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Two-dimensional simulation of the spin flip in the Kapitza-Dirac effect
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Many calculations in strong-field quantum field theory are carried out by using a simple field geometry, often
neglecting the spatial field envelope. In this paper, we simulate the electron-diffraction quantum dynamics of the
Kapitza-Dirac effect in a Gaussian beam standing light wave. The two-dimensional simulation is computed in
a relativistic framework, by solving the Dirac equation with the fast Fourier-transform split operator method.
Except the numerical propagation method, our results are obtained without applying approximations and
demonstrate that a spin flip in the Kapitza-Dirac effect is possible. We further discuss properties such as the
validity of a plane-wave approach for the theoretical description, the influence of the longitudinal polarization
component due to laser beam focusing, and higher-order diffraction peaks in Kapitza-Dirac scattering.
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I. INTRODUCTION

In present day strong laser fields, it is possible to facilitate
spin effects for free electrons [1–8]. One particular variation
of spin-laser interaction of electrons is the Kapitza-Dirac
effect [9,10], for which spin effects are predicted [11–14],
in a scenario which is similar to Bragg scattering [15–17].
The setup of Kapitza-Dirac scattering, in which an electron
traverses a standing light wave, formed by two counterprop-
agating beams, can be tailored to be sensitive to the spin
polarization of the incoming electron [18–24]. Therewith the
effect is allowing for a laser based Stern-Gerlach-type spin
observation [25–27], in the form of an induced Compton
scattering process [21,28], being a fundamental photon-only
interaction. Experiments in the Bragg regime exist [29], even
with observing the cancellation of the interaction at parame-
ters where spin effects are expected [30].

Most theoretical descriptions of the Kapitza-Dirac effect
implement the standing-wave potential of the external field
by two counterpropagating plane waves, where the field’s
width and longitudinal polarization component are neglected.
Since Gaussian beam solutions [31] can be considered to be
more realistic than a plane-wave approach, we were inves-
tigating the Gaussian beam influence in a recent study on
spin dynamics in Kapitza-Dirac scattering [32]. In order to
solve the problem analytically, rough approximations were
imposed on the plane-wave approach. One of the approxi-
mations was the assumption of a discrete set of plane-wave
superpositions, for solving the relativistic equations of mo-
tion of the Dirac equation in the perturbative approach [32].
Naturally, the question arises, whether the approximations
of the standing-wave vector potential within a perturbative
solution technique are sufficiently accurate. In this paper, we
solve the quantum dynamics of the electron wave function
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on a two-dimensional grid, by using a fast Fourier-transform
(FFT) split operator method [33,34]. Within this method, the
Gaussian beam potential can be implemented exactly, such
that no approximations need to be applied to the external
field. This paper is thus a demonstration of spin-flip dynamics
of an electron in the Kapitza-Dirac effect on the basis of a
relativistic, two-dimensional simulation, in which the Dirac
equation is evolved numerically. We are further able to study
the role of the longitudinal polarization component on the
quantum dynamics in our paper, as well as the validity of a
plane-wave approach for describing the effect.

Our paper is organized as follows. In Sec. II, we discuss
the simulation setup, by introducing the Gaussian laser beam
(Sec. II A), the relativistic quantum description (Sec. II B),
and the initial condition of the electron quantum state
(Sec. II C). We also mention details about simulation parame-
ter configuration, as well as the numerical procedure of the
Q-WAVE library in Sec. II D. We then present the simula-
tion results in Sec. III. The results include the demonstration
of electron-diffraction dynamics in the Kapitza-Dirac effect
(Sec. III A), displaying the spin properties of the quantum dy-
namics in Sec. III B. In Sec. IV we further investigate physical
properties of the Kapitza-Dirac effect, such as the validity of
the commonly used plane approximation for describing the
Kapitza-Dirac effect (Sec. IV A), frequency and beam focus
scaling of the spin dynamics (Sec. IV B), and the influence
of the longitudinal beam polarization component of focused
beams on the effect (Sec. IV C). In Sec. IV D we also have
a look at the emergence of higher-order diffraction peaks in
Kapitza-Dirac scattering. Finally, we summarize our investi-
gation and give an outlook on possible related topics in Sec. V.

II. SETUP OF OUR INVESTIGATION

For our computer simulation we make use of the Q-WAVE

utility [34]. Q-WAVE is an advanced computer code, available
as a C++ library, which implements the FFT split operator
method, among other numerical algorithms [35]. It provides
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the building blocks for numerically propagating wave func-
tions in time. In the following, we describe the physical setup
which we investigate by using Q-WAVE. Regarding the units
in our paper, we write m for the electron rest mass, c for the
vacuum speed of light, h̄ for the reduced Planck constant, and
q for the elementary charge in a Gaussian unit system.

