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Measurement incompatibility is strictly stronger than disturbance

Marco Erba *

International Centre for Theory of Quantum Technologies, Uniwersytet Gdański, ul. Jana Bażyńskiego 1A, 80-309 Gdańsk, Poland
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The core of Heisenberg’s heuristic argument for the uncertainty principle, involving the famous γ -ray micro-
scope Gedankenexperiment, hinges upon the existence of measurements that irreversibly alter the state of the
system on which they are acting, causing an irreducible disturbance on subsequent measurements. The argument
was put forward to justify measurement incompatibility in quantum theory, namely, the existence of measure-
ments that cannot be performed jointly—a feature that is now understood to be different from irreversibility of
measurement disturbance, though related to it. In this article, on the one hand, we provide a compelling argument
showing that measurement incompatibility is indeed a sufficient condition for irreversibility of measurement
disturbance, while, on the other hand, we exhibit a toy theory, termed the minimal classical theory (MCT), that
is a counterexample for the converse implication. This theory is classical, hence it does not have complementarity
nor preparation uncertainty relations, and it is both Kochen-Specker and generalized noncontextual. However,
MCT satisfies not only irreversibility of measurement disturbance, but also the properties of no-information
without disturbance and no-broadcasting, implying that these cannot be understood per se as signatures of
nonclassicality.
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I. INTRODUCTION

Since Heisenberg’s γ -ray microscope Gedankenexperi-
ment [1], the relation between measurement disturbance and
the existence of pairs of observables that cannot be jointly
measured has puzzled the authors that tackled quantum mea-
surement theory [2–10]. Over the years, several arguments
have been proposed in favor of the fact that these two facets
of quantum theory might not necessarily be equivalent. While
it may seem intuitively true that the impossibility of jointly
measuring two observables necessarily implies measurement
disturbance, a proof of this fact has never been given in a
theory-independent fashion. On the other hand, it is not even
intuitive whether or not the converse implication should hold
true. Indeed, no conclusive argument has been given so far in
favor or against the latter. The main difficulty in this direction
is that quantum theory (QT) exhibits both features, while
classical theory (CT) exhibits none of them.

In order to understand the logical relation between in-
compatibility of observations [11] and irreversibility of
measurement disturbance, one needs to move outside the
limited scenarios of QT and CT, broadening the perspec-
tive to the wider context of general probabilistic theories.

*marco.erba@ug.edu.pl
†paolo.perinotti@unipv.it
‡davide.rolino01@universitadipavia.it
§alessandro.tosini@unipv.it

In Ref. [10], the authors exhibit a theory where there are
some measurements that cause irreversible disturbance, while
the corresponding observations are compatible with all the
remaining ones. However, so far no theory has been exhibited
such that all of its observations are compatible, and yet their
measurements cause irreversible disturbance, thus decoupling
irreversibility from incompatibility.

In the present article, we address the above question in
the framework of operational probabilistic theories (OPTs)
[12–15]. These are generic theories of information, includ-
ing QT and CT as particular cases, but also encompassing a
wealth of toy theories sharing the same basic compositional
structures for systems and processes. This framework is the
appropriate one to seek general arguments about the logical
dependency of different properties that physical theories may
exhibit. Indeed, the operational-probabilistic framework has
been devised in order to survey general physical theories
“from the outside.” Relevant quantum properties, such as
entanglement and contextuality, have been then investigated
in a similar generalized scenario. For instance, in Ref. [16]
entanglement is established as an inevitable feature of any
theory superseding CT while admitting emergent classicality.
Furthermore, in Ref. [17] a contextuality witness is deduced
in terms of the functional form of an uncertainty relation, thus
pinpointing some aspects of quantum uncertainty that may
constitute genuine evidence of nonclassicality.

The properties of interest for our analysis are as follows: (i)
incompatibility of observations, along with uncertainty, and
(ii) irreversibility of measurement disturbance. For case (i), a
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family of theories being of interest is the one of epistemically
restricted classical phase-space theories [18,19], i.e., opera-
tional theories with a phase space [20] that is possibly discrete
[21], where some restriction in the spirit of Heisenberg’s
uncertainty principle singles out a minimal volume in phase
space that can be identified by a pure state [22]. In the present
article, we discuss a family of theories motivated by point
(ii), i.e., theories where irreversibility of the measurement
disturbance holds.

