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Non-Bloch PT symmetry and topological phase transition in one-dimensional
nonreciprocal topolectrical circuits
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We propose a feasible scheme to implement a one-dimensional non-Hermitian Su-Schrieffer-Heeger model
with long-range hopping using the electrical circuit system. We investigate the admittance spectrum and node
voltage density distribution of the current system. The non-Bloch PT symmetry and its breaking can be
effectively demonstrated using the saddle point theory and the ratio of complex eigenenergy. It is important
to note that the phase boundary of non-Bloch PT symmetry is solely determined by the long-range hopping
strengths. Moreover, we observe that the system exhibits zero-admittance topological end and gap modes with
varying strength relations between intercell and long-range hopping. We further represent the winding number
phase diagram, which reveals the distinct topological phase transition from w = ±1 to w = 0. Our work provides
a method to simulate nonreciprocal topolectrical circuits and contributes to understanding the interplay between
topology and non-Hermiticity.
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I. INTRODUCTION

As a complex extension of conventional Hermitian sys-
tems, non-Hermitian systems have gained significant attention
due to their widespread applications in condensed-matter
physics, which have been used to investigate the wave systems
with gain and loss [1–5], open systems [6–11], finite quasi-
particle lifetimes [12–14], and topological lasing [15–19].
Non-Hermitian systems exhibit unique characteristics that
can possess nonorthogonal eigenvectors [20,21], exceptional
points [22–25], and skin effect [26–30]. Unlike Hermitian
systems, the eigenenergy spectrum of non-Hermitian systems
has complex energy due to the lack of Hermitian conjugate
symmetry of the Hamiltonian. This complex spectrum adds
a layer of richness and complexity to the study of non-
Hermitian systems. Non-Hermitian systems have led to the
revision of the bulk-boundary correspondence [26,31–33], the
introduction of new topological invariants [26,34,35], and the
exploration of the generalized Brillouin zone (GBZ) [26,36–
42]. To enhance the theoretical framework of the GBZ, the
concept of the auxiliary GBZ has been proposed as a method
to calculate analytical solutions of the GBZ [30,41,43–45],
providing a valuable tool for studying the properties and be-
havior of non-Hermitian systems.

However, even though the Hamiltonian does not possess
Hermitian conjugate symmetry in systems with PT symme-
try, it still exhibits a purely real eigenenergy spectrum. This
counterintuitive phenomenon has been extensively studied
and exploited in various fields of research [46–50]. In contrast,
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the non-Hermitian systems composed of nonreciprocal ele-
ments, although lacking PT symmetry, can still hold a purely
real eigenenergy spectrum under the open boundary condition
(OBC), which is connected by the non-Bloch PT -symmetry
theory [51]. The non-Bloch PT symmetry and its breaking
can be determined using saddle point theory [43,51]. These
methods contribute to our understanding of the occurrence of
purely real eigenenergy in non-Hermitian systems. Moreover,
the study of non-Hermitian systems induced by nonreciproc-
ity has been extensively explored in various platforms. Among
them, the electric circuit network is one of the most promising
platforms to realize quantum simulation by the advantages of
controllability and flexibility in modulating coupling coeffi-
cients [25,52–55]. This advantage is particularly pronounced
in the context of the condensed-matter tight-binding lattice
systems, where the mode and strength of couplings would
ultimately determine the topological properties of the system.
As a result, topological electric circuit networks have earned
significant attention and have been widely studied theoreti-
cally and experimentally.

Inspired by the above work, we propose a feasible scheme
to simulate the nonreciprocal Su-Schrieffer-Heeger (SSH)
model with long-range hopping with electrical circuits con-
sisting of capacitors, inductors, and operational amplifiers.
The nonreciprocal coupling between two nodes can be real-
ized using an operational-amplifier-based negative impedance
converter with current inversion. We investigate the non-
Bloch PT symmetry of the system by analyzing the motion
of the saddle points. The non-Bloch PT -symmetry phase
boundary is given by the ratio of the complex eigenenergies.
Notably, the phase boundary of non-Bloch PT symmetry
is solely determined by the long-range hopping strengths
C4 and C5. Through the numerical calculation of the ad-
mittance spectrum and node voltage density distribution, we
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FIG. 1. Sketch of 1D nonreciprocal topolectrical circuit consisting of operational amplifiers, inductors, and capacitors, designed to simulate
a non-Hermitian SSH model with long-range hopping. (a) The dashed box indicates a unit cell with two nodes A and B. R is the unit cell index.
(b) Different types of couplings between the nodes. The yellow, red, and blue lines represent the intracell, long-range, and intercell hopping,
respectively. And the dashed box is the negative impedance converter, and it can be approximated as a capacitor of C3 pointing left and an
inductor of −C3 pointing right. (c) Grounding mechanism of electrical nodes. The inductors L and L1,(2) and the capacitors C3,(5) can be used
to eliminate the diagonal terms of the matrix H .

observe the presence of zero-admittance topological end and
gap modes in the current system. For C2 > C4, it is found
that there exists topological phase transitions with wind-
ing numbers from w = 1 to w = 0 in both the non-Bloch
PT -symmetry unbroken and broken regions. Furthermore,
the topological zero-admittance end modes are localized at
the first (or last) site. For C2 < C4, the system has the
topological phase transition with the winding number from
w = −1 to w = 0, and the topological zero-admittance gap
modes are localized at the second (or penultimate) site,
which is a significant difference compared to the case
of C2 > C4.

This paper is organized as follows. In Sec. II, we give the
model and Hamiltonian of the system. In Sec. III, we inves-
tigate in detail the relation of topological and non-Hermitian
properties of the current system in different strength relations
between the intercell and long-range hopping. Finally, a con-
clusion is given in Sec. IV.

II. MODEL AND HAMILTONIAN

As shown in Fig. 1, we consider a one-dimensional (1D)
nonreciprocal electrical circuit composed of capacitors, in-
ductors, and operational amplifiers, where each unit cell
contains two electrical nodes A and B depicted by the dashed
box. The intracell coupling mode is reciprocal, which can
be achieved by controlling the capacitors. The nonrecipro-
cal coupling of intercells can be realized using a negative
impedance converter, with Ci→ j = −Cj→i. By paralleling the
negative impedance converter with a capacitor, we can achieve

adjustable nonreciprocal coupling modes, as shown in
Fig. 1(b). For simplicity, we only consider positive coupling
strengths except for the nonreciprocal terms. In Fig. 1(c),
the nodes are connected to the ground through a common
inductor L and a common capacitor C. The nodes A require an
additional parallel connection with the variable capacitor C3

and the variable inductor L1, and nodes B require a connection
with the variable capacitor C5 and the variable inductor L2.
The voltages of the nodes are governed by Kirchhoff’s current
law and the net current satisfying IA = IB = 0. We obtain the
expression for the admittance of the common capacitor C as
follows [55]:

CVA,R = gAVA,R + C1VB,R + (C2 − C3)VB,R−1

+ (C4 + C5)VB,R+1,

CVB,R = gBVB,R + C1VA,R + (C2 + C3)VA,R+1

+ (C4 − C5)VA,R−1, (1)

where gA,B = ( 1
w2L − C1 − C2 − C4) + ( 1

w2L1,2
− C5,3), it can

be written in the form of

HV = CV, (2)

which is the nonreciprocal electric circuit equivalent of
the Schrödinger equation H |φ〉 = E |φ〉, where the ma-
trix H , the admittance eigenvalues C, and node voltages
V represent the Hamiltonian matrix H , eigenenergies E ,
and eigenestates |φ〉, respectively. V is written as V =
(VA,1,VB,1,VA,2,VB,2, . . . ,VA,L,VB,L )T and H is the matrix
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constructed on the right side of Eq. (1) with

H =

⎡
⎢⎢⎢⎢⎣

gA C1 0 C4 + C5 . . .

C1 gB C2 + C3 0 . . .

0 C2 − C3 gA C1 . . .

C4 − C5 0 C1 gB . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦.

(3)

When performing the following settings of the resonant
frequency with w = 1/

√
L(C1 + C2 + C4) and when the vari-

able inductors satisfy L1,2 = 1/(w2C5,3), the current system
is equivalent to a non-Hermitian SSH model with long-range
nonreciprocal hopping, which is described by

H =
∑

j

[C1(a†
j,Aa j,B + a†

j,Ba j,A)

+ (C2 − C3)a†
j+1,Aa j,B + (C2 + C3)a†

j,Ba j+1,A

+ (C4 − C5)a†
j+1,Ba j,A + (C4 + C5)a†

j,Aa j+1,B], (4)

where C1 is the intracell hopping strength, C2 ± C3 is the
intercell nonreciprocal hopping strength, and C4 ± C5 is the
long-range nonreciprocal hopping strength. Since the periodic
arrangement of the current electric circuit, the system satisfies
the Bloch theorem VA,B(R + r) = ei�k·�rVA,B(R). By applying
the Fourier transformations, the Hamiltonian of the system in
momentum space can be written as

H (k) =
[

0 h+(k)
h−(k) 0

]
, (5)

where h±(k) = C1 + (C2 ∓ C3)e∓ik + (C4 ± C5)e±ik . The cur-
rent system holds the chiral symmetry with the relation
σzH (k)σz = −H (k).

We can construct a diagonal matrix to transform H into a
Hermitian matrix with a similarity transformation S−1HS =
H̃ [26,46], where S = diag(1, 1, r, r, r2, r2, . . . , rL, rL ) and r
satisfies

r =
√

C4 − C5

C4 + C5
. (6)

Under the above similarity transformation operation, we re-
quire that nonreciprocal strengths C3 and C5 satisfy

C3 = C2

C4
C5. (7)

Moreover, as both C3 and C5 are variable capacitors in the
current electrical circuit, we set C5 in the form of

C5 = J cos θ, (8)

where θ represents the modulation phase. In the current
topolectrical circuits, all couplings are implemented via ca-
pacitors to ensure positive hopping strengths. To achieve sign
inversion for nonreciprocal terms, a negative impedance con-
verter can be utilized. The corresponding Hamiltonian H̃ of
the system is written as

H̃ (k) =
[

0 C1 + C̃2e−ik + C̃4eik

C1 + C̃2eik + C̃4e−ik 0

]
, (9)

where C̃4 = √
(C4 − C5)(C4 + C5) and C̃2 = C2C̃4/C4. The

non-Hermitian H becomes Hermitian for |C5| < C4 and re-
mains non-Hermitian for |C5| > C4 because r becomes purely
imaginary. According to Eq. (9), the topological phase transi-
tion of the system occurs at k = ±π for C1 = C̃2 + C̃4 and at
k = 0 for C1 = −(C̃2 + C̃4), namely,

C5 = ±C4

√
1 − C2

1

(C2 + C4)2
. (10)

For this corresponding non-Hermitian H̃ , as C̃2 and C̃4 are
purely imaginary, we need to perform C̃2 → i|C̃2| and C̃4 →
i|C̃4|. Then, we can obtain the eigenvalues of H̃ , which are
given as

E±(k) = ±
√

f (k),

Im[ f (k)] = 2iC1(|C̃2| + |C̃4|) cos k,

Re[ f (k)] = C2
1 − (|C̃2|2 + |C̃4|2 + 2|C̃2||C̃4| cos 2k). (11)

After solving E±(k) = 0, with k = ±π/2, the topological
phase transition occurs at C1 = ±(|C̃2| − |C̃4|), namely,

C5 = ±C4

√
1 + C2

1

(C2 − C4)2
. (12)

According to the previous discussion, the presence of the
Hermitian Hamiltonian H̃ indicates the existence of a purely
real spectrum, corresponding to the non-Bloch PT -symmetry
unbroken phase. Conversely, the non-Hermitian Hamiltonian
H̃ signifies a non-Bloch PT -symmetry broken phase. In-
spired by the above idea, we discuss the non-Bloch PT
symmetry and the topological phase transition in the next
section.

III. RESULTS AND DISCUSSIONS

A. Non-Bloch PT symmetry

As shown in Figs. 2(a) and 2(b), we plot the admit-
tance spectrum as a function of θ under the OBC with
C1 = 0.6 mF, C2 = 1 mF, C4 = 0.5 mF, J = 1 mF, and N =
160. We find the system holds a pure real spectrum in the
region of θ ∈ (π/3, 2π/3) ∪ (4π/3, 5π/3), corresponding
to the non-Bloch PT -symmetry unbroken phase. However,
for θ ∈ (0, π/3) ∪ (2π/3, 4π/3) ∪ (5π/3, 2π ), the system
holds complex eigenvalues associated with the non-Bloch
PT -symmetry broken phase. Since we can define that the
non-Bloch PT -symmetry broken phase is associated with
the change in Hermiticity of H̃ . The coalescence of saddle
point energies can verify the non-Bloch PT symmetry and its
breaking discussed above. In this theory, we need to replace
the usual Bloch phase factor eik with β = reik , and solve the
equations f (β, E ) ≡ det[H (β ) − E ] = 0 and ∂β f (β, E ) = 0
to get all the information about the saddle points. The ends
of the OBC bulk spectrum always correspond to the saddle
points, and the saddle points belong to the GBZ.

We first aim at the saddle points on the complex energy
plane, as shown in Figs. 3(a)–3(c). It is found that two pairs of
saddle point energies, S1 and S2, and S3 and S4, are located at
the ends of the energy band in Fig. 3(a). With the increase
of C5, the energy bands gradually shrink, and two pairs of
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FIG. 2. Admittance spectrum of H as a function θ under the OBC
with real (a) and imaginary (b) spectra. Node voltage density distri-
bution of the system with (c) θ = 0, (d) θ = 0.4π , (e) θ = 0.6π ,
and (f) θ = π . The solid red lines correspond to the zero-admittance
topological end modes and other lines correspond to the bulk modes.
The parameters are set as follows: C1 = 0.6 mF, C2 = 1 mF, C4 = 0.5
mF, J = 1 mF, and N = 160.

saddle point energies simultaneously approach each other.
Until C5 = C4, these saddle point energies coalesce on the
real axis in Fig. 3(b), which implies the coalescence of the
ends of the OBC spectrum, corresponding to the degeneracy
of all eigenstates into the two states with E = ±C1 on the
complex plane. The degenerate point can be considered a
type of higher-order exceptional point, which can characterize
non-Bloch PT -symmetry broken phase [51],

E (βS,i ) = E (βS, j ), (13)

where βS,(i, j) represents saddle points belonging to the GBZ.
In Fig. 3(c), as C5 continues to increase, the two pairs of
saddle points separate from each other with S1 (S3) moving
upward and S2 (S4) moving downward, which leads to the oc-
currence of complex eigenvalues corresponding to non-Bloch
PT -symmetry breaking.

The coalescence of saddle point energies is associated with
βS,(i, j). As shown in Figs. 3(d)–3(f), we calculate the GBZ
and find that it consistently appears as a circle; its radius is
the absolute value of the similarity coefficient |r| in Eq. (6).
Additionally, one can see that the saddle points within the
GBZ, and their corresponding energies, are situated along the
imaginary axis on the complex energy plane. However, since
these saddle points are not on the GBZ, the corresponding
energies of the saddle points do not exhibit any correlation
with the behavior of the system. In Fig. 3(d), the saddle points
βS,2 and βS,3 coalesce, appearing at the leftmost point in the
GBZ, the saddle points βS,1 and βS,4 appear at the rightmost
point in the GBZ. With the increase of C5, the radius of
the GBZ decreases, and the saddle points βS,(1,4) and βS,(2,3)

FIG. 3. Admittance spectrum on complex plan and the motion
of saddle point energies with (a) C5 = 0.48 mF, (b) C5 = 0.5 mF,
and (c) C5 = 0.52 mF. Transition of the GBZ and saddle points with
(d) C5 = 0.48 mF, (e) C5 = 0.5 mF, and (f) C5 = 0.52 mF. The red
solid dots represent saddle points and the parameters are C1 = 0.6
mF, C2 = 1 mF, C4 = 0.5 mF, and N = 160.

move closer to the center of the circle. As shown in Fig. 3(e),
when C5 = C4, the GBZ shrinks to a single point, implying
that all saddle points coalesce. Solving f (β, E ) confirms the
coalescence of the saddle point energies and the non-Bloch
PT -symmetry broken phase. In Fig. 3(f), as C5 continues to
increase, the saddle points βS,(1,4) and βS,(2,3) separate from
each other. Noticing that when C5 = −C4, the radius of the
GBZ |r| → ∞, we cannot observe the coalescence of βS,(1,4)

and βS,(2,3) because all of them are located at infinity, but
we still can observe the saddle point energies collapsing,
E (βS,(1,4)) = E (βS,(2,3)). Therefore, we can obtain the phase
boundary of non-Bloch PT symmetry given by

|C5| = C4. (14)

To further analyze the non-Bloch PT -symmetry transition of
the system, the ratio of the complex eigenenergies is consid-
ered, which is defined as [4]

fIm = DIm

D
, (15)

where DIm is the number of imaginary eigenvalues, and D is
the total number of eigenvalues. Here, a cutoff of T = 10−13

is used, and |Im(E )| > T is identified to be a machine error.
As shown in Fig. 4, we show the numerical solution of fIm as
a function of θ and C4. The black region of the phase diagram
corresponds to the non-Bloch PT -symmetry unbroken phase
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FIG. 4. Non-Bloch PT -symmetry phase diagram. The black and
yellow regions represent the non-Bloch PT -symmetry unbroken and
broken phases, and the white line is the phase boundary determined
by Eq. (14). The parameters are same as those in Fig. 3.

with fIm = 0, where the eigenvalues of the system are purely
real. The yellow region of the phase diagram corresponds to
the non-Bloch PT -symmetry broken phase, where the en-
ergy eigenvalues of the system occurs complex values. The
phase boundary between the two phases is indicated by the
white solid line in Fig. 4, which can be fitted by Eq. (14).
We find the phase boundary of non-Bloch PT symmetry
depends only on long-range coupling strengths C4 and C5,
which implies that the non-Bloch PT -symmetry broken and
unbroken phases will not change as coupling strengths C1

and C2 vary.

B. Topological phase transition for C2 > C4

In this subsection, we investigate the topological prop-
erties of the system with the strength relations C2 >

C4. From the admittance spectra in Figs. 2(a) and 2(b),
it is evident that the zero-admittance end modes, repre-
sented by solid red lines, are present in the topological
nontrivial regions of θ ∈ (0, 0.21π ) ∪ θ ∈ (0.35, 0.65π ) ∪
(0.79π, 1.21π ) ∪ (1.35π, 1.65π ) ∪ (1.79π, 2π ). Moreover,
to represent the localization properties of these zero-
admittance end modes, we plot the node voltage density
distribution of the system, as shown in Figs. 2(c)–2(f). We
find that the zero-admittance topological end modes are lo-
calized at the left boundary of the system when θ ∈ (0, 0.5π )
in Figs. 2(c) and 2(d). In contrast, the zero-admittance topo-
logical end modes are localized at the right boundary of the
system when θ ∈ (0.5π, π ) in Figs. 2(e) and 2(f). Note that
the node voltage density distribution of the system shows
mirror symmetry about θ = π .

Obviously, the emergence of the zero-admittance end
modes indicates the topological phase transition of the system.
To precisely display the phase transition properties, we show
the phase diagram of the system by introducing the non-Bloch
winding number. The non-Hermitian Hamiltonian H (k) can

FIG. 5. Topological winding number on the C1-θ plane. The red
and blue regions represent the topological nontrivial phase with w =
1 and the trivial phase with w = 0, respectively. The parameters are
the same as those in Fig. 2.

be rewritten as

H (β ) = h+(β )σ+ + h−(β )σ−,

h+(β ) = C1 + (C2 − C3)β−1 + (C4 + C5)β,

h−(β ) = C1 + (C2 + C3)β + (C4 − C5)β−1, (16)

where σ+/− = (σx ± iσy)/2. After solving the eigenvalue
equation |H (β ) − E | = 0, there exist four different eigenen-
ergies βN (E ). All the middle two solutions |β2(E )| = |β3(E )|
form the generalized Brillouin zone Cβ [26]. The correspond-
ing winding number is defined as

w = i

2π

∮
Cβ

dq q−1(β ), (17)

where q(β )=√
h+(β )/h−(β ) and q−1(β )=√

h−(β )/h+(β ).
The winding number w is a useful tool for characterizing
topological properties. In the context of the GBZ theory
framework, we calculate the winding number w to distinguish
between topologically trivial and nontrivial regions. As shown
in Fig. 5, we plot the winding number phase diagram of the
system versus C1 and θ with C2 = 1 mF, C4 = 0.5 mF, and
N = 160. It is found that the current system exhibits the two
phase regions. The red region represents the topologically
nontrivial phase with w = 1 and the blue region denotes the
topologically trivial phase with w = 0. The white lines rep-
resent the phase boundary of non-Bloch PT symmetry. We
find that the system undergoes the topological phase transition
in both the non-Bloch PT -symmetry broken and unbroken
phases. Notably, the system represents the transition from the
topologically nontrivial phase from w = 1 to the topologically
trivial phase w = 0.

C. Topological phase transition for C2 < C4

In this subsection, we further analyze the topological
properties for C2 < C4. As shown in Figs. 6(a) and 6(b), we
plot the admittance spectrum as a function of θ under the
OBC with C1 = 0.4 mF, C2 = 0.2 mF, C4 = 0.5 mF, and
N = 160. One can see that the zero-admittance gap modes,
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FIG. 6. Admittance spectrum of H as a function θ under the
OBC with real (a) and imaginary (b) spectra. Node voltage den-
sity distribution of the system with (c) θ = 0, (d) θ = 0.4π , (e)
θ = 0.6π , and (f) θ = π . The solid green lines correspond to the
zero-admittance topological gap modes and other lines correspond
to the bulk modes. The parameters are set as follows: C1 = 0.4 mF,
C2 = 0.2 mF, C4 = 0.5 mF, J = 1 mF, and N = 160.

represented by solid red lines, are present in the topologically
nontrivial regions of θ ∈ (0, 0.19π ) ∪ (0.37, 0.63π ) ∪
(0.81π, 1.19π ) ∪ (1.37π, 1.63π ) ∪ (1.81π, 2π ). We
also plot the node voltage density distribution of these
zero-admittance topological gap modes, as shown in
Figs. 6(c)–6(f). We find that the gap modes are respectively
localized at the second and penultimate sites of the
system with θ ∈ (0, 0.5π ) and θ ∈ (0.5π, 1π ), which is
significantly different with previous analyzed end modes
for C2 > C4.

In order to visually display the topological phase transition
for C2 < C4, we plot the winding number phase diagram of
the system versus C1 and θ with C2 = 0.2 mF and C4 = 0.5
mF, as shown in Fig. 7. We find that the current system
also exhibits the two phase regions. The green and blue re-
gions represent the topologically nontrivial phase w = −1
and the topologically trivial phase w = 0, respectively. The
white lines represent the non-Bloch PT -symmetry phase
boundary. We find that the system undergoes the topological
phase transition in both the non-Bloch PT -symmetry broken
and unbroken phases. While the topological phase transition
occurs between the winding numbers w = −1 and w = 0.
Moreover, the current system holds zero-admittance topologi-
cal gap modes with w = −1, which is a significant difference
compared to Fig. 5.

IV. CONCLUSIONS

In conclusion, we have investigated the 1D non-Hermitian
Su-Schrieffer-Heeger model with long-range hopping using

FIG. 7. Topological winding number on the C1-θ plane. The
green region represents topological nontrivial phases w = −1, and
the blue region represents the topological trivial phase with w = 0.
The parameters are same as those in Fig. 6.

the electrical circuit system consisting of capacitors, induc-
tors, and operational amplifiers. Our analysis focuses on the
non-Bloch PT -symmetry unbroken and broken phases of the
system, which can be illustrated using the saddle point theory.
Notably, the phase boundary of the non-Bloch PT symmetry
only depends on the long-range coupling strengths C4 and C5.
When |C5| > C4, the non-Bloch PT symmetry is broken, and
when |C5| < C4, the non-Bloch PT symmetry is unbroken.
We determined the non-Bloch PT -symmetry phase boundary
by considering the ratio of complex eigenenergy. Further-
more, we have observed the emergence of zero-admittance
topological end modes and gap modes, which depend on
the relative magnitudes of the hopping strengths C2 and C4.
When C2 > C4, a topological phase transition occurs in both
the non-Bloch PT -symmetry unbroken and broken regions,
resulting in a winding number change from w = 1 to w = 0.
Additionally, the topological zero-admittance end modes are
localized at the first (or last) site. On the other hand, when
C2 < C4, the system undergoes a topological phase transition
with a winding number change from w = −1 to w = 0, and
the topological zero-admittance gap modes are localized at the
second (or penultimate) site. This work presents a method to
implement nonreciprocal topolectrical circuits and contributes
to a deeper understanding of the interplay between topology
and non-Hermiticity.
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