A. Gaussian beam configuration

We first describe the vector potential of our simulation.
A Gaussian beam shaped standing light wave can be formed
from two Gaussian beams [36], where Ref. [36] builds on a
solution based on an angular spectrum representation of plane
waves. The laser beam is propagating along the x axis, in
our two-dimensional simulation, where the simulation area is
aligned in the x-y plane. For the geometry in this paper, the
Gaussian beam is denoted as

Ax,d = −2dA0
w0

w
ε

y

w
exp

(
− r2

w2

)
cos

(
φ

(1)
G,d

)
(1a)

for the longitudinal polarization component and

Ay,d = −A0
w0

w
exp

(
− r2

w2

)
sin (φG,d ) (1b)

for the transverse polarization component of the vector poten-
tial in Coulomb gauge [37]. The potentials in Eq. (1) further
contain the phases

φG,d = ωt − dkLx + tan−1

(
dx

xR

)
− dxr2

xRw2
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and the symbol w represents the x-dependent beam waist:

w(x) = w0

√
1 + x2

x2
R

. (3)

The Gaussian beam oscillates with frequency ω, with corre-
sponding wave number kL = ω/c and wavelength λ = 2π/kL.
Further, Ref. [36] introduces the beam focus as ω0 = 1/(kLε),
with Rayleigh length of the Gaussian beam xR = kLω2

0/2.
The index d in Eqs. (1) parametrizes the propagation di-

rection of the laser beam, where the two possible directions
d ∈ {−1, 1} correspond to the left or right moving direc-
tion, respectively. The standing-wave vector potential in the
Kapitza-Dirac effect can be formed from the two counterprop-
agating beams by the superposition

A =
∑

d

(Ax,d ex + Ay,d ey). (4)

We display the field A in Fig. 1 as it appears after a quarter
laser period t = ω/(2π ) for the parameters of our showcase
simulation in Sec. II D. In contrast to previous theoretical in-
vestigations, transverse and longitudinal polarization are both
computed without applying approximations here, with a finite
beam width and a longitudinal polarization component.

FIG. 1. Vector potential of a Gaussian beam standing wave in
our simulation, according to Eq. (4). The longitudinal [Eq. (1a)] and
transverse [Eq. (1b)] polarization components of the laser beam are
displayed in the upper and lower panel, respectively. We use the laser
parameters A0 = 0.1 mc/q for the field amplitude, kL = 0.1 mc/h̄ for
the wave number, and ε = 0.02 for the beam divergence, in the Gaus-
sian beam, displayed after a one-quarter laser period t = ω/(2π ). In
our two-dimensional simulation area, the electron passes the Gaus-
sian beam from bottom to top, along the y direction.

B. Relativistic quantum theory

Since the laser field in our simulation is strong and the
initial electron momentum of the electron is 1mc, we use a
relativistic spin-1/2 quantum theory for the description of our
simulation, which is given by the electromagnetically coupled
Hamiltonian of the Dirac equation:

H = c
(

p − q

c
A

)
· α + qφ + βmc2. (5)

The gauge potential A has been introduced in Sec. II A, where
we set the scalar potential to zero φ = 0 in our code. The
objects α and β are the 4 × 4 Dirac matrices in standard
representation (also called Dirac representation). We write the
energy eigenvalue relations in momentum space as

Hψ s(p) = E (p)ψ s(p), (6)

with the positive plane-wave solutions of the Dirac equation:

ψ s(p) = us(p)eir·p/h̄, (7)

where we denote the bispinors us(p) as

us(p) =
√

E (p) + mc2

2mc2

(
χ s

cσ·p
E (p)+mc2 χ

s

)
. (8)

In Eqs. (6)–(8), the parameter s ∈ {+,−} is indexing the state
of the electron spin with the x-polarized basis:

χ+ = 1√
2

(
1
1

)
, χ− = 1√

2

(
1

−1

)
. (9)

We also write

E (p) =
√

m2c4 + c2 p2 (10)

for the relativistic energy, p = px · ex + py · ey for the mo-
mentum vector, and σ for the vector of Pauli matrices.
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C. The initial electron quantum state

According to the Q-WAVE simulation package [34], the
wave packet of the electron is initialized as a Gaussian wave
packet, in our two-dimensional simulation, with the density
distribution

ρ(p) = 1√
2πσp

exp

[
−

(
p − p0

2σp

)2

− i
r0 · p

h̄

]
(11)

in momentum space. The Gaussian distribution is centered
at momentum p0, with wave-packet size parameter σp. The
second term in the exponential implies the particle’s position
at r0. The wave function in momentum space is set up as

ϕ(p, 0) = u+(p)ρ(p), (12)

on the basis of the distribution (11). In position space, the
wave function  is then implied by the two-dimensional
Fourier transformations