In detail, in this article we show that the existence of
pairs of incompatible observations—a property that we term
incompatibility for short—is a strictly stronger condition than
the existence of operations that irreversibly disturb the state
of the system on which they act—that we name irreversibil-
ity. In order to achieve this, we will prove that the former
property implies the latter one, while exhibiting a toy theory
that violates the converse implication. The counterexample
consists in a theory—that we call minimal classical theory
(MCT)—where all observations are compatible, but any mea-
surement irreversibly alters the state of the system. This theory
is obtained from CT by restricting to the bone the set of
operations one is allowed to perform on a system. The states
of systems of MCT being classical, this theory also repre-
sents a proof that, contrarily to what is normally believed,
the disturbance action caused by the interaction with a system
is not a characteristic property of the quantum world. More-
over, this result is complementary to the one of Ref. [17],
in that MCT has irreversibility while having no incompat-
ibility of observations—hence no uncertainty thereon—thus
being clearly also Kochen-Specker noncontextual. Further-
more, MCT, being embeddable [23] into classical theory, is
generalized-noncontextual according to Ref. [24]. We observe
that, whereas the pure states of every system can be jointly and
perfectly discriminated within the theory, MCT satisfies the
property of no-information without disturbance [7,10,14,25].
Furthermore, generalized no-broadcasting [26,27]—and, as a
particular case, no-cloning—hold in the theory.

II. FRAMEWORK

We now sketch the framework of operational probabilistic
theories which is here leveraged. An OPT is meant as a the-
ory of systems and their processes. The probabilistic aspect
consists in rules to assess the probability of events in any
network of processes occurring on a given set of systems. In
detail, a generic OPT � has a collection of systems and of
tests thereon. Systems are denoted by capital roman letters
A, B, . . . ∈ Sys(�). As an example, every system in QT cor-
responds to a complex Hilbert space. Tests, denoted as TX =
{Tx}x∈X, represent the experiments that one can perform, act-
ing on a given input system A, and obtaining the output system
B. The class of tests with input system A and output system
B is denoted by Test(A→B). Every test consists in a collec-
tion of possible transformations Tx, labeled by the possible
outcomes x ∈ X of the experiment. A finite outcome space
(X) is associated with each test. The class of transformations
with input A and output B is denoted by Transf(A→B).
Referring again to QT, tests are quantum instruments, and
transformations are quantum operations. For example, in a
Stern-Gerlach experiment the test that models the action of the

magnetic field is of the form T(↑,↓) = {T↑,T↓}, where the two
transformations T↑ and T↓ represent the two occurrences in
which the system collapses into a state with spin up or down,
respectively. A transformation associated with a test whose
outcome space has just one element is called deterministic.
A deterministic transformation does not provide information
(the associated test has a unique outcome, occurring with
certainty), and can represent, e.g., the evolution of an open
system. In QT, a deterministic transformation is a quantum
channel.

The first main feature of tests is that they can be performed
in a sequence, where a sequence can be defined whenever the
input of the subsequent test is the same as the output of the
preceding test. Tests (and transformations) will be drawn as
boxes, and this makes the representation of a sequence of tests
(transformations) more intuitive,

where GY ◦ TX = {Gy ◦ Tx}(x,y)∈X×Y.
A second defining structure of OPTs is parallel compo-

sition, that allows one to combine any pair of systems A
and B in a composite system AB. Given a composite system,
moreover, one can independently apply tests TX and GY on the
two components. The resulting test is the parallel composition
TX � GY that is drawn as follows,

where TX � GY = {Tx � Gy}(x,y)∈X×Y. Both sequential and
parallel composition are associative.

A special kind of test consists in the preparation of a
system A. These tests are called preparation tests, and their
class deserves a dedicated symbol: Prep(A). The possible
transformations of a preparation test are states, that can be
denoted as |ρ)A ∈ St(A). Similarly, a special class of tests
is that representing measurements after which the system A
is destroyed, discarded, or just neglected. As mentioned in
Ref. [11], these tests are called observation tests or obser-
vations for short, and their set is denoted by Obs(A). The
transformations (a|A of an observation test are called effects,
and their set is denoted by Eff(A). Observation tests are the
generalization of positive operator-valued measures (POVMs)
of QT to generic theories. We will draw states and effects as

respectively. Preparation (observation) tests can be regarded
as special tests whose input (output) system is trivial. The
(unique) trivial system is denoted by I. From an operational
point of view this system represents “nothing the theory cares
to describe” [13]. The trivial system behaves as a unit for
parallel composition: AI = IA = A.

