1 − αt when t > t f , with α = 1/15] are shown
in Fig. 2 for different parameters (all with arbitrary units in
this paper). The top and bottom rows of Fig. 2 show the cases
without and with dissipative perturbations. The plots from left
to right correspond to the Hamiltonians H0 = η(t )σz, η(t )σz +
δxσx, and η(t )σz + δyσy (i.e., H = η(t )σz + iγ σx, η(t )σz +
δxσx + iγ σx, and η(t )σz + δyσy + iγ σx), respectively. The ini-
tial state is prepared as an arbitrary superposition of the
eigenstates of the lower and higher levels at t = 0. As shown
in Fig. 2(a), where H = H0 = η(t )σz, the instantaneous state
has invariant projection probabilities for the eigenstates, al-
though the spectra show a gap closing. That is because there
is no coupling between the ground and excited states. When
the imaginary perturbation is present, i.e., H = H0 + Hp =
η(t )σz + iγ Hp, where a the PT -symmetry-breaking bubble
emerges at around the gap-closing point [see the inset of
Fig. 2(d)], the instantaneous projection probabilities for the
two levels take almost the same instantaneous values after
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FIG. 2. The illustration of instantaneous spectra (top row) and projection properties (bottom row) for different perturbation parameters in a
cyclic time evolution, where η(t ) = −1 + αt when t < t f and η(t ) = 1 − αt when t > t f with the one-way evolution time t f = 15 and tuning
speed α = 0.025. The initial states are taken as |�(0)〉 = cos(θ )|�1(0)〉 + eiϕ sin(θ )|�2(0)〉, with θ = π/3 and ϕ = π/6, where |�1,2(0)〉 are
the instantaneous eigenstates at moment t = 0. The spectra of the real-time Hamiltonian H = η(t )σz + δxσx + δyσy + iγ σx (insets) and the
projection probabilities of instantaneous states when (a) γ = δx = δy = 0 [(d) δy = δx = 0, γ = 0.2], (b) γ = δy = 0, δx = 0.15 [(e) δy = 0,
δx = 0.15, γ = 0.2], and (c) γ = δx = 0, δy = 0.15 [(f) δx = 0, δy = 0.15, γ = 0.2], are shown. The red (blue) curves in the insets represent
the real (imaginary) parts of the spectra. The solid (dotted) curves in the main plots show the projection probabilities for the corresponding
levels in the insets. The projection probabilities |Cξ=1,2|2 are defined as C1,2 = 〈�̃1,2(t )|�(t )〉/|〈�̃1,2|�1,2〉|, with |�(t )〉 being the instantaneous
state and |�1,2(t )〉 [|�̃1,2(t )〉] being the instantaneous right (left) eigenstates [43]. We would like to note that the coefficients C1,2 are not the
spin components directly. However, because η is far larger than other coefficients in the Hamiltonian at t = t f , �1,2 approach the eigenstate of
σz. Therefore, the asymptotic behaviors of C1,2 approach those of ψ1,2 given in Sec. III. The introduction of C1,2 is just for the convenience of
experimental observation.

passing the EPs [see Fig. 2(d)]. This is a good signature for
probing the gap-closing transition in the original Hamiltonian
H0.

Let us further discuss the cases where the gap closing in
H0 is absent. Following Figs. 2(a) and 2(d), a real-spin term
δxσ

x is introduced in Figs. 2(b) and 2(e). This real-spin term
prevents the gap closing at η = 0 and leads to anticrossing
at around η = 0. In addition, it also breaks the PT symmetry
because Kσ zσ xσ zK† = −σ x, as discussed above. Figure 2(b),
where the imaginary perturbation is not turned on, shows the
spectra indeed have a finite gap when η = 0 (see the inset).
The finite real-energy gap allows the Landau-Zener tunneling
from the lower level to the higher level, and the instantaneous
projection probabilities are distributed unequally. When the
time evolution tends to the adiabatic limit δ2

x /α 
 1 (here
δ2

x /α ∼ 0.34), the projection probabilities should remain con-
stant as the energy gap completely suppresses the tunneling.
Due to the absence of PT symmetry, the spectra in the case
with imaginary perturbation [see inset of Fig. 2(e)] always
have imaginary parts, and the instantaneous projection proba-
bility of the level with positive imaginary spectra is amplified
after long-time evolution and becomes dominant.

In Figs. 2(c) and 2(f), another kind of real term, δyσ
y, is

introduced in H0 to break the gap closing. This perturbation
also opens a finite gap at η = 0 and thus leads to anticrossing

as well. But unlike in Figs. 2(b) and 2(e), the PT symmetry
is still preserved in this case since Kσ zσ yσ zK† = σ y. The
behaviors of the time evolution in the case without imaginary
perturbation look like the case with the δx term [see Fig. 2(c)].
When the time evolution tends to the adiabatic limit δ2

y /α 

1, the projection probabilities should also remain constant,
although it is not in this limit here because δ2

y /α ∼ 0.34.
The fluctuations in the projection probabilities in Fig. 2 are
due to the Landau-Zener tunneling for nonadiabatic evolution.
What we want to emphasize is that, although the energy gap
closes and a PT -symmetry-breaking bubble emerges when
the imaginary perturbation is turned on and is large enough,
i.e., γ > δy [see the inset of Fig. 2(f); note that the gap is still
open when γ < δy], because the PT symmetry is preserved
in both H0 and H , the projection probabilities do not show
the equality like in the case with gap closing in Fig. 2(d).
This observation was not reported previously since only the
cases without the σy term were discussed [30]. Therefore, the
equality of asymptotic instantaneous projection probabilities
can be observed only in the case where H0 has a gap-closing
transition when the dissipative perturbation is turned on and
can be employed as a unique signature of gap closing in
H0.

However, the analysis in Ref. [30] showed that the equal-
ity of projection probabilities survives under the adiabatic
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FIG. 3. The difference between the probability amplitudes |�|C|| = ||C2| − |C1|| for different initial states in cyclic evolution. The initial
states are taken as |�(0)〉 = cos(θ )|�1(0)〉 + eiϕ sin(θ )|�2(0)〉, where ϕ is arbitrarily fixed at π/6 and θ is scanned. These plots have the same
parameters as the corresponding plots in Fig. 2. The inset of (f) shows |C1| (blue dash-dotted line), |C2| (black dotted line), and their ratio
|C2|/|C1| (red solid line) at t = t f . The ratio remains constant except around the zero point of C, which confirms the analytical result that the
independence of the initial states is preserved as long as the system crosses EPs.

condition γ 2/α 
 1 for the model H = ησz + iγ σx, where α

is the tuning speed of η, the same as our model in Fig. 2(d).
In order to mimic a realistic situation where the adiabaticity
may be hard to satisfy, we take t f = 15 and thus γ 2/α ∼
0.6 here. We would like to note that, even in this case, as
shown in Fig. 2, the nonadiabatic transition shows almost
perfect coincidence in the projection probabilities of the final
instantaneous states for the two levels. This implies that this
phenomenon is not strongly dependent on the adiabatic con-
dition. Another point that needs to be noted is that our models
actually neglect the background loss term which usually exists
in experiment, and thus, the probabilities become larger than
1. The background loss term is proportional to γ and leads to a
scaling of exp(−2γ t f ) ∼ 1/400 in the final probabilities. This
means the effective final probabilities are about 20/400 = 5%
in Fig. 2(d). We will lose about 95% of the particles in the
experiment.

The presence of equal redistribution is also independent of
the preparation of the initial state. In Fig. 3 , the differences
between the instantaneous projection amplitudes are shown
for different initial states. From Fig. 3, we can see that the
differences between the instantaneous projection probabilities
are almost nonexistent for all initial states in the case with gap
closing. In contrast, the final probability differences are not
vanishing and vary for different initial states in all other cases
(including the case with both anticrossing and PT symmetry
and that with anticrossing but without PT symmetry), as
discussed in Fig. 2. This implies we do not need to determine
a special initial state to identify the gap-closing transition in
the experiment.

From the above discussions, the proposed scheme can be
expanded in the following steps. In order to identify the gap

closing in a system, we first need to introduce a dissipative
perturbation that is noncommutative with the original (zeroth-
order) Hermitian Hamiltonian. Second, we need to tune the
parameter, which may lead to gap closing or anticrossing
along a cyclic trajectory covering the possible critical point
and observe the projection probabilities of the final states to
check whether the equal redistribution occurs. If the system
always has a small gap, i.e., shows anticrossing behavior,
rather than true gap closing, the equal redistribution will be
broken. With these steps, we can identify whether the system
indeed has a gap-closing transition. We do not need to tune
the parameter precisely to the gap-closing point and elaborate
the initial states, which are usually required in a conventional
scheme. This provides us a paradigm for using dissipation in
metrology.

V. CONCLUSION

In summary, we systematically characterized the nonadi-
abatic transitions of a generic non-Hermitian PT -symmetric
two-level model. The time evolution crossing the EPs shows
initial-state-independent asymptotic behaviors. Particularly,
only when the nondissipative Hamiltonian shows gap closing
are the asymptotic probabilities of particles on the two levels
the same in the slow-tuning-speed limit. Equal redistribution
is absent when the nondissipative Hamiltonian displays level
anticrossing. As long as EPs are crossed, the ratio between
the asymptotic probabilities is initial state independent. We
thus further propose to identify gap closing with dissipative
dynamics in Hermitian systems. Our proposal should be able
to be checked with techniques shown in current experiments
[25,33–35], as exemplified in Appendix B. For example, the
extension of the dynamical evolution encircling EPs in atomic
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gases to that crossing EPs is possible [25]. It is worth not-
ing that the idea presented here is also essentially different
from the proposal to identify exceptional points with quench
dynamics [44].

ACKNOWLEDGMENTS

The authors wish to thank Prof. W. Yi, Prof. Z.-B. Yang,
and Prof. S.-B. Zheng for very helpful discussions and also
thank Prof. W. Yi for suggestions on writing. J.-S.P. is sup-
ported by the National Natural Science Foundation of China
(Grant No. 11904228) and the Science Specialty Program
of Sichuan University (Grant No. 2020SCUNL210). F.W. is
supported by the National Youth Science Foundation of China
(CN; Grant No. 12204105), the Educational Research Project
for Young and Middle-Aged Teachers of Fujian Province (CN;
Grant No. JAT210041), and the Natural Science Foundation of
Fujian Province (CN; Grant No. 2022J05116).

APPENDIX A: DISSIPATIVE PERTURBATION

We present the perturbation analysis of the impact of
dissipative perturbation on a gap-closing transition or level
anticrossing in this Appendix. Gap closing or anticrossing
typically involves two states, the ground state |�g〉 and the
excited state |�e〉, which approach and move away from
each other when coupling strength η is tuned. We assume
the original Hamiltonian H0(η) is perturbed by a dissipative
perturbation Hp = iλVp, with Vp being a Hermitian Hamilto-
nian and λ being a small parameter, which generally can be
implemented with state-dependent loss in experiment [25,33].
We assume H0, Hp, and the total Hamiltonian H = H0 + Hp

possess the product of parity (P) and time-reversal (T ) sym-
metries, i.e., the so-called PT symmetry: PT H0(PT )−1 =
H0, PT Hp(PT )−1 = Hp and PT H (PT )−1 = H . Without
loss of generality, we also assume H0 does not commutate
with Hp, and thus, Hp perturbatively mixes the eigenstates of
H0.

Let us employ perturbation theory to analyze the impact
of Hp on the spectra of H0. Specifically, for the zero-order
eigenstates |�ξ 〉 and eigenvalues Eξ , which satisfy H0|�ξ 〉 =
Eξ |�ξ 〉, the perturbation expansion of the Schrodinger equa-
tion is given by

(H0 + iλVp)(|�ξ 〉 + |� (1)
ξ 〉 + · · · )

= (Eλ + E (1)
ξ + · · · )(|�ξ 〉 + |� (1)

ξ 〉 + · · · ), (A1)

where |� (n)
ξ 〉 and E (n)

ξ are the nth-order corrections of the
eigenstates and eigenenergies. It is worth noting that our un-
perturbed Hamiltonian is Hermitian. It is essentially different
from the perturbation theory of a non-Hermitian Hamiltonian
[45], where the zeroth-order basis is defined in the framework
of biorthogonal theory [43]. By matching order by order, we
derive

H0|�ξ 〉 = Eξ |�ξ 〉,
H0

∣∣� (1)
ξ

〉 + iλVp|�ξ 〉 = Eξ

∣∣� (1)
ξ

〉 + E (1)
ξ |�ξ 〉,

· · · . (A2)

Multiplying 〈�ξ | from the left, we derive E (1)
ξ =

iλ〈�ξ |Vp|�ξ 〉, as 〈�ξ |� (1)
ξ 〉 = 0.

By noting that PT iVp(PT )−1 = −iPT Vp(PT )−1 =
iVp, we derive PT Vp(PT )−1 = −Vp. On the other
hand, PT H0(PT )−1 = H0, and thus, PT H0|�ξ 〉 =
H0(PT |�ξ 〉 = E (PT |�ξ 〉). It follows that PT |�ξ 〉 =
eiφ |�ξ 〉 with certain phases φ, and E (1)

ξ =
iλ〈�ξ |(PT )−1(PT )Vp(PT )−1(PT )|�ξ 〉 = −E (1)

ξ , provided

that |�ξ 〉 is not degenerate. This implies E (1)
ξ = 0.

The second-order corrections of energy, E (2)
ξ =

−λ2 ∑
ξ̄ �=ξ |〈�ξ |Vp|�ξ̄ 〉|2/(Eξ − Eξ̄ ), thus become dominant.

We assume that the energy gap between the two states
|�ξ=e,g〉 becomes small (anticrossing) and even close when η

is tuned. In the regime where the energy gap is small, we can
assume that other levels are relatively far from |�g〉 and |�e〉.
The above expression for E (2)

ξ implies that the dissipative
perturbation leads to the higher eigenvalue Ee tending to
decrease and the lower one Eg increasing. Then an energy gap
tends to be closed by a dissipative perturbation, in contrast to
the case of a Hermitian perturbation, which usually opens an
energy gap or enhances the anticrossing effect.

Assuming the two levels whose energy gap is to be consid-
ered are |�g〉 and |�e〉 with Ee > Eg, when the perturbation
strength λ � �E ≡ (Ee − Eg), the energy gap becomes small
but is still real and finite. The spectra are still real, and the
PT symmetry is unbroken. When �E � λ, the dissipative
perturbation becomes dominant, and degenerate perturbation
can be approximately applicable. The perturbation matrix

M = iλ

(〈�e|Vp|�e〉 〈�e|Vp|�g〉
〈�g|Vp|�e〉 〈�g|Vp|�g〉

)
(A3)

is a skew-Hermitian matrix satisfying M† = −M and thus has
purely imaginary spectra. The PT symmetry is broken in this
regime.

Although the critical value of λ corresponding to the EPs
that connect the broken and unbroken PT symmetry regimes
cannot be fixed in the perturbation analysis, the form of E (2)

ξ

indicates that it should occur when λ is comparable to the
zero-order energy gap �E . Since λ is small, the breaking
of PT symmetry will happen only in the small-gap regime
of H0. Therefore, a bubble breaking the PT symmetry, with
imaginary spectra inside and two EPs at the ends, will emerge
when the coupling strength η is tuned across the gap-closing
points or anticross points with small minimum gap of H0.

APPENDIX B: EXPERIMENTAL IMPLEMENTATION

The analogs of a generic PT -symmetric model H = ησz +
δ0σ0 + δyσy + iγ σx with spin-dependent dissipations have
been realized on different experimental platforms, including
optical systems [46–48], ultracold atoms [49–51], ion traps
[25,52], nitrogen-vacancy centers [34,53,54], and supercon-
ducting circuits [35,55–57]. For example, for superconducting
circuits, such a model can be specifically realized with a
dissipative qubit with a dissipation rate of κq. The dissipation
process can be realized by coupling the qubit with a lossy
resonator with a photonic decaying rate κr . When no photon
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is leaked into the environment, the system’s evolution is gov-
erned by the non-Hermitian Hamiltonian (setting h̄ = 1)

HNH = �(eiθ a†|g〉〈e| + e−iθ a|e〉〈g|) − i

2
κra†a − i

2
κq|e〉〈e|,

(B1)

where |e〉 (|g〉) denotes the upper (lower) level of the dissipa-
tive qubit, a† (a) denotes the creation (annihilation) operator
for the resonator modes, � denotes the coupling strength,
and θ denotes the phase angle of the driving field. To mod-
ulate the coupling strength � and the phase angle θ in a
preset sideband, an ac flux is applied to the qubit. The energy
gap of the qubit is tuned as ωq = ω0 + ε cos(νt ), where ω0

is the mean |e〉-|g〉 energy difference and ε and ν denote
the modulating amplitude and frequency, respectively. This
property enables the system dynamics to be restricted within
the reduced Hilbert subspace {|e, n − 1〉, |g, n〉} (n � 1) when
the system initially has a definite quantum number, where the
number in each ket denotes the photon number of the res-
onator. In such a subspace, we can redefine the basis vectors
of the system as |1〉 = |e, n − 1〉, |0〉 = |g, n〉. When we focus
on the single-excitation case (n = 1), the Hamiltonian of the

system can be rewritten as

HNH = �(eiθ |0〉〈1| + e−iθ |1〉〈0|) − i

2
κr |0〉〈0| − i

2
κq|1〉〈1|

= � cos(θ )(|0〉〈1| + |1〉〈0|)
− � sin(θ )(−i|0〉〈1| + i|1〉〈0|)

− i(κr + κq)

4
(|0〉〈0| + |1〉〈1|)

− i(κr − κq)

4
(|0〉〈0| − |1〉〈1|). (B2)

After rewriting it in the matrix form, we get

HNH =�cos(θ )σx − �sin(θ )σy − i(κr + κq)

4
σ0

− i(κr − κq)

4
σz,

(B3)

where σx = |0〉〈1| + |1〉〈0|, σy = −i|0〉〈1| + i|1〉〈0|, σ0 =
|0〉〈0| + |1〉〈1|, and σz = |0〉〈0| − |1〉〈1|. This is an analog of
the generic PT -symmetric Hamiltonian that we focus on in
this work. If we adjust the coupling strength � and the phase
angle θ , the corresponding nonadiabatic transitions should be
observed in the experiment.
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