ϕ(p, t ) = 1

2π h̄

∫
(r, t ) exp

(
− ir · p

h̄

)
d2r, (13a)

(r, t ) = 1

2π h̄

∫
ϕ(p, t ) exp

(
ir · p

h̄

)
d2 p. (13b)

D. Numerical propagation and simulation parameters

The Q-WAVE library provides numerical algorithms for
solving the time evolution of the quantum wave function in
multiple time steps. We make use of the fast Fourier split op-
erator method [34], for which the time step with time stepping
�t can be denoted as a mapping of the wave function (r, t )
to the wave function (r, t + �t ) at a later point in time by

(r, t + �t ) = U (t + �t, t )(r, t ). (14)

In the following we will introduce specific values of pa-
rameters, which are set in the simulation. We carry out our
simulation on a grid with 2048 × 128 grid points, with simu-
lation area width 80λ and height 40λ, in the x and y direction,
respectively. Along the x axis we set the minimum and maxi-
mum simulation box limits xmin = −40λ and xmax = 40λ. For
the y axis, we require the electron wave packet to be centered
in our simulation area, initially and during the simulation, as
sketched in Fig. 2. We choose the initial simulation box limits
as ymin(0) = −160λ and ymax(0) = −120λ, corresponding to
a distance of approximately 15 half beam waists w0 away
from the laser beam center.

The electron’s initial position along the y direction is in the
simulation box center at y = −140λ. Regarding the electron’s
momentum, we set the momentum px = −h̄kL along the x
axis, to meet the Bragg condition for the two-photon Kapitza-
Dirac effect [11,12,39]. The y component of the electron
momentum is implied by the requirement for spin effects in
the Kapitza-Dirac effect [12,21,40] to be py = 1mc. The mo-
mentum parameter p0 for the initial electron state in Eq. (11)
is therefore assuming the value

p0 =
(−h̄kL

mc

)
, (15)

with inclination angle of the Bragg condition

ϑ = arctan(|px|/|py|). (16)

FIG. 2. Illustration of the simulation box limits and electron lo-
cation along the y direction. The red, oval shaped shades symbolize
the laser beam position over time, located at y = 0. Along the y
direction, the simulation box size equals 40λ with initial minimum
and maximum positions ymin(0) = −160λ and ymax(0) = −120λ,
respectively, at time t = 0. The electron is initially placed in the sim-
ulation box center, at y = −140λ, and moves approximately along
the classical electron trajectory yCET(t ), as given in Eq. (18), which
we indicate by the thick, dotted line. In the Supplemental Material
[38], we provide an animation of the vector potential as in Fig. 1,
within the moving bounds of the parametrized y axis, as sketched
here.

Requiring that the electron needs to move through the coordi-
nate origin, this also implies that the initial electron position
along the laser beam propagation direction has to be x =
140λC , such that the initial position vector in Eq. (11) reads

r0 =
(

140λC

−140λ

)
, (17)

where λC = h/(mc) is the Compton wavelength with the
Planck constant h = 2π h̄.

We set the momentum spread of the electron to σp =
h̄kL/200, which corresponds to an electron wave-function ex-
tension on the order of 100 laser wavelengths. Concerning the
simulation time, we mention that the significant y component
of the electron momentum (15) implies the approximate clas-
sical electron velocity vy = c/

√
2, with the corresponding y

component of the classical electron trajectory:

yCET(t ) = −140λ + 1√
2

ct . (18)

Equation (18) implies the traveling time T̃ = 280λ
√

2/c =
2.5 × 104h̄/(mc2), if we require the electron to move up to
the y-axis position y = 140λ. Further, we choose the time
stepping �t = 0.05 h̄/mc2, for resolving the oscillation of the
mass term βmc2 in the Dirac equation.

For the Gaussian beams of our standing light wave, we set
the parameters ω = 0.1 h̄/mc for the laser angular frequency,
A0 = 0.1 mc/q for the field amplitude and ε = 0.02 for the
beam divergence, in Eqs. (1) and (2). We remark that, for
technical reasons, we introduce a shift between the kinetic
and canonical momentum of the wave packet by employing
a gauge with constant vector potential Am = 1.0 mc/q in the
y axis of Eq. (4) in our numeric implementation. We further
point out that the computation of the quantum state time
evolution is numerically implemented in a z-polarized spinor
basis, where the x-polarized description with the spinors (8) is
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FIG. 3. Probability density of the electron at initial and final
time. The upper panel displays the initial electron probability density
|(r, 0)|2, at time t = 0 according to Eq. (19), which corresponds
to the initial condition (11). The lower panel shows the electron
probability |(r, T )|2 at final time t = T . Due to the comoving
simulation area, as illustrated in Fig. 2, the electron remains centered
along the vertical and only moves from the right to the left. The light
gray peak on the right of the lower panel is the diffracted portion of
the electron wave function.

obtained from a superposition of the z-polarized basis, as the
Dirac equation is linear.

III. DESCRIPTION OF SIMULATION

We are now turning to the discussion of the simulation
results and their analysis, after the introduction of the external
field and the simulation setup in Sec. II.

A. Motion of the electron probability density

We display the electron probability density

|(r, t )|2 = (r, t )†(r, t ) (19)

at initial time t = 0 in Fig. 3(a) and after propagation for the
simulation time T in Fig. 3(b), where all parameters are used
as described in Sec. II D. For illustration of the process, which
takes place between the situation in Figs. 3(a) and 3(b), we
compute the y-averaged density

�(x, t ) =
∫ ymax(t )

ymin(t )
|(x, y, t )|2dy (20)

and display it in Fig. 4. We observe in Fig. 4 that the electron is
moving from the right to the left, corresponding to the initially
set and the expected electron positions along the x axis at
x = 140λC and −140λC , respectively. However, due to the
interaction of the electron with the laser beam at time T/2,
a diffracted part appears in the central region of Fig. 4, which
moves from the center to the right, displaying the Kapitza-
Dirac effect. The dynamics of the electron in Fig. 4 explains
the motion of the initial location of the electron on the right
in Fig. 3(a) to the left in Fig. 3(b). Accordingly, the gray peak
at the right of Fig. 3(b) corresponds to the diffracted electron
beam. Note that the electron is not showing any significant

FIG. 4. The y-integrated probability density �(x, t ) as in
Eq. (20) over time. One can see that the electron moves from the
right to the left, where the diffracted beam forms at the center of the
figure and moves to the right, demonstrating quantum dynamics as
in the Kapitza-Dirac effect. The lower leg of the y-shaped figure cor-
responds to the peak of the initial state in Fig. 3(a), whereas the two
upper legs correspond to the two final peaks in Fig. 3(b).

motion along the y axis in Fig. 3, as we are moving the simula-
tion box with the electron along the y direction, corresponding
to the sketch in Fig. 2. An animation of the position space
dynamics of the electron density |(x, y, t )|2 as in Fig. 3 is
provided in the Supplemental Material [38].

B. Investigation of spin resolved quantum dynamics

Having demonstrated the quantum dynamics as predicted
by the Kapitza-Dirac effect, we want to further present spin
effects as discussed in Refs. [12,21,32], which we display in
terms of the spin projections:

cs(p, t ) = 〈us(p)|ϕ(p, t )〉 . (21)

The absolute value squared of the transition (21) is displayed
in Fig. 5 at time T , the end of the simulation period. Thus,
Fig. 5 corresponds to the momentum space situation of the
position space density in Fig. 3(b).

The prominent peak on the left in Fig. 5(a) corresponds
to the initial condition (11) with momentum coordinate (15)
and remains merely unchanged during the course of the sim-
ulation. It corresponds to the electron’s motion from the right
to the left in Fig. 4. In contrast, the right peak in Fig. 5(a)
and the peak in Fig. 5(b) arise due to the interaction of the
electron with the laser, and correspond to the right moving
Bragg peak in Fig. 4. The initial condition and the appearance
of the Bragg peak over time can be viewed in detail in the
animations of Fig. 5 in the Supplemental Material [38]. The
figure allows for the association of spin polarization with the
moving and diffracted portions of the electron wave function.
While the left moving electron beam is purely polarized along
the positive x direction (as implied by the initial condition),
the diffracted beam depicts contributions with s being posi-
tive and negative. Note, that the peak of the negative spin-x
polarization appears to be more pronounced than the peak of
the positive spin-x polarization.
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FIG. 5. Electron-spin projection |cs(p, T )|2 along the
x-polarization direction according to Eq. (21) at the end of the
simulation. The projection direction s is positive in the upper panel
and negative in the lower panel. Since the spin is determined in
momentum space, this figure corresponds to the spin-resolved
momentum space probability of the final electron density in
Fig. 3(b). We observe a diffraction of the initial electron beam on
the left peak of the upper panel, into a diffracted portion of the wave
function, which appears two photon momenta 2kLex to the right. The
spin −x component of the diffracted beam (lower panel) appears
larger than the spin +x component (upper panel, right peak).

For quantifying the spin amplitude, we plot the wave func-
tion’s probability density in momentum space

|ϕ(p, t )|2 = ϕ(p, t )†ϕ(p, t ) (22)

together with the spin projections (21) at final time T at the
y-axis position py = mc in Fig. 6. We observe the initial beam
on the left and the diffracted beam on the right, corresponding
to the identification which we have already done in Fig. 5.
One can see that the projection of the spin +x polarization
|c+|2 is coinciding with the probability density |ϕ|2 for the
initial beam. In contrast, it is the projection of the spin −x
polarization |c−|2 which matches the probability density |ϕ|2
of the diffracted beam. In numbers, the diffracted beam’s spin
+x polarization amplitude is |c+(0.1mc, mc, T )|2(0.1mc) =
4.6 × 10−5, whereas the spin −x-polarization amplitude
|c−(0.1mc, mc, T )|2 = 3.9 × 10−3 is larger by about two or-
ders of magnitude. We thus conclude clear spin-flip dynamics
along the x-spin polarization axis from our simulation, which
agrees with the predictions in Refs. [12,21]. A time evolution
of the wave function’s in-field dynamics of |ϕ(px, mc, t )|2 and
|cs(px, mc, t )|2 in a similar fashion as in Fig. 6 is provided in
the Supplemental Material [38] of this paper.

IV. ANALYSIS OF PHYSICAL PROPERTIES
FROM SIMULATION

A. Validity of plane-wave approximation

The Kapitza-Dirac effect is usually described on the basis
of a plane-wave approximation. Our two-dimensional sim-
ulation allows us to explore how the quantum dynamics is
influenced by a strong beam focus. If one varies the beam

FIG. 6. Spin resolved momentum space density of the electron
along the px axis at final simulation time t = T and at y momentum
py = mc. Displayed are the probability density |ϕ|2 according to
Eq. (22) and the spin projections |cs|2 according to Eq. (21). One can
see that the momentum density |ϕ|2 of the initial electron beam (left
peak at px = −h̄kL) is coinciding with the spin +x component |c+|2.
However, the diffracted beam (right peak at px = h̄kL) is coinciding
with the spin −x component |c−|2. The spin +x component in the
diffracted beam is smaller by about two orders of magnitude and
demonstrates a spin flip in the Kapitza-Dirac effect.

divergence ε of the Gaussian beam, the stripe pattern in Fig. 1
of a nearly plane-wave field turns gradually into a small focal
spot. We illustrate this in Figs. 7 and 8 for the longitudinal (Ax)
and transverse (Ay) beam polarization components, which are
displayed as in Fig. 1, but with the series of values

ε = 10−1+q/8, q ∈ {0, 1, 2, 3, 4, 5}, (23)

FIG. 7. Longitudinal component of a Gaussian beam with in-
creasing beam divergence ε. The figure is arranged as in Fig. 1(a),
of Ax in Eq. (1a). The value of ε in each panel is increasing accord-
ing to the parametrization in Eq. (23) from panel (a) to panel (f),
respectively. One can see that the beam is getting more focused, with
increasing ε.
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FIG. 8. Transverse component of a Gaussian beam with increas-
ing beam divergence ε. Similarly as in Fig. 7, this figure corresponds
to Fig. 1(b), of Ay in Eq. (1a), with increasing ε values according to
the parametrization in Eq. (23) from panel (a) to panel (f). Without
the antisymmetric zero crossing at y = 0 of the longitudinal compo-
nent, one can see the beam focusing more clearly.

for the beam divergence. All other simulation parameters are
as described in Sec. III.

The effect of the beam focus on the quantum dynamics
is visualized in the two-dimensional panels in Fig. 9 in po-
sition space (|(r, T )|2) and Fig. 10 in momentum space
(|ϕ(p, T )|2). In Fig. 9 one can observe that the two peaks of
the undiffracted and diffracted quantum states as they appear
in Fig. 3(b) are surrounded by more and more artifacts, when
ε increases. Similarly, in momentum space of Fig. 10, the two
diffraction peaks which one can see in Fig. 5 are getting more
distorted with increasing ε, also with artifacts turning in.

For a more quantitative view on the breakdown of
the plane-wave-like quantum dynamics, we display the

FIG. 9. Position space diffraction probability |(r, T )|2 for in-
creasing ε. From panel (a) to panel (f), the beam divergence ε is
increasing according to Eq. (23), in line with the vector potential
in Figs. 7 and 8. One can see that the plane-wave-like probability
density from Fig. 3(b) gathers more artifacts, as the beam focus
increases.

FIG. 10. Momentum space diffraction probability |ϕ(r, T )|2 for
increasing ε. As in Figs. 7–9, the beam divergence ε is increasing ac-
cording to Eq. (23), from panel (a) to panel (f). As for the diffraction
probability in position space, one can see that the plane-wave-like
diffraction peaks in momentum space in Fig. 5 are modifying with
increasing beam foci.

momentum space diffraction probability |ϕ(px, mc, T )|2 for
the different values of ε in a line plot in Fig. 11. As ε increases,
the peaks of the incoming and diffracted peaks are broadening,
until they effectively merge for ε = 10−3/8. This illustrates the
dismantling of the Kapitza-Dirac effect for strong beam foci
and shows the limits of the plane-wave approximation, which
is often used for the description of the Kapitza-Dirac effect.

B. Laser frequency and beam focus scaling

We are interested in scaling relations of the spin dy-
namics in the Kapitza-Dirac effect, when changing the laser
frequency or the laser beam focus, within computationally

FIG. 11. Line plot of the momentum space diffraction probabil-
ity |ϕ(px, mc, T )|2 for increasing values of ε. The beam divergence ε

is varied according to Eq. (23) in a display analogous to Fig. 6. One
can observe that the two peaks (incoming and diffracted beams) of
the Kapitza-Dirac effect are broadening and merging, as ε increases,
which illustrates the breakdown of the plane-wave approximation.
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FIG. 12. Spin-flip probability of spin dynamics in the Kapitza-
Dirac effect as a function of the beam divergence ε and the
laser frequency ckL . The simulation described in Sec. II D is var-
ied by the parameters ε ∈ {0.01, 0.02, 0.05, 0.1} and h̄kL/(mc) ∈
{0.05, 0.07, 0.1}, where we show the functional dependence with
respect to ε in panel (a) and with respect to kL in panel (b). The
spin-flip probability varies linearly in the double-logarithmic plot,
implying a power-law dependence. The black dash-dotted lines are a
guide to the eye and have slope −2 in panel (a) and 2 in panel (b).
We conclude a spin-flip probability scaling proportional to (kL/ε)2.

accessible parameters. For that we vary the beam divergence
in a similar manner as in the previous section, but with the
values ε ∈ {0.01, 0.02, 0.05, 0.1}, well before the breakdown
of the plane-wave approximation. We combine the variation
of ε with simultaneous variations of the laser photon mo-
mentum for the values h̄kL/(mc) ∈ {0.05, 0.07, 0.1}, such that
the Bragg condition and the condition for spin dynamics are
preserved. This implies a readjustment of the initial position
(17) and initial momentum (15) of the electron with change of
the laser wavelength λ = 2π/kL. Further, a change of the laser
energy will only be consistent with the change of the other
mentioned parameters, if also the simulation box coordinates
from Sec. II D in terms of λ are modified.

The most interesting quantity be studied within the param-
eter variation is the spin-flip probability |c−(h̄kL, mc, T )|2,
which corresponds to the amplitude of the diffraction peak in
Fig. 5(b). We display |c−(h̄kL, mc, T )|2 in Fig. 12 for the men-
tioned values of ε and kL and see that the spin-flip probability
decreases quadratically with ε, in the double logarithmic plot
in Fig. 12(a). This matches a quadratic functional dependence
of the spin-flip probability with interaction time, as predicted
in Eq. (22) of Ref. [21] due to a shorter beam crossing time
through a tighter beam focus w0 = 1/(kLε). In Fig. 12(b), we
observe a quadratic growth of the spin-flip probability with
the laser frequency ckL. One would be tempted to identify
the quadratic scaling in Eq. (22) of Ref. [21] with kL as
matching property. However, since the beam waist w0 also
scales inversely with kL, a reduced interaction time of the
electron with the laser is compensating the quadratic growth,
resulting in a currently unexplained discrepancy between the
wavelength scaling of the plane-wave solution and the com-
putations presented here.

FIG. 13. Difference of the simulated diffraction peak with
longitudinal polarization component cs

WL(kL, mc, T ) and without
cs

W (kL, mc, T ). Displayed are the differences |cs
W |2 − |cs

W L|2 for the
values of ε and h̄kL as in Fig. 12. Panel (a) contains the spin pro-
jection for the +x polarization (s = +) and panel (b) contains the
spin projection for the −x polarization (s = −). The black dash-
dotted line is inserted for reference and has slope 2, i.e., scales as
ε2. One can see a tendency that the difference between simulations
with and without the longitudinal polarization component increases
quadratically with ε.

C. Influence of the longitudinal laser polarization component

It is further interesting to investigate the influence of
the longitudinal polarization component Ax of the Gaussian
shaped laser beam on the quantum dynamics of the diffracted
beam, which is a research question which we have investi-
gated recently [32]. The quantum dynamics with and without
the longitudinal component included appears almost identical
for the values of the beam divergence ε and the laser photon
momentum h̄kL of the previous section. In order to quantify
the scaling of the longitudinal polarization component’s influ-
ence with ε and h̄kL, we perform our simulations with Ax and
with Ax set to zero, and equip the spin projections in Eq. (21)
with an index “WL” to denote “with longitudinal” [cs

WL(p, t )]
and “W” to denote “without” [cs

W(p, t )], respectively. We
display the difference of the absolute value squares of cs

W(p, t )
and cs

WL(p, t ) in Fig. 13. We observe a decrease of the dif-
ference between the simulation with and without longitudinal
polarization component with decreasing ε (quadratic scaling).
This means that the influence of the longitudinal beam po-
larization component on the quantum dynamics decreases for
less focused laser beams. This property appears reasonable,
as the longitudinal polarization component is getting smaller
for less focused beams and finally vanishes for the plane-wave
case. We thus draw a similar conclusion as the investigation in
Ref. [32], in which the spin preserving terms from beam fo-
cusing where shown to get smaller with decreasing ε. We also
conclude from Fig. 13 that the influence of the longitudinal
component on the quantum dynamics is rather independent
of the laser photon momentum or laser wavelength, which
one can see particularly clearly for the spin −x polarization
in Fig. 13(b). We attribute the more dispersed functional
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FIG. 14. Higher-order diffraction peaks in the Kapitza-Dirac ef-
fect. Displayed is the momentum space probability density for the
parameters ε = 0.1 and kL = 0.1 mc/h̄, with an increased amplitude
of the external laser beam vector potential A0 = 0.4 mc/q and initial
electron momentum px = −h̄kL along the x direction. One can see
that the diffraction peaks are implied by the conservation of momen-
tum and energy, according to Eqs. (24). This is illustrated by the
match of the diffraction peaks along the blue dashed line of Eq. (26),
with the red circles corresponding to n ∈ {−1, 0, 1, 2}, for the case
of an equal number of emitted and absorbed photons n = ne = na.

behavior with h̄kL for the spin +x polarization in Fig. 13(a) to
resonances of other Bragg peaks and potential zero transitions
of the cross sections, which one can also observe in Ref. [32].
Despite that, one sees the trend to a wavelength independent
behavior, in agreement with the results in Ref. [32], in which
some of the correction terms from the longitudinal beam po-
larization do not scale with kL and thus remain dominant for
long laser wavelengths.

D. Higher-order diffraction peaks

It is possible to couple to other diffraction orders than
just the Rabi oscillations between the two momenta ±h̄kL

in the so-called Bragg regime. Multiple diffraction orders
occur in the diffraction regime, which is characterized by a
tight focus of the standing light wave of the laser beam in
combination with a strong amplitude of the standing light
wave’s ponderomotive potential [16,17]. Therefore, in the
tightly focused, short-wavelength configuration with ε = 0.1
and kL = 0.1 mc/h̄, which we parametrize in Secs. IV B and
IV C, we quadruple the amplitude of the laser beam’s external
vector potential to the value A0 = 0.4 mc/q. For reasons of
numerical accuracy, we also have doubled the number of
grid points along the y axis to 256. We display the resulting
diffraction pattern |ϕ(p, T )|2 of the quantum simulation with
this parameter set in Fig. 14.

We observe that the diffraction peaks are chained in a
parabolalike structure, which we explain by a semiclassical
argument on the basis of energy and momentum conservation
[11,12,39] in the following. We denote the initial and final
electron momenta

pin =
(

px

mc

)
, pout =

(
px + h̄kL(na + ne)

mc + �py

)
(24a)

FIG. 15. Higher-order diffraction peaks in the Kapitza-Dirac ef-
fect with zero initial longitudinal electron momentum (px = 0).
Displayed is a repetition of the simulation in Fig. 14 with px = 0.
As in Fig. 14, the significant chain of diffraction peaks can be
described by Eq. (26) (blue dashed line) from energy and momen-
tum conservation (24), with the diffraction peaks appearing for n ∈
{−2, −1, 0, 1, 2} (red circles).

with the transverse momentum change �py and the number
of absorbed and emitted photons from the left and right prop-
agating beam na and ne, respectively. Energy conservation for
the electron then reads as

E (pout) = E (pin ) + h̄ckL(na − ne), (24b)

with the relativistic energy momentum relation (10). We ex-
pand Eq. (24b) for the case of an equal number of absorbed
and emitted photons n = ne = na and solve for �py, which
results in

�py(n)± = −mc ±
√

m2c4 − 4nh̄kL px − 4n2h̄2k2
L. (25)

We further expand the physically relevant, positive solution
branch of the square root in a power series around the value
mc up to second order in n into

�py(n)+ = −2nh̄kL px − 2n2 h̄2k2
L

mc
. (26)

The function �py(n)+ with px = −h̄kL is displayed as a
blue dashed line in Fig. 15, with the values n ∈ {−1, 0, 1, 2}

TABLE I. Spin-resolved amplitude of higher-order diffraction
peaks with initial electron momentum px = −h̄kL . For the diffraction
peaks which are located at the red circle position in Fig. 14, we list
the local maximum value of the spin projections |cs(p, T )|2. While
the initial state at n = 0 is strongly polarized along the +x direction,
one can see the indication for a spin flip in the neighboring states at
n = 1 and −1.

n |c+(p, T )|2 |c−(p, T )|2

−1 1.17 × 10−5 1.14 × 10−4

0 3.43 × 10−1 2.58 × 10−6

1 1.53 × 10−3 5.17 × 10−3

2 1.75 × 10−5 6.51 × 10−6
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TABLE II. Spin-resolved amplitude of higher-order diffraction
peaks for px = 0. Similar to Table I, we list the local maximum value
|cs(p, T )|2 of the red circled diffraction peaks in Fig. 14. Except the
+x polarization of the initial electron state at n = 0, the spin-flipped
probability is about an order of magnitude lower than the not-flipped
probability.

n |c+(p, T )|2 |c−(p, T )|2

−2 3.88 × 10−5 3.19 × 10−6

−1 2.20 × 10−2 6.62 × 10−3

0 1.69 × 10−1 1.98 × 10−7

1 2.04 × 10−2 6.62 × 10−3

2 3.88 × 10−5 3.19 × 10−6

marked as red circles. We conclude that the parabolically
arranged chain of diffraction peaks is implied by the classical
conservation of energy and momentum.

For the red circled diffraction peaks in Fig. 14 we list
the spin-resolved maximum diffraction amplitude cs(p, T ) as
introduced in Eq. (21) in Table I. Despite a significant po-
larization along the +x direction for the undiffracted beam
at n = 0, we find indications for spin-flipped beams in the
neighboring states at n = 1 and −1.

We mention, additionally to the presented diffraction ge-
ometry, that the assumption of a vanishing longitudinal
momentum component of the incident electron beam is a
property for characterizing the diffraction regime [16,17]. We
therefore present another simulation in Fig. 15 with the same
parameters as in Fig. 14, but with the initial longitudinal
electron momentum set to zero (px = 0). In Fig. 15 we also
find a chain of diffraction peaks, which coincide with the
condition (26) from energy and momentum conservation (24),
for n ∈ {−2,−1, 0, 1, 2}. Further diffraction diffraction peaks
are visible, which all appear at integer multiples of h̄kL. We
attribute these other diffraction peaks to quantum dynamics,
in which the number of emitted and absorbed photons in
Eqs. (24) is not equal.

The spin projections cs(p, T )|2 of the red circled diffrac-
tion peaks in Fig. 15 are listed in Table II. We find, despite
a significant polarization along the +x direction for the un-
diffracted beam at n = 0, that the spin-flip probability (−x
polarization) of the diffracted beams is about an order of mag-
nitude lower than the unflipped (+x polarization) probability.

V. CONCLUSION AND OUTLOOK

In this paper, we have carried out a two-dimensional, rel-
ativistic simulation of the Kapitza-Dirac effect, by using an
FFT split operator method. The standing-wave laser beam is
modeled by two counterpropagating Gaussian beams and thus
goes beyond the plane-wave ansatz of previous investigations.
Likewise, the electron wave function is implemented as a
finite-size Gaussian wave packet. Within the used parameters,
we are able to show a Bragg peak in the Bragg regime, which
is the characteristic aspect of the Kapitza-Dirac effect. Fur-
ther, we have demonstrated a spin flip along the x-polarization
axis of the electron spin, implying that formerly discussed
spin effects are theoretically possible in Kapitza-Dirac scat-
tering, which we conclude without applying approximations.

In a subsequent study, we have investigated the breakdown
of the Kapitza-Dirac plane-wave diffraction dynamics, when
the standing-wave laser beams are getting more and more
focused. We also looked at the scaling behavior of the spin-flip
quantum dynamics of the Kapitza-Dirac effect with respect to
changes of the laser frequency ckL and the beam divergence
ε, regarding the longitudinal laser polarization component
from beam focusing. We conclude that this longitudinal in-
fluence is approximately independent of the laser frequency,
but increases with increasing beam divergence. Within the
parameter range of our simulations, we conclude that the lon-
gitudinal polarization component will only play a significant
role for the quantum dynamics for tightly focused beams, cor-
responding to a similar conclusion, which we were drawing
in a perturbative analysis [32]. We also observe that some of
the spin-dynamics in the Kapitza-Dirac effect remains present
when changing the simulation parameters towards the diffrac-
tion regime.

Further investigations, which might be of interest in two-
dimensional Kapitza-Dirac scattering in the future, might
focus on the role of negative solutions in relativistic quantum
dynamics and their behavior in additional external fields.
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