For every system A of the theory, we require the existence
of a deterministic transformation IA—called identity—
representing “doing nothing” on the system, i.e., such
that IAT = T IB = T , for every transformation T ∈
Transf(A→B). A transformation T ∈ Transf(A→B) is
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reversible if there exists T −1 ∈ Transf(B→A) such that
T T −1 = IB and T −1T = IA. Moreover, for every pair
of systems A and B, we require the existence of the swap
operation representing the exchange of the two systems, i.e.,

A B

B A ,

which is a deterministic reversible transformation. Tests and
transformations can slide along the crossed wires through a
swap.

In an OPT every circuit that starts with a preparation test
and ends with an observation test represents a probability
distribution for the transformations in the circuit. For example,

An agent performing a test can discard information regarding
the outcome. Correspondingly, in an OPT we require that
for every test TX and every disjoint partition {Zy}y∈Y of the
outcome space X there exists the test T′

Y representing the
same operation, where the outcome y ∈ Y stands for “the out-
come of the test TX belongs to Zy.” The transformation T ′

y =∑
x∈Zy

Tx is called coarse-grained transformation. Obviously,
given a test TX the full coarse graining TX = ∑

x∈X Tx is
deterministic.

The above operational apparatus naturally gives rise to a
linear-space structure, where transformations are embedded
in real vector spaces.

The spaces of transformations and tests within a theory are
required to be Cauchy complete. This follows from the idea
that if, within a given theory, there is a procedure to prepare
a transformation (or a test) with arbitrary precision, then it
is natural to assume that the latter is an ideal transformation
(or test) to be included in the theory. This requirement is
particularly relevant for the present work, since it allows one
to distinguish two theories that share similar building blocks,
but where, nonetheless, the operational procedures of one
of them cannot be approximated by those of the other one.
Importantly, this will allow us to prove that MCT is strictly
different from ordinary CT.

For more details about the framework, we refer the reader
to Refs. [14,15].

III. DEFINITIONS

In the following we will consider only causal OPTs. These
are theories where any system admits of a unique deter-
ministic effect, denoted by (e|A ∈ Eff(A). This condition is
equivalent to the property that the probability distributions
of preparation tests do not depend on the choice of the
observation test at their output—a property known as no-
signaling from the future. This property also implies spatial
no-signaling, namely, the property of no-signaling without
interaction [14,15].

We now introduce the notion of compatibility of observa-
tion tests, which will play a central role in our results. The
definition is borrowed from a wide literature on the subject
(see, e.g., Refs. [28–30]), where compatibility is ubiquitously
identified with joint measurability. In precise terms, we say

that the observation tests aX ∈ Obs(A) and bY ∈ Obs(A) are
compatible if there exists a third test cX×Y ∈ Obs(A) such that

Accordingly, we will say that a theory has incompatibility if it
admits of a system A and a pair of observation tests for A that
are not compatible.

In order to determine whether an OPT exhibits tests with
a disturbance in the sense of Heisenberg, i.e., when an OPT
has irreversibility, we require the existence of at least a test
that irreversibly alters the state of the system on which it
acts. In this way, we are stating that these operations set a
direction for the arrow of time, in analogy with the second law
of thermodynamics. Accordingly, we say that a test is intrinsi-
cally irreversible if its occurrence precludes the possibility of
implementing some other test [31] on the same input system.
Notice that in general one can implement a test using ancillary
systems, and our definition allows one to postprocess them
along with the output system. The precise definition of intrin-
sic irreversibility is then the following. We say that the test
AX ∈ Test(A→B) is intrinsically irreversible if it excludes
some other test BY ∈ Test(A→C) [31], i.e., there exists a test
BY ∈ Test(A→C) such that, for every CZ ∈ Test(A→BE)
and every disjoint partition {Sx}x∈X of Z with

(1)

there exists no postprocessing P(z)
Y ∈ Test(BE→C) such that

(2)

A first result that we can prove is that a test is intrinsically
irreversible if and only if it excludes the identity test. In-
deed, if this is the case, the above definition holds choosing
BY = {IA}. On the other hand, by contradiction, if AX can be
postprocessed to the identity test, then it can be postprocessed
to any other test. The detailed proof of the previous statement
can be found in Appendix A.

In the light of the above discussion, we will say that a
theory has irreversibility if it admits of a test that is intrin-
sically irreversible. Notice that, according to our definition, in
QT—where all channels admit of a unitary dilation—no chan-
nel is intrinsically irreversible. On the other hand, almost all
quantum tests are intrinsically irreversible. Irreversibility thus
stems, at least in QT, from the very extraction of information
in a measurement.

IV. INCOMPATIBILITY VERSUS IRREVERSIBILITY

A. Incompatibility implies irreversibility

We can now prove the first of our two main results: The
existence of incompatible observation tests implies that the
theory has irreversibility.
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Given two observation tests {ax}x∈X, {by}y∈Y ∈ Obs(A),
if they do not exclude each other, then one can straightfor-
wardly prove that they are compatible. Hence, incompatibility
is sufficient for irreversibility. Actually, in any operational
theory with nontrivial systems, incompatibility is sufficient
also for intrinsic irreversibility of some tests with non-
trivial output. In order to prove this, we show that there
always exist two tests {Tx}x∈X ∈ Test(A→B) and {Gy}y∈Y ∈
Test(A→C) such that

(3)

Indeed, in every nontrivial OPT and for every system A, it is
always possible to choose a measure-and-prepare test

where |ρ)B ∈ St(B) is an arbitrary deterministic state of a
nontrivial system A, and analogously for {by}y∈Y. We con-
clude by observing that, if by contradiction either test TX
or GY does not exclude the other, the observation tests
(e|B ◦ TX and (e|C ◦ GY are compatible [31], contradicting the
hypothesis.

Then, whenever a theory has incompatibility, there must
exist at least a pair of tests with nontrivial output that exclude
each other, thus being intrinsically irreversible. In summary,
incompatibility of observations implies irreversibility of mea-
surement disturbance.

B. Irreversibility does not imply incompatibility

We now proceed to prove the second main result, by ex-
hibiting a toy theory called minimal classical theory (MCT)
that has irreversibility but no incompatibility. This theory is
obtained by restricting the sets of allowed transformations
and tests of CT, while keeping its sets of states and effects
untouched. More in detail, the only allowed tests (and con-
sequently transformations) are the ones that can be obtained
combining preparation tests and observation tests with the
identity and swap operations (and limits of sequences of tests
thereof).

MCT is an instance of a broader family of OPTs that can
be analogously obtained: Starting from an OPT, one can build
its minimal version by only allowing preparation tests and
observation tests, permutations of systems, and arbitrary com-
positions or limits thereof. These theories are called minimal
OPTs. In Appendix C, the formal definition of this family of
theories is presented together with a series of results character-
izing their transformations and their properties. As for MCT,
the definition and formalization of the results discussed below
are presented in Appendix D.

Causal classical theories are here defined as OPTs where
the state spaces are simplexes whose vertices (pure states) are
jointly perfectly discriminable [15,32]. We can now review
some aspects of MCT, actually referring to results that hold for
arbitrary minimal OPTs. The tests of a minimal OPT—with

the exclusion of (some of) the limit tests—are of the form

{ρx}x∈X

C

{ay}y∈YB′ A′

A

S(1)

A′ B′

S(2)

B

E

,

(4)

where {ρx}x∈X ∈ Prep(CB′) and {ay}y∈Y ∈ Obs(CA′) are
generic preparation tests and observation tests, and S (1) and
S (2) are generic permutations (see Appendix B) [33]. Notice
that there is some degree of arbitrariness in the choice of the
systems A′, B′, C, E, and in some cases they can be taken
as the trivial system I. As a consequence of the realization
scheme of tests in Eq. (4), MCT is such that the identity
transformation is atomic—i.e., every test whose full coarse
graining is equal to I must be of the form {pxI}x∈X, with
{px}x∈X a probability distribution—for every one of its sys-
tems.

The proof of the preceding property proceeds as follows.
First, suppose that there is some test that decomposes IA.
This test is the limit of some sequence T(n)

X of tests of the
form (4). The important fact here is that the arbitrary systems
A′

n, B′
n, En, as well as the permutations S (1)

n and S (2)
n , for the

tests T(n)
X in the sequence can be taken to be independent of n.

Then, the full coarse graining of the limit test—that coincides
with the limit of the sequence of full coarse grainings—is
of the form of Eq. (4) where the observation test {ay}y∈Y
reduces to the deterministic effect (e|CA′ ∈ Eff(CA′). Since
in our case A ≡ B, it must also be A′ ≡ B′. Moreover, since
the overall transformation must be the identity, one can eas-
ily check that it must be S (2) = [S (1)]−1. In summary, one
must have

(5)

and finally, inverting the permutations on both sides, we end
up with

which then requires A′ ≡ I. By the stability of the systems
A′

n, B′
n, En, also the sequence of tests of the form (4) con-

verging to our decomposition of IA must have trivial systems
A′ ≡ B′ ≡ I. As a consequence, all such tests must con-
tain transformations proportional to IA, and so must the
limit test.

We finally prove that every theory admitting at least a
system of dimension greater than 1 for which the identity
transformation is atomic, and MCT as a particular case,
has irreversibility. This is shown by contradiction. Suppose
that a theory has no intrinsically irreversible tests. Then any
test AX ∈ Test(A→B) does not exclude the identity and
is achievable via a test {Cz}z∈Z ∈ Test(A→BE) such that
Eq. (2) holds with By replaced by the identity IA. Suppose
A is a system of dimension greater than one where the iden-
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tity transformation is atomic, due to this, one has (e|BECz =
pz(e|A, which means that the observation test associated to
AX ∈ Test(A→B) is of the form {pze}z∈Z, namely it is trivial.
Since this is true for every test, all observation tests of system
A must be trivial, which is possible only if this system has
dimension equal to 1, thus reaching a contradiction. On the
other hand, MCT admits systems of dimension greater than
1. Therefore, since for every system of MCT the identity
transformation is atomic, it has irreversibility. To conclude the
argument, it is sufficient to observe that MCT does not have
incompatibility, since it has the same observation tests as CT,
where all the observations are compatible. A detailed proof of
the previous statement is given in Appendix D 1.

We conclude by observing that the fact that the identity
transformation is atomic for any of MCT’s systems sets this
theory apart from CT. In fact, the latter theory satisfies the
opposite property; any system of the theory always admits a
test that is a nontrivial decomposition of the identity. Hence
MCT’s test set is strictly contained in CT’s one.

V. DISCUSSION

In this article we have proven that, in a general theory of
physical systems, the presence of incompatible observations
implies the existence of tests that are intrinsically irreversible,
but the reverse does not hold. The counterexample is given in
terms of a fully fledged OPT, that we named MCT, whose state
spaces are simplexes. Incidentally, in Ref. [34] it is proven
that, under the no-restriction hypothesis, the compatibility of
all observation tests is equivalent to having simplicial state
spaces. At any rate, simpliciality is sufficient for a theory to
exhibit full compatibility of observations, and yet, remarkably,
it does not preclude the presence of irreversible disturbance,
as we have shown here. Indeed, the fact that a theory such as
MCT exists is not straightforward.

Notice that it is reasonable to expect that MCT is not
the unique theory with full compatibility of observations and
irreversibility. Moreover, it is not even clear that such a theory
must be simplicial, as suggested, e.g., in Ref. [35], where a
possible example is sketched of a theory made of quantum
systems whose unique allowed observation test corresponds
to an informationally complete POVM.

The notion of intrinsic irreversibility has been also in-
troduced in an operational framework, and characterized as
the existence of tests that cannot be postprocessed to the
identity—not even with access to arbitrary ancillary systems.
The consequent notion of irreversibility—i.e., the property
of a theory with an intrinsically irreversible test—is very
restrictive, and one may conjecture that it lies at the origin of

thermodynamic irreversibility. The analysis of this hypothesis
will be the subject of future studies.

The toy theory presented here, exhibiting irreversibility but
also full compatibility of observations, can be used to compare
other features which are beyond the scope of this article as
well. For example, MCT establishes that classicality is not
sufficient for a theory to have full compatibility of tests, where
the latter is defined according to Refs. [31,35]. Moreover,
MCT satisfies not only no-information without disturbance
as follows from the atomicity of the identity transformation
[25], but also generalized no-broadcasting [26,27], as follows
from the form of the channels of the theory. In particular,
as a special case of the latter property, MCT also satisfies
no-cloning. Accordingly, MCT represents the evidence that
the properties of no-information without disturbance and of
no-broadcasting are not signatures of nonclassicality per se.

We highlight that the fact that MCT satisfies no-
broadcasting is not in contradiction with the results of
Refs. [26,27]. Indeed, one of the underlying assumptions of
the latter works is the possibility of having classical control
on outcomes, or, in other words, the possibility of choos-
ing which test to perform conditionally on which outcome
has occurred in a preceding test. However, such an assump-
tion was not made in the present work. This establishes that
classicality—understood as the joint perfect distinguishability
of the pure states—is not in itself a sufficient condition for
broadcasting. Now, it would be interesting to determine under
which assumptions classicality entails the possibility of gen-
eralized broadcasting, e.g., by determining whether the sole
addition of the above-mentioned conditional tests would be
sufficient [36].

As a final remark, we observe that MCT does not have
complementarity nor preparation uncertainty relations, such
as Robertson’s ones [2], which shows that those are not im-
plied by irreversibility, just as incompatibility is not. It is yet
unknown whether or not the converse of the above statement
holds.
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APPENDIX A: INCOMPATIBILITY AND INTRINSIC IRREVERSIBILITY

In the present Appendix we provide the formal proof that whenever a test does not exclude the identity, then it does not
exclude any other test.

Lemma 1. For any two given tests AX = {Ax}x∈X ∈ Test(A) and BY = {By}y∈Y ∈ Test(A→B), if AX does not exclude the
identity, then it also does not exclude BY.
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Proof. Writing the nonexclusion relation of AX with the identity as

the result then follows by taking

A
y

B
=

∑

z

A

z

A

(z)
y

A
y

B

A′ A′′

=
∑

z

A

z

A

′(z)
y

B

A′ A′′ ,

where we defined the new postprocessing P′(z)
Y := BY ◦ P(z)

Y ∈ Test(AA′ →BA′′). �

APPENDIX B: PERMUTATIONS AND THEIR PROPERTIES

In the present Appendix we will discuss the particular set of reversible transformations called permutations.
Definition 1 (Set of permutations). The set of permutations, whose representatives will be indicated with S , is defined

as the equivalence class of transformations which are obtained by parallel and sequential composition of swap and identity
transformations.

The above defined transformations on bipartite systems satisfy the following characterization theorem:
Theorem 1 (General form of permutations on bipartite systems). In every OPT for any permutation acting on a bipartite system,

there exist suitable systems A′, B′, A′′, B′′, and transformations S1, S2, S3, S4 such that

A

S
C

B D =

A

S3

A′

S4

C

A′′ B′

B

S1

B′ A′′

S2

D

B′′

,

(B1)

where A, B are generic systems of the theory and C, D are systems such that CD is isomorphic to AB.
Proof. Let us start by considering the ordered decomposition of AB in the set of subsystems on which S acts:

{A1, . . . , An, B1, . . . , Bm}.
The action of S is to permute the order of these subsystems:

{A1, . . . , An, B1, . . . , Bm}

↓ S

{σ (A1), . . . , σ (An), σ (B1), . . . , σ (Bm)} = {C1, . . . , Cl , D1, . . . , Dk}.
If we now define N = {1, . . . , n}, M = {1, . . . , m}, L = {1, . . . , l}, K = {1, . . . , k}, the most general transformation that can
happen due to the action of S is that

{Ai}i∈N ′
S−→ {Ci}i∈L′ ,

{
A j

}
j∈N ′′

S−→ {
D j

}
j∈K ′ ,
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where N = N ′ ⋃ N ′′, #N ′ = #L′, #N ′′ = #K ′ and analogously for B,

{Bi}i∈M ′
S−→ {Ci}i∈L′′ ,

{
B j

}
j∈M ′′

S−→ {
D j

}
j∈K ′′ ,

where M = M ′ ⋃ M ′′, #M ′ = #L′′, #M ′′ = #K ′′, and overall L = L′ ⋃ L′′, K = K ′ ⋃ K ′′. With #S we denote the cardinality
of the set S.

Now we want to show that this permutation can always be achieved thorough a transformation with the same form as that
of (B1).

We begin by observing that in the case of system A one can always find a permutation that reorganizes the systems in such a
way that the ones that are mapped into states of C are on the top and the ones that are mapped into D are on the bottom,

A S3

{Ai}i∈N′{Aj}j∈N′′ {Ai}i∈N′

{Aj}j∈N′′ ,

where the ordering of the Ai and A j is not important. We can then suppose that the same happens also to the subsystems of B,

B S1

{Bi}i∈M′{Bj}j∈M′′ {Bi}i∈M′

{Bj}j∈M′′ .

Now we have to take the subsystems of A that are mapped into D and move them down, and vice versa for the ones of B that are
mapped into C. This can be achieved by swapping {A j} j∈N ′′ with {Bi}i∈M ′ :

A

S3

{Ai}i∈N′

{Aj}j∈N′′ {Bi}i∈M′

B

S1

{Bi}i∈M′ {Aj}j∈N′′

{Bj}j∈M′′

.

Now to conclude we need only to add two permutations S2,S4, that can always be found, to correctly reorder the subsystems to
obtain C and D:

A

S3

{Ai}i∈N′

S4

C

{Aj}j∈N′′ {Bi}i∈M′

B

S1

{Bi}i∈M′ {Aj}j∈N′′

S2

D

{Bj}j∈M′′

.

Therefore we have shown that, for any permutation S , it is always possible to find a transformation such as the one in (B1)
that permutes the systems as S . From the fact that permutations can be completely characterized by how they permute its input
systems, then the equality between the two transformations follows. �

Remark 1. We highlight that, in general, in the preceding theorem A, B, C, D can be the trivial system and this holds also for
A′, A′′, B′, B′′.

APPENDIX C: MINIMAL OPERATIONAL PROBABILISTIC THEORIES

Definition 2 [Minimal operational probabilistic theory (MOPT)]. We define as MOPT an OPT where the only allowed tests
are the ones obtainable by composing the elements of

A
,

A B

B A , {ρi}i∈I

A
,

A {aj}j∈J ,
(C1)

where {ρi}i∈I and {a j} j∈J are all the possible preparation tests and observation tests of the theory, and the limits of all the Cauchy
sequences of tests of this type. Thus the only allowed transformations are those obtainable by sequential and parallel composition
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of the elements of

A
,

A B

B A , ρ
A

,
A

a ,
(C2)

for every A, B ∈ Sys(�), |ρ) ∈ St(A), and (a| ∈ Eff(A), and the limits of all the Cauchy sequences of transformations of this
type that belong to a test of the theory.

We observe that these are the minimum requirements that can be made on an OPT to cope with the required compositional
structure and the Cauchy completeness. In other words, if any of the elements of (C1), or equivalently (C2), or of the limits were
removed, the theory could no longer be classified as an OPT.

Theorem 2. In every MOPT any transformation T ∈ Transf(A→B) obtained as a parallel and sequential composition of the
elements of (C2) is of the form

A B
=

ρ

C

aB′ A′

A

S1

A′ B′

S2

B

E

,

(C3)

where S1,S2 ∈ RevTransf(�) are appropriate permutations, |ρ)CB′ ∈ St(CB′), (a|CA′ ∈ Eff(CA′), and A, B, A′, B′, C, E ∈
Sys(�) may also be equal to the trivial system.

Proof. To prove that this result, we will start by showing that every transformation can be written in the form

(C4)

Let us consider the decomposition of T in its constituent elements, (C2), and focus our attention on one of the measurements
in it. An effect was chosen, but the procedure remains the same even if one chooses to start with a state. In the case in which
neither of them are included in the decomposition it means that T = S , i.e., (C4) with C′ = D′ = I.

In the case in which an effect (a1| is present, it is possible to isolate it and rewrite the transformation in the following way,

where T1 and T2 are such that T = T2 ◦ (ID2 � (a1| � ID3 ) ◦ T1 and D1, D2, D3 ∈ Sys(�) are appropriate systems. It is not
excluded the possibility of D2, D3 being the trivial system.

Using the reversibility of the permutations, it is possible to write

A

1

D2 D1 D2

2

B

D1 D2 D1
a1

D3

=

A

1

D2 D1
a1

D1

2

B

D1 D2

D3

=

A

′
1

D1
a1

D2

2

B

D3

=

A

1

D1
a1

B .
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Now it is sufficient to iterate the procedure on T 1 until, after n steps, one obtains a transformation T n = S . The result would
be something of the form

We can now apply Theorem 1 to (C4) obtaining

A B
=

ρ′
C′

S3

C

S4

D′
a′

B′ A′

A

S1

A′ B′

S2

B

E

.

Now absorbing S3,S4 into |ρ ′)C′ and (a′|D′ , respectively, the proof is concluded:

A B
=

ρ

C

aB′ A′

A

S1

A′ B′

S2

B

E

.

�
One important check for a well-defined OPT is that the spaces of transformations must be closed under parallel and sequential

composition. This can be easily proved to hold in every MOPT by exploiting (C4).
Let us start by demonstrating the case of sequential composition:

ρ1
C1

S1

D1
a1 ρ2

C2

S2

D2
a2

A B F

=

ρ2
C2 D1

a1

ρ1
C1

S1

D1 C2

S2

D2
a2

A B F

=

ρ2
C2

S3

D1
a1

ρ1
C1 D2

a2

A F

=
ρ3

C3

S3

D3
a3

A F .
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The proof for parallel composition is analogous,

ρ1
C1

S1

D1
a1

A1 B1

ρ2
C2

S2

D2
a2

A2 B2

=

ρ1
C1

S1

D1
a1

A1 C2 A1 B1

ρ2
C2 A1 C2

S2

D2
a2

A2 B2

=

ρ1
C1

S1

D1
a1

ρ2
C2 A1 B1

A1 C2

S2

D2
a2

A2 B2

and applying the same procedure on the right-hand side of the circuit with (a2| one obtains

=

ρ1
C1

S1

D1
a1

ρ2
C2 A1 B1 D2

a2

A1 C2

S2

D2 B1

A2 B2

=
ρ3

C3

S3

D3
a3

A3 B3
.

Properties of MOPTs with the causality assumption

We conclude this Appendix by proving the stability result for the form of the deterministic transformations of MOPTs.
Lemma 2. In a causal MOPT every deterministic transformation obtained as composition of the elements in (C2) is of the

form

(C5)

Remark 2. The transformation

.

between the two braid transformations in (C5) is sometimes referred to as “destroy and reprepare,” since whatever the input it
will “destroy” it and prepare the state |ρ).

Theorem 3. In a causal MOPT the limits of Cauchy sequences of deterministic transformations are still of the form (C5).

022239-10



MEASUREMENT INCOMPATIBILITY IS STRICTLY … PHYSICAL REVIEW A 109, 022239 (2024)

Proof. Let us start by considering a Cauchy sequence of deterministic transformations from A to B, which by (C5) we know
to be of the form

A

S(1)
n

A′
n

e ρn

B′
n

S(2)
n

B

En

n∈N

.

(C6)

The proof can now be subdivided into three steps:
(1) Given that the two systems A and B can only be a composition of a finite number of systems, the sets of permutations that

have this systems respectively as input and output [Permutation(A→E) and Permutation(E′ →B) for all appropriate systems
E,E′ ∈ Sys(�)] are finite.

Consequently, due to the fact that we have a sequence, i.e., infinite terms, there must exist at least a couple of permutations S1

and S2 that appear infinitely many times together “on the outside” of the elements of the sequence (C6). We can now concentrate
on the subsequence with this couple of permutations

A

S(1)

A′
n

e ρn

B′
n

S(2)

B

En

n∈N

.

Since (C6) is a Cauchy sequence, also its subsequences will be Cauchy and they will have the same limit.
(2) We now focus our attention on the systems En. Due to the fact that in the previous point we have fixed S1, the systems

contained within the composite system A′
nEn will not change. Therefore, the only change that can occur at the variation of n is

how they are grouped.
For example, if A′

n = S1 and En = (S2S3S4), for a different value n′ 	= n, it must be A′
n′ = S1S2 and En′ = S3S4, or A′

n′ =
(S1S2S3) and En′ = S4, or any other possible regrouping (also the original one) in which the order of the Si does not change.

Given that A′
nEn can be composed only of a finite number of systems, and analogously for B′

nEn, it is always possible to find
at least a system E that appears infinitely many times in the considered sequence. By fixing E, then also the systems A′ and B′
are automatically fixed. Proceeding exactly as in the previous point we will focus from now on the subsequence where these
systems are fixed:

(3) Considering this subