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The quantum version of Kramers turnover theory is generalized beyond the parabolic barrier approximation.
The result is a uniform instanton-based quantum Kramers turnover theory that does not display any divergence at
what is known as the crossover temperature. The theory is analyzed using a model of a particle trapped in a cubic
potential. As the temperature is lowered, the maximum in the Kramers turnover curve moves to lower friction
values. When the temperature is sufficiently low, the quantum rate at low friction becomes almost independent
of the friction strength.
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I. INTRODUCTION

Originally, the central challenge underlying what is known
as “Kramers’ turnover theory” was to find an expression for
the thermal rate of escape of a trapped classical particle as a
function of the friction acting on it, for all values of the fric-
tion. Kramers [1], using a Langevin equation model, showed
that at low friction the rate increases linearly with the friction
coefficient, while at high friction it decreases inversely to the
friction. The challenge was to find a solution which covers
the whole range of friction coefficients. This challenge was
answered in two steps. The first step was by Mel’nikov and
Meshkov (MM) [2], who solved for the energy activation
and deactivation when the friction was small to moderate.
The second was to merge the MM formal derivation within
a normal-mode picture of the dynamics [3], leading to an ex-
pression valid for all values of the friction coefficient [4]. This
last result, known as Pollak-Grabert-Hänggi (PGH) theory [5],
was recently extended to include also the rate of escape and
diffusion of a particle on a periodic surface [6,7]. Kramers’
turnover was observed experimentally [8]. A recent review of
the theory may be found in Ref. [9].

The turnover theory was generalized to include quantum
tunneling effects in Ref. [10] and followed by similar devel-
opments in Refs. [5,11]. The quantum version of the turnover
theory was based on the usage of parabolic barrier trans-
mission and reflection coefficients. As a result, it was valid
only for temperatures higher than the “crossover temperature”
kBT � h̄λ‡

2π
, where λ‡ is the normal-mode barrier frequency as

described below. This difficulty was not limited to Kramers’
theory. Wolynes [12] derived an expression for the rate in the
spatial-diffusion-limited regime which suffered from the same
difficulty. Miller [13] and later Coleman [14] derived what
is known as the instanton (also known as the bounce in the
physics literature [15,16]) expression for the thermal rate, and
it, too, diverged when the temperature reached the “crossover
temperature.” Over the years different approaches were sug-
gested to overcome this difficulty [17–23]. This divergence
problem was resolved recently in Refs. [24,25] by employing
Kemble’s version [26] of the semiclassical transmission and
reflection probabilities leading to a uniform instanton rate

theory [Eq. (3.7) below]. If one defines the crossover temper-
ature as that temperature at which the instanton energy equals
the barrier energy, then in the uniform instanton rate theory
this occurs when h̄βλ‡ = π [λ‡ is the friction-dependent bar-
rier frequency, see Eq. (2.5) below] but not 2π , as in the old
theory. The crossover temperature in the uniform semiclassi-
cal theory is twice as high as the “old” crossover temperature.
Not less important is the fact that there does not exist a diver-
gence at the “crossover temperature” as in the old theory. The
purpose of the present paper is to use the uniform instanton
rate theory to generalize the quantum turnover theory so that
it, too, does not suffer from divergences. This instanton-based
turnover theory turns out to be a generalization of the quantum
turnover formula of Ref. [10].

In Sec. II we review briefly the latest version of turnover
theory [6,27] based on the parabolic barrier reflection and
transmission coefficients. We then present in Sec. III the uni-
form semiclassical version of Wolynes’ tunneling correction
factor as derived in Ref. [25]. This gives a spatial diffusion
factor which does not diverge at the “crossover temperature.”
The central part of this paper is the derivation of the uniform
instanton-based depopulation factor, leading to a divergence-
less quantum turnover theory expression for the rate. To get a
feeling for the resulting uniform instanton turnover theory, we
present some numerical applications using a cubic-potential-
based model for the escape rate of a particle trapped in a well.
We end with a Discussion of the assumptions underlying the
theory and their limitations.

II. SHORT REVIEW OF TURNOVER THEORY

The goal of the turnover theory is to provide an expression
for the escape rate of a particle with mass M and coordinate
q trapped in a well, located at q0 with harmonic frequency ω0

and energy E = 0, which can escape through a barrier located
at q = 0 with imaginary barrier frequency ω‡ and barrier
energy V ‡ which separates the well from a continuum. The
classical equation of motion of the particle is a generalized
Langevin equation (GLE) of the form

Mq̈ + dV (q)

dq
+ M

∫ t

0
dt ′γ (t − t ′)q̇(t ′) = F (t ). (2.1)
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F (t ) is a Gaussian random force with zero mean and correla-
tion function,

〈F (t )F (t ′)〉 = MkBT γ (t − t ′), (2.2)

where γ (t ) is the friction function, kB is Boltzmann’s constant,
and T is the temperature. The potential is written as

V (q) = − 1
2 Mω‡2q2 + V1(q), (2.3)

and V1(q) is termed the nonlinear part of the potential func-
tion. Kramers’ turnover theory is aimed at providing an
expression for the thermal escape rate of the particle as a func-
tion of friction strength, friction memory, and temperature.

When one ignores the nonlinear part of the potential, the
resulting Hamiltonian has a quadratic form and may be diago-
nalized [28]. The (unstable) mass-weighted normal mode and
associated momentum are denoted as ρ and pρ , respectively.
The stable bath normal-mode coordinates and momenta are
denoted as y j and pyj , respectively. The full Hamiltonian may
then be expressed as

H = p2
ρ

2
− 1

2
λ‡2ρ2 + V1(q) + 1

2

N∑
j=1

[
p2

y j
+ λ

‡2
j y2

j

]
, (2.4)

where λ
‡
j denotes the frequency of the jth normal mode

at the barrier. λ‡ denotes the unstable normal-mode barrier
frequency, and it may be obtained through the Kramers-Grote-
Hynes relation [1,29], formalized by Hänggi and Mojtabai
[30]:

λ‡2 + γ̂ (λ‡)λ‡ = ω‡2, (2.5)

where the “hat” notation as in γ̂ (s) denotes the Laplace trans-
form, in this case, of the time-dependent friction. The system
coordinate q may be expressed in terms of the normal modes
as

√
Mq = u00ρ + u1σ, (2.6)

with

u1σ =
N∑

j=1

u j0y j (2.7)

and

u2
1 = 1 − u2

00 =
N∑

j=1

u2
j0. (2.8)

The nonlinear part of the potential V1(q) couples the mo-
tion of the unstable normal mode to that of the stable normal
modes. The matrix element u j0 is the projection of the system
coordinate on the jth normal mode. The projection of the
system coordinate on the unstable mode u00 is given by the
relation [4,28]

u2
00 =

[
1 + 1

2

(
γ̂
(
λ‡
)

λ‡
+ ∂γ̂ (s)

∂s

∣∣∣∣∣
s=λ‡

)]−1

. (2.9)

The normal-mode “friction kernel” is defined as

K (t − t ′) =
N∑

j=1

u2
j0

λ
‡2
j

cos[λ‡
j (t − t ′)]. (2.10)

Using properties of the normal-mode transformation (see, for
example, Eq. (2.17) of Ref. [28]) one may readily express
the Laplace transform of the kernel in terms of the Laplace
transform of the friction function so that it is known in the
continuum limit. The spectral density of the stable modes is
[10,28]

I (λ) = λRe[K̂(iλ)] = λRe[γ̂ (iλ)]

(ω‡2 + λ2)2 + λ2γ̂ (iλ)γ̂ (−iλ)
.

(2.11)

To obtain the turnover expression for the rate, we use
the modern version of the turnover theory, as described in
Refs. [6,27]. The zeroth-order dynamics of the unstable nor-
mal mode is determined by the zeroth-order unstable mode
Hamiltonian:

Hρ = p2
ρ

2
+ V

(
λ‡

√
Mω‡

ρ

)

= p2
ρ

2
− 1

2
λ‡2ρ2 + V1

(
λ‡

√
Mω‡

ρ

)
. (2.12)

Close to the barrier top, the zeroth-order barrier remains
quadratic in the unstable mode coordinate. The zeroth-order
dynamics of the stable bath normal modes is that of a collec-
tion of uncoupled harmonic oscillators.

Expanding the Hamiltonian to leading order in the cou-
pling to the bath, one obtains a forced oscillator equation of
motion for the stable modes, where the force is determined
by the zeroth-order motion of the unstable mode. Following
the PGH methodology, the (reduced) average energy δ(E ) =
β�E (E ) (with β = 1/(kBT ) the inverse temperature) gained
by the bath as the unstable mode traverses from the barrier
over the well and back to the barrier at the energy E as given
by

δ(E ) ≡ β

2πM

∫ ∞

−∞
dλλI (λ)

×
∣∣∣∣∣
∫ τ (E )/2

−τ (E )/2
dt exp (−iλt )V ′

1

(
λ‡ρt,0√

Mω‡

)∣∣∣∣∣
2

, (2.13)

where it is understood that ρt,0 is the unperturbed periodic
classical trajectory of the unstable mode initiated at energy E
at the turning point close to the barrier, moving over the well
to the other turning point and returning. The period of the orbit
is τ (E ). Quantum effects may be added following the same
developments as in Ref. [10], and finite barrier effects which
are important when βV ‡ ∼ 1 may be included as in Ref. [6].
To simplify, these will be henceforth ignored.

The expression for the quantum thermal rate as derived in
Ref. [10] is a product of three factors:

(β ) = ω0

2π
exp(−βV ‡)ϒ

λ‡

ω‡
�. (2.14)

ω0
2π

exp(−βV ‡) is the harmonic classical transition-state the-
ory rate, ϒ is termed the depopulation factor and accounts
for the energetic excitation and deexcitation of the particle
in the well, and λ‡

ω‡ �W is the spatial diffusion factor. In the
previous quantum theory of Ref. [10], the spatial diffusion
factor as well as the depopulation factor were derived by

022242-2



INSTANTON-BASED KRAMERS TURNOVER THEORY PHYSICAL REVIEW A 109, 022242 (2024)

assuming a parabolic barrier approximation for the energy-
dependent transmission and reflection probability through the
barrier. As a result, the spatial diffusion factor was taken to be
the transition-state theory expression for the parabolic barrier
[31]:

�W = ω‡

ω0

sinh
( h̄βλ0

2

)
sin
( h̄βλ‡

2

) πN
j=1

⎡
⎣ sinh

( h̄βλ j

2

)
sinh

( h̄βλ
‡
j

2

)
⎤
⎦. (2.15)

Here, the potential V (q) is assumed to be harmonic around
the well so that the Hamiltonian in the region of the well is
quadratic and may also be diagonalized to give the N + 1
stable frequencies λ j, j = 0, . . . , N . As shown in Ref. [31],
Eq. (2.15) is equivalent to Wolynes’s expression

�W = π∞
k=1

[
ω2

0 + ν2
k + νk γ̂ (νk )

]
[−ω‡2 + ν2

k + νk γ̂ (νk )
] , (2.16)

where νk = 2πk
h̄β

is the kth Matsubara frequency.
The turnover theory, like any quantum tunneling proba-

bility based on a parabolic barrier approximation, diverges
when the inverse temperature is such that h̄βλ‡ = 2π . The
depopulation factor as derived in Ref. [10] is also based on
the parabolic barrier reflection and transmission probabilities
so that it, too, is valid, provided that h̄βλ‡ < 2π . The central
goal of this paper is to extend the quantum turnover theory
such that it does not have a divergence.

III. UNIFORM INSTANTON SEMICLASSICAL RATE
THEORY IN THE SPATIAL DIFFUSION LIMIT

To generalize the turnover theory it is necessary to derive
the expression in the spatial-diffusion-limited regime so that
it does not diverge, as well as to modify the derivation of
the depopulation factor so that it includes anharmonic effects
in the tunneling probabilities. For the sake of completeness,
we briefly review here the uniform instanton spatial-diffusion-
limited rate as presented in Ref. [24]. Throughout, we assume
that the motion along the unstable mode is separable from
the other modes, governed by the Hamiltonian of Eq. (2.12).
The quantum transmission probability is then approximated
using the uniform expression of Kemble [26], which involves
a classical periodic orbit on the upside-down potential energy
surface (the instanton) and is obtained with the classical Eu-
clidean action. The assumption that this orbit may be obtained
using the separable approximation is valid at high tempera-
tures where the dynamics is determined mainly around the
barrier energy. The assumption of separability becomes more
questionable as the temperature is lowered and the motion
occurs further away from the barrier top. There are additional
limitations. In principle, in the well, especially at low ener-
gies, if the friction is not too large, one will have broadened
resonance states, and these, too, should be taken into consid-
eration. These limitations will be discussed below.

Using quantum transition-state theory, which is exact
within the separable approximation we are using, one has that
the rate expression is the ratio of the partition function of the
stable modes at the barrier to the partition function of the
reactants multiplied by the one-dimensional quantum thermal

transmission factor through the barrier κ (β ):

SD = 1

2π h̄β

Q‡

Q0
κ (β ). (3.1)

The reactant is in the well and assumed to be harmonic so that

Q0 = πN
j=0

[
1

2 sinh
( h̄βλ j

2

)
]
. (3.2)

The partition function of the stable normal modes at the bar-
rier is

Q‡ = πN
j=1

⎡
⎣ 1

2 sinh
( h̄βλ

‡
j

2

)
⎤
⎦. (3.3)

The transmission factor through the barrier is

κ (β ) = β

∫ ∞

0
dE exp (−βE )T (E ), (3.4)

where T (E ) is the transmission probability through the barrier
at energy E . In the turnover theory of Ref. [10] this transmis-
sion factor was taken to be the parabolic barrier transmission
factor

Tpb(E ) = 1

1 + exp
[

2π
h̄λ‡ (V ‡ − E )

] , (3.5)

and the reflection coefficient Rpb(E ) = 1 − Tpb(E ). The corre-
sponding parabolic barrier thermal transmission factor is well
known,

κpb(β ) = β

∫ ∞

−∞
dE exp (−βE )Tpb(E )

= exp(−βV ‡)
h̄βλ‡

2

sin
( h̄βλ‡

2

) , (3.6)

and it diverges when h̄βλ‡ = 2π .
It is here that we first depart from the parabolic barrier ap-

proximation by assuming that the transmission and reflection
probabilities at energy E are given by the uniform semiclassi-
cal expression of Kemble [26]:

Tusc(E ) = 1

1 + exp
[

1
h̄ S(E )

]≡ 1 − Rusc(E ), (3.7)

where S(E ) is usually taken to be the Euclidean action of the
unstable mode through the barrier [13],

S(E ) =
∮

dρ

√
2

[
V

(
λ‡

√
Mω‡

ρ

)
− E

]
. (3.8)

The thermal transmission factor may then be estimated by
steepest descent, where the steepest descent condition at the
(inverse) temperature β is such that the energy Eβ of the
instanton (the periodic orbit on the upside-down potential) is
determined by

h̄β = − 1

1 + exp
(− S(Eβ )

h̄

) dS(Eβ )

dEβ

= 1

1 + exp
(− S(Eβ )

h̄

)τ (Eβ ), (3.9)
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where τ (Eβ ) = − dS(Eβ )
dEβ

is the period of the instanton at the
energy Eβ . Modifying the steepest descent estimate so that
at high energies where the transmission coefficient goes to
unity the integrand is exponential in the energy rather than
Gaussian, as described in Ref. [24], one obtains the steepest
descent estimate for the transmission factor

κusc(β ) 	 exp

[
−�(Eβ )

h̄

]

×
√

π h̄β2

2�2(Eβ )

⎡
⎣1 + erf

⎛
⎝
√

h̄β2

2�2(Eβ )

⎞
⎠
⎤
⎦

+ exp

[
− h̄β2

2�2(Eβ )

]
, (3.10)

where

�(E )

h̄
= βE + ln

[
1 + exp

(
−S(E )

h̄

)]
, (3.11)

and �2(Eβ ) is the second derivative with respect to the energy
at the steepest descent energy E = Eβ .

The spatial-diffusion-limited rate is thus

SD = 1

π h̄β
κusc(β ) sinh

(
h̄βλ0

2

)
πN

j=1

⎡
⎣ sinh

( h̄βλ j

2

)
sinh

( h̄βλ
‡
j

2

)
⎤
⎦

≡ ω0

2π
exp(−βV ‡)

λ‡

ω‡
�Uniform, (3.12)

identifying the uniform semiclassical version of the Wolynes
factor �W as

�Uniform = κusc(β )

κpb(β )
�W

= exp(βV ‡)κusc(β )π∞
k=1

×
[
ω2

0 + ν2
k + νk γ̂ (νk )

]
(νk + λ‡)

ν2
k [νk + λ‡ + γ̂ (νk )]

, (3.13)

where the second line has been derived in Ref. [25]. It remains
to derive an expression for the depopulation factor which is
based on the uniform instanton approximation.

IV. THE DEPOPULATION FACTOR

To derive the expression for the depopulation factor, we
follow as much as possible, using the same notation, the steps

described in the Appendix of Ref. [10]. For this purpose we
define the dimensionless energy

ε = β(E − V ‡), (4.1)

which vanishes at the barrier energy. We denote by n(ε) the
stationary probability for finding the system at (reduced) en-
ergy ε at the turning point closest to the barrier. At steady state
(Eq. (4.3) of Ref. [10]),

n(ε) =
∫ ∞

−∞
dε′P(ε − ε′)Rusc(ε′)n(ε′), (4.2)

where P(ε − ε′) is the transition probability kernel for the
particle to start at the turning point next to the barrier with
energy ε′, move to the other turning point, and return to the
barrier with energy ε. The details of this kernel are discussed
further below. The lower bound of −∞ in the equation is
taken due to the fact that at E = 0, ε = −βV ‡, and we assume
that ∞ 	 βV ‡ 
 1. The boundary condition on n(ε) is that
at sufficiently low energy it is the equilibrium probability as
in Eq. (A6). In contrast to the choice of the parabolic barrier
reflection and transmission coefficient used in Ref. [10], we
introduce here the uniform semiclassical coefficients as in
Eq. (3.7). Using the notation

N (ε) = Rusc(ε)n(ε), (4.3)

one rewrites the steady-state equation as(
1 + exp

[
−1

h̄
S(ε)

])
N (ε) =

∫ ∞

−∞
dε′P(ε − ε′)N (ε′).

(4.4)

At this point we depart from the derivation of Ref. [10].
We are interested in the stationary probability at the instanton
energy εβ rather than at the barrier top. For this purpose we
expand the action about the steepest descent energy up to the
linear term:

S(ε) 	 S(εβ ) − τ (εβ )

β
(ε − εβ ). (4.5)

Denoting the two-sided Laplace transform as

Ñ (is) =
∫ ∞

−∞
dεN (ε) exp (−εs) (4.6)

and taking the two-sided Laplace transform of the steady-state
equation (4.4), one finds after rearranging that

Ñ

[
i

(
s − τ (εβ )

h̄β

)]
= − exp

[
1

h̄
S(εβ ) + τ (εβ )εβ

h̄β

]
[1 − P̃(is)]Ñ (is). (4.7)

This result is identical in form to Eq. (A3) of the Appendix of Ref. [10], except for the additional constant term (not dependent
on s) exp[ 1

h̄ S(εβ ) + τ (εβ )εβ

h̄β
]. As shown in the Appendix, one may then follow the derivation given in the Appendix of Ref. [10]

to find the central result for the “uniform” depopulation factor:

ϒuniform = exp

⎧⎨
⎩ h̄β

τ (Eβ )
sin

(
π h̄β

τ (Eβ )

)∫ ∞

−∞
dy

ln
[
1 − P̃

(
y − i

2

)]
(

cosh
[ 2π h̄β

τ (Eβ ) y
]− cos

[
π h̄β

τ (Eβ )

])
⎫⎬
⎭. (4.8)
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This should be compared to the previous, parabolic barrier transmission probability–based result given in Eq. (4.13) of
Ref. [10]:

ϒpb = exp

{
h̄βλ‡

2π
sin

(
h̄βλ‡

2

)∫ ∞

−∞
dy

ln
[
1 − P̃

(
y − i

2

)]
(

cosh
[
h̄βλ‡y

]− cos
[ h̄βλ‡

2

])
}

. (4.9)

At high temperature, the energy of the instanton is close to
the barrier so that τ (Eβ ) 	 2π/λ‡ and the uniform result
of Eq. (4.8) reduces formally to the result of Eq. (4.9). On
the other hand, as may be seen from the steepest descent
condition of Eq. (3.9), h̄β

τ (Eβ ) � 1, so that for any temperature

sin( π h̄β

τ (Eβ ) ) � 0, and the so-called crossover temperature does
not affect the uniform depopulation factor.

The final working expression for the rate is the turnover
expression

 = ω0

2π
exp(−βV ‡)

λ‡

ω‡
�Uniformϒuniform, (4.10)

and all divergences have been eliminated.
The remaining question is the kernel P̃(y − i

2 ). Ignor-
ing the lowest-order quantum correction as in Eq. (3.23) of
Ref. [10], we have that

P̃

(
y − i

2

)
= exp

[
−δ
(
Eβ

)(
y2 + 1

4

)]
. (4.11)

In the parabolic-barrier-based turnover theory, the energy loss
is associated with the orbit that is initiated asymptotically
close to the barrier top, crosses the well, reaches the inner
turning point, and then comes back to the barrier. In the
present uniform instanton-based theory, the energy loss is
along the trajectory whose energy is the steepest descent in-
stanton energy Eβ rather than the barrier energy. This implies
that typically, one would have to evaluate the energy loss
numerically, since this energy-dependent trajectory, except for
some special cases, cannot be obtained analytically.

V. EXAMPLE – A CUBIC-POTENTIAL-LIKE MODEL

To get a better feeling for the instanton-based turnover the-
ory, we will study a model system whereby almost everything
can be performed analytically. We consider a cubic potential

V (q) = −Mω‡2

2
q2

(
1 + q

q0

)
+ 2Mω‡2q2

0

27
(5.1)

with Ohmic friction γ (t ) = 2γ δ(t ), with γ the friction co-
efficient and δ(t ) the Dirac δ function. From previous work
[10] we know that as long as the (reduced) friction coef-
ficient γ /ω‡ is of the order of unity and lower, the PGH
reduced energy loss as given in Eq. (2.8) is very close to
the Mel’nikov-Meshkov energy loss. So, to simplify, we will
assume that the energy loss is given by the MM form, which
is

δ(E ) = βγ σ (E ), (5.2)

where σ (E ) is the real action of a trajectory moving in the well
at energies between 0 and V ‡. For the tunneling action we base

ourselves on the vibrational perturbation theory result [32,33]
as discussed in the second Appendix. Due to the symmetry of
the cubic potential, we may similarly approximate the energy-
dependent energy loss following MM so that

S(E ) = 4πV ‡

λ‡

⎡
⎣18

5

⎛
⎝1 −

√
13

18
+ 5

18

(
E − E0

V ‡

)⎞⎠

+

⎛
⎜⎝1 − 1√

1 − 5
18

E0
V ‡

⎞
⎟⎠
(

1 −
√

E

V ‡

)⎤⎥⎦ (5.3)

with

E0 = − 7h̄2λ‡2

32 × 27 × V ‡
. (5.4)

This form is not the exact action for a cubic oscillator but
has the property that at the barrier energy S(0) 	 36V ‡

5λ‡ × 0.94,

which is quite close to the exact action of 36V ‡

5λ‡ and S(V ‡) 	 0
(note that for the parameters we will use, −E0/V ‡ is typically
much smaller than unity).

At the same time the period associated with this action is

τ = 2π

λ‡

⎡
⎢⎣ 1√

13
18 + 5

18

(
E

V ‡ + 7h̄2λ‡2

32×27×V ‡2

)

+

⎛
⎜⎝1 − 1√

1 − 5
18

E0
V ‡

⎞
⎟⎠
√

V ‡

E

⎤
⎥⎦ (5.5)

so that τ (V ‡) 	 2π/λ‡, that is, around the barrier energy
we regain the parabolic barrier period while τ (0) → ∞ as it
should. We are thus assured that this choice of an analytic
form mimics semiquantitatively the true instanton action of
the cubic potential.

Since the real and upside-down cubic potential lead to the
same action, we use this same form to approximate the real
action for motion in the well, that is, we choose

σ (E ) = 4πV ‡

λ‡

[
18

5

(
1 −

√
13

18
+ 5

18

V ‡ − E

V ‡

)]
. (5.6)

For this real action we have that σ (0) = 0 while σ (V ‡) 	
36V ‡

5λ‡ × 0.94, mimicking the true action and period reasonably
well. With these preliminaries we can compute the rate.

A. The spatial diffusion rate

First we compare between the “uniform Wolynes factor”
of Eq. (3.13) and the parabolic-barrier-based Wolynes factor
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FIG. 1. The (dimensionless) steepest descent energy (Eβ ≡
E/V ‡) is plotted as a function of the (reduced) inverse temperature
(u = h̄βω‡) for a few values of the (reduced) friction coefficient
γ /ω‡.

of Eq. (2.16). For the cubic potential the well and barrier
frequencies are identical in magnitude, so that the Wolynes
factor depends only on the reduced inverse temperature h̄βω‡

and the reduced friction coefficient γ /ω‡. For the uniform
factor one needs to estimate the thermal transmission coef-
ficient κ (β ) as in Eq. (3.4). For this purpose we use the
semiclassical uniform-energy-dependent transmission factor
given in Eq. (3.7) and the action function given in Eq. (5.3)
and perform the thermal averaging numerically. Here, we need
one more parameter—the reduced barrier height V ‡/(h̄ω‡),
which we take to be 4 as also used in Fig. 3 of Ref. [10],
so as to facilitate the comparison with the previous results.
Qualitatively, the results will be the same as long as the barrier
height is larger than ∼5kBT .

The semiclassical transmission factor does not vanish at
energy 0; this is one of the drawbacks of the uniform semi-
classical expression. The tunneling action at this energy,
even though it may be large, is finite. This implies that al-
though the theory overcomes the divergence associated with
the crossover temperature, care must be taken when con-
sidering very low temperature. When the reduced friction
coefficient is not too large, and this is the region in which
the depopulation factor differs from unity, one may estimate
the ground-state energy in the well to be ∼h̄ω‡/2. This im-
plies that the reduced instanton energy (Eβ/V ‡) should not
be lower than this energy, so that with our choice of pa-
rameters, the (reduced) instanton energy should be greater
than 1/8. This puts a lower limit on the temperatures to be
considered.

In Fig. 1 we plot the reduced steepest descent energy
(Eβ/V ‡) as a function of the reduced inverse temperature
u = h̄βω‡ for three different values of the reduced friction co-
efficient γ /ω‡ = 0.01, 0.1, and 0.5 using the action as given
in Eq. (5.3). One notes that when the temperature is high

(u small) the frictional effect is not large. However, at lower
temperature the effect is marked. The stronger the friction the
lower the magnitude of the normal-mode barrier frequency
λ‡ [Eq. (2.5)] as compared with the bare barrier frequency
ω‡ [Eq. (2.3)], so that the inverse temperature at which the
parabolic barrier tunneling factor diverges occurs at larger
values of h̄β = 2π

λ‡ > 2π
ω‡ , and at the same time the steepest

descent energy at a given value of u is higher. Increasing
the friction makes the dynamics more classical-like and the
steepest descent energy is then closer to the barrier height.
Considering the value of Eβ/V ‡ 	 1/8 as a cutoff for the
largest value of u, it is also clear that this value depends on
the magnitude of the friction coefficient. The dependence of
the steepest descent energy on the inverse temperature shown
in Fig. 1 is “generic.” At high temperature the energy is close
to the barrier top, and at low temperature it goes to the energy
of the well bottom. Such a structure may also be seen in Fig. 1
of Ref. [24].

With this in mind we proceed to study the Wolynes factors.
In Figs. 2 and 3 we plot the uniform (solid line) and the
“regular” (dashed line) Wolynes factors as functions of the
reduced inverse temperature for γ /ω‡ = 0.1 and 0.5, respec-
tively. From both figures one notes that as long as u = h̄βω‡ is
sufficiently distant from the divergence point of the Wolynes
factor, the uniform Wolynes factor is practically identical to
the Wolynes factor. As one comes close to the divergence
point, the Wolynes factor becomes larger than the uniform
factor. The reason for this is that the parabolic barrier version
of κ (β ) becomes too large. One also notes that as the friction
increases, the divergence point moves to higher values of
u, and this, too, is well understood. Increasing the friction
coefficient decreases the normal-mode barrier frequency λ‡.
All this has practical implications. Fitting the Wolynes factor
to experimental data could lead to rather high estimates for
the friction as compared to using the uniform Wolynes factor,
which is a better approximation.

B. The depopulation factor

It is of interest to compare the uniform depopulation factor
as given in Eq. (4.8) with the “old” parabolic-barrier-based
depopulation factor as given in Eq. (4.9). In Figs. 4 and 5
we compare the uniform depopulation factor (blue solid line)
with the parabolic-barrier-based factor (green, dashed line)
for a reduced friction value of 0.01 and 0.05, respectively.
In principle, the depopulation factor is limited to be below
unity (black solid line in the left panels). This is the case for
the uniform depopulation factor, but as can be seen, when
u becomes sufficiently large, the parabolic-barrier-based ex-
pression becomes invalid due to the fact that h̄βλ‡ becomes
greater than 2π .

The low values (0.01,0.05) of the reduced friction co-
efficient were chosen, since at higher values the energy
loss becomes too large, and the depopulation factor ap-
proaches unity for the whole temperature range considered.
In both figures the right panel shows the same data as
the left panel, but at a reduced range of u to show that
the differences between the two depopulation factors are
rather small, as long as the parabolic-barrier-based expres-
sion is valid. One notes that as the friction increases, the

022242-6



INSTANTON-BASED KRAMERS TURNOVER THEORY PHYSICAL REVIEW A 109, 022242 (2024)

FIG. 2. Wolynes factors at a reduced friction of 0.1. u = h̄βω‡ is the reduced inverse temperature. The green dashed line shows the
Wolynes factor, the solid blue line is the uniform Wolynes factor. The left panel demonstrates the divergence of the Wolynes factor and
the continuity without any divergence of the uniform Wolynes factor. The right panel shows the same data but on an expanded u scale so that
the differences between the two factors at temperatures below the so-called crossover temperature are obviated. (Note that the Wolynes factors
are dimensionless.)

oscillations in the parabolic barrier depopulation factor be-
come smaller. For the model parameters we used, these
oscillations become negligible when the reduced friction
reaches ∼0.1; however, the expression remains invalid, as
discussed.

It is also of interest to note that when the temperature is
sufficiently low, even though the friction coefficient is small,
the depopulation factor is close to unity. This implies that at
low temperature one will hardly see the Kramers’ turnover.
This is discussed further in the next section.

FIG. 3. Wolynes factors at a reduced friction of 0.5. Other notation is as in Fig. 2.
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FIG. 4. Inverse temperature dependence of the (dimensionless) depopulation factors at a reduced friction of 0.01. The solid blue line shows
the uniform depopulation factor, while the dashed green line shows the parabolic-barrier-based factor. The solid black line in the right panel
is plotted to accentuate the value of unity. The left panel shows the dependence over a large range vs inverse temperatures to demonstrate
the unphysical characteristics of the parabolic-barrier-based factor below the “crossover temperature.” The right panels show that as long as
u � ∼6 the two factors are essentially the same.

C. The turnover rate

It remains to combine all the factors and study the resulting
rate, as given in Eq. (4.10). In Fig. 6 we provide an Arrhenius
plot of the (reduced) rate (2π/ω‡) for three different friction
values. The results shown in the figure are qualitatively similar

to the numerically exact results obtained for a similar problem
by Topaler and Makri [34], and plotted in their Fig. 12. When
the reduced friction is low (solid blue line), the rate shifts from
a linear dependence on the inverse reduced temperature u to
a flat dependence below the “crossover temperature” of ∼2π .

FIG. 5. Inverse temperature dependence of the depopulation factors at a reduced friction of 0.05. Other notation is as in Fig. 4.
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FIG. 6. Arrhenius plot of the (reduced) turnover rate (in units of
ω‡) for three different values of the (reduced) friction coefficient. The
solid blue line shows results at a reduced friction of 0.1, the dashed
red line at a reduced friction of unity, and the dashed green line at a
reduced friction of 5. For further details, see the text.

This is a notable result of the instanton-based turnover theory
presented in this paper. For u sufficiently smaller than 2π , the
previous theory [10] based on parabolic barrier transmission
coefficients is valid. When u is sufficiently larger than 2π ,
the rate becomes temperature independent and the instanton
rate is valid. The present theory reduces to both limits but
importantly, also provides the expression for the rate in the
region in between providing in a sense a complete theory for
the quantum turnover problem. As the friction is increased,
the rate decreases and tunneling sets in (as evidenced by the
nonlinear dependence on u) at much lower temperature. We
stress that this type of a plot would not be possible with
the previous turnover theory, since it would not be valid for
the low temperatures plotted here.

Finally, the central result of this section, showing the
turnover, that is the actual dependence of the rate on the
reduced friction coefficient at several values of the reduced
temperature is plotted in Fig. 7. As already found in the
numerically exact computations of Ref. [34], reducing the
temperature shifts the quantum turnover point to lower fric-
tion. At low temperature, the energy loss becomes large, the
depopulation factor tends to unity, and the instanton energy
does not change much. When the escape is dominated by tun-
neling, the depopulation factor which lowers the escape rate
becomes essentially irrelevant and the turnover disappears.
Specifically, the data shown for u = 7 (green dashed-dotted
line) could not be generated using the parabolic-barrier-based
turnover theory.

FIG. 7. Quantum-instanton-based turnover theory. The (reduced)
escape rate is plotted as a function of the reduced friction coeffi-
cient for three different values of the reduced inverse temperature.
The blue solid line, red dashed line, and green dashed-dotted line
correspond to the inverse temperatures u = 1, 4, 7, respectively. The
turnover is noticeable at high temperature (u = 1), and the turnover
point moves to lower values of the friction coefficient as the temper-
ature is reduced and finally disappears.

VI. DISCUSSION

This paper presents a generalization of the quantum
Kramers turnover theory whereby the divergence of the previ-
ous parabolic-barrier-based theory at the temperature h̄βλ‡ =
2π is eliminated. This was achieved on the basis of the fol-
lowing assumptions:

(1) The theory as presented here is based on the assump-
tion that βV ‡ 
 1. This may be relaxed by including finite
barrier corrections [27]; however, the resulting expressions do
become rather involved.

(2) The original theory for the depopulation factor us-
ing parabolic barrier transmission and reflection probabilities
[10], as well as the improved theory presented in this paper,
are based on a perturbation theory where the small parameter
is u2

1 as defined in Eq. (2.8), which is small in the weak friction
limit.

(3) The theory in the spatial-diffusion-limited regime, that
is, the generalization of the Wolynes theory, is presented using
a decoupling of the motion of the unstable normal mode from
the stable ones. This is not necessary, one may generalize, as
discussed in Ref. [25].

(4) The energy-dependent reflection and transmission co-
efficients are given by the uniform semiclassical expression
rather than the parabolic barrier result.

(5) At a given temperature, the tunneling energy Eβ is de-
termined semiclassically through the steepest descent solution
for the thermal transmission coefficient.
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(6) For a given temperature the energy loss of the particle
as it traverses the well is determined by the periodic trajectory
across the well at the steepest descent energy Eβ .

(7) Resonance phenomena in the well are ignored.
These assumptions deserve further discussion. In the pre-

vious theory, the motion of the unstable mode was naturally
decoupled from the stable modes, since the theory only con-
sidered the parabolic barrier vicinity, which by definition is
separable when performing the normal-mode transformation.
In the spatial-diffusion-limited regime, this assumption is not
essential and may be eliminated by using the multidimen-
sional instanton theory as described in Ref. [25]. In the regime
where the depopulation factor is important, necessarily, the
coupling of the unstable mode to the stable modes is weak,
and the decoupling approximation is reasonable.

The uniform semiclassical approximation for the rate is not
perfect, but as shown on tests for the symmetric and asymmet-
ric Eckart potentials [24] is quite reasonable, typically leading
to thermal transmission coefficients which are within 10% of
the exact answer, covering a very large temperature range. It
is certainly more accurate than the parabolic barrier approx-
imation and is the key to doing away with the divergence.
The steepest descent approximation indicates that the central
energy at which the tunneling occurs is a function of the tem-
perature, so it is only natural to consider the dynamics around
the temperature-dependent tunneling energy. In the previous
theory, the energy loss was always assumed to be the energy
loss at the barrier energy. At that high energy, one did not
have to be as concerned with quantum resonances in the well,
which certainly occur when the coupling between modes is
weak. The assumption was that any resonance lifetime would
be sufficiently short such that a continuum of energies would
be a reasonable approximation. This assumption becomes less
valid as the temperature is lowered and the transmission prob-
ability through the barrier becomes small. From this point of
view, one should not consider the present theory to be very
good at very low temperatures. This is, of course, true also
with regards to the assumption that the unstable mode motion
may be considered classically when considering the energy
loss to the bath. It is these observations which are the severest
criticism of the theory and indicate that it should be applied
carefully at very low temperatures.
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APPENDIX A: DERIVATION OF EQ. (4.8)

The purpose of this Appendix is to detail the derivation of
the uniform depopulation factor given in Eq. (4.8). The steps
follow those given in the Appendix of Ref. [10]. Our starting
point is the Laplace transformed steady-state equation (4.7):

Ñ

[
i

(
s − τ (εβ )

h̄β

)]

= − exp

[
1

h̄
S(εβ ) + τ (εβ )εβ

h̄β

]
[1 − P̃(is)]Ñ (is). (A1)

One rewrites Ñ (is) as a product of two functions,

Ñ (is) = Ñ1(is)Ñ2(is), (A2)

demanding that

Ñ1

[
i

(
s − τ (Eβ )

h̄β

)]

= exp

[
1

h̄
S(εβ ) + τ (Eβ )εβ

h̄β

]
[1 − P̃(is)]Ñ1(is) (A3)

Ñ2

[
i

(
s − τ (Eβ )

h̄β

)]
= −Ñ2(is). (A4)

The solution for Ñ2(is) is readily seen to be

Ñ2(is) = − π h̄βC

τ (Eβ ) sin
[

π h̄β(s+1)
τ (Eβ )

] , (A5)

where C is a constant determined by the boundary condition
that when the energy is much lower than the barrier, the
distribution n(ε) is the equilibrium distribution, so that

C = Q‡

Q0
exp(−βV ‡). (A6)

Using the notation

g̃(is) = ln Ñ1(is), (A7)

one rewrites Eq. (A3) as

g̃

[
i

(
s − τ (Eβ )

h̄β

)]
− g̃(is)

= ln[1 − P̃(is)] + 1

h̄
S(εβ ) + τ (εβ )εβ

h̄β
≡ h̃(is), (A8)

and this has the solution

g(x) = h(x)

exp
( τ (εβ )

h̄β

)− 1
. (A9)

Using the inverse Laplace transform formula, one finds (see Eq. (A11) of Ref. [10])

g̃(is) = h̄β

2iτ (εβ )

∫ z+i∞

z−i∞
dyh̃(iy)

(
cot

[
π h̄β(s − y)

τ (εβ )

]
+ cot

[
π h̄β(y + 1)

τ (εβ )

])
. (A10)

Using the definition of g̃(is) [Eq. (A7)] and the relations given in Eqs. (A2) and (A5), this implies that

Ñ (is) = − C

sin
[

π h̄β(s+1)
τ (Eβ )

] π h̄β

τ (Eβ )
exp

{
h̄β

2iτ (Eβ )

∫ z+i∞

z−i∞
dyh̃(iy)

(
cot

[
π h̄β(s − y)

τ (Eβ )

]
+ cot

[
π h̄β(y + 1)

τ (Eβ )

])}
. (A11)
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From the steady-state equation (4.6) we have that

ñ(is) = P̃(is)Ñ (is). (A12)

Using the uniform semiclassical transmission coefficient [Eq. (4.3)], noting that the escape rate is by definition

 = 1

2π h̄β

∫ ∞

−∞
dεTusc(ε)n(ε) = 1

2π h̄β

∫ ∞

−∞
dε exp

[
−1

h̄
S(ε)

]
N (ε), (A13)

and expanding the action linearly about S(εβ ) as in Eq. (4.5), one readily finds that

 = 1

2π h̄β
exp

(
−
[

1

h̄
S(εβ ) + τ (Eβ )εβ

h̄β

])
Ñ

(
−i

τ (εβ )

h̄β

)
. (A14)

Inserting the expression for Ñ (is) [Eq. (A11)], choosing the integration contour such that z = −1/2, and changing variables
from y to

v = iy + i/2, (A15)

one finds the intermediate result

 = C

2τ (Eβ ) sin
(

π h̄β

τ (Eβ )

) exp

(
−1

h̄
S(εβ ) − τ (Eβ )εβ

h̄β

)

× exp

{
h̄β

2τ (εβ )

∫ ∞

−∞
dvh̃

(
v − i

2

)(
cot

[(
iv + 1

2

)
π h̄β

τ (εβ )

]
− cot

[
π h̄β

(
iv − 1

2

)
τ (εβ )

])}
. (A16)

Using the identity

cot z1 − cot z2 = sin (z2 − z1)

sin z1 sin z2
, (A17)

one finds after some manipulation that

cot

[(
iv + 1

2

)
π h̄β

τ (Eβ )

]
− cot

[
π h̄β

(
iv − 1

2

)
τ (Eβ )

]
= 2 sin

(
π h̄β

τ (Eβ )

)[
cosh

(
2π h̄βv

τ (Eβ )

)
− cos

(
π h̄β

τ (Eβ )

)]−1

(A18)

so that ∫ ∞

−∞
dv

(
cot

[
π

(
iv + 1

2

)
h̄β

τ (Eβ )

]
− cot

[
π h̄β

(
iv − 1

2

)
τ (Eβ )

])
= 2

(
τ (Eβ )

h̄β
− 1

)
. (A19)

Using the definition of h̃(iy) [Eq. (A8)] and the constant C [Eq. (A6)] we find that

 = 1

2π h̄β

⎛
⎝ π h̄β

τ (Eβ ) sin
(

π h̄β

τ (Eβ )

)
⎞
⎠Q‡

Q0
exp

(
−βV ‡ − βS(εβ )

τ (εβ )
− εβ

)

× exp

⎧⎨
⎩ h̄β

τ (εβ )
sin

(
π h̄β

τ (Eβ )

)∫ ∞

−∞
dy

ln
[
1 − P̃

(
y − i

2

)]
cosh

( 2π h̄βy
τ (Eβ )

)− cos
(

π h̄β

τ (Eβ )

)
⎫⎬
⎭. (A20)

We also note that when using the linear expansion for the action around the energy εβ one finds that

κlin(β ) ≡ exp(−βV ‡)
∫ ∞

−βV ‡
dε exp (−ε)

1

1 + exp
( S(εβ )

h̄ − τβ

β h̄ (ε − εβ )
)

→βV ‡→∞ exp

[
−
(

βV ‡ + βS(εβ )

τβ

+ εβ

)]
πβ h̄

τβ

1

sin
(

πβ h̄
τβ

) , (A21)

so that

 = 1

2π h̄β
κlin(β )

Q‡

Q0
exp

⎧⎨
⎩ h̄β

τ (εβ )
sin

(
π h̄β

τ (Eβ )

)∫ ∞

−∞
dy

ln
[
1 − P̃

(
y − i

2

)]
cosh

( 2π h̄βy
τ (Eβ )

)− cos
(

π h̄β

τ (Eβ )

)
⎫⎬
⎭. (A22)

This suggests replacing κlin(β ) with κusc(β ) so that comparing with Eq. (4.10) this identifies the depopulation factor to be as in
Eq. (4.8).
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APPENDIX B: DETAILS OF THE CUBIC
POTENTIAL-LIKE MODEL

The thermally averaged second-order vibrational perturba-
tion theory (VPT2) [32] for the transmission coefficient is
exact in one dimension to leading order in h̄2 [35] and is there-
fore a convenient model for obtaining analytic expressions for
the instanton action. The VPT2 action in a one-dimensional
system is [36]

SV PT 2(E ) = πλ‡

χ

[
−1 +

√
1 − 4χ

λ‡2
(E − V ‡ − E0)

]
, (B1)

with

χ = 1

16λ‡2

[
−V4

λ‡4

M2ω‡4
− 5

3λ‡2
V 2

3
λ‡6

M3ω‡6

]
(B2)

and

E0 = h̄2

64λ‡2

[
−V4

λ‡4

M2ω‡4
− 7

9λ‡2
V 2

3
λ‡6

M3ω‡6

]
, (B3)

where Vj is the jth derivative of the potential at the barrier top.
For the cubic potential

V3 = −3Mω‡2

q0
, V4 = 0, (B4)

so that

χ = −15

16

λ‡2

Mω‡2q2
0

= − 5

72

λ‡2

V ‡
, (B5)

and

E0 = − 7h̄2λ‡2

32 × 27 × V ‡
. (B6)

The explicit expression for the instanton action is therefore

SV PT 2(E )

= V ‡36

5λ‡
2π

⎡
⎢⎣1 −

√√√√13

18
+ 5

18

(
E

V ‡
+ 7h̄2λ‡2

32 × 27 × V ‡2

)⎤⎥⎦.

(B7)

At threshold

SV PT 2(0) = V ‡36

5λ‡
2π

[
1 −

√
13

18
− 5

18

E0

V ‡

]
	 36V ‡

5λ‡
× 0.94,

(B8)

so that it is a good approximation to the true action of the
instanton at zero energy. However, we know that the period of
the instanton at E = 0 should diverge, while

τSV PT 2(E ) = 2π

λ‡
√

13
18 + 5

18

(
E

V ‡ + 7h̄2λ‡2

32×27×V ‡2

) (B9)

does not. To compensate for this, we then add a term to the
instanton action:

S(E ) = SV PT 2(E ) + A

(
1 −

√
E

V ‡

)
(B10)

such that

A = 4πV ‡

λ‡

⎛
⎜⎝1 − 1√

1 − 5
18

E0
V ‡

⎞
⎟⎠, (B11)

and this assures that

τ
(
V ‡
) = 2π

λ‡
, (B12)

and on the other hand, τ (0) diverges as 1/
√

E when E → 0.
Note that A � 1 so that also

S(0) 	 36V ‡

5λ‡
× 0.94. (B13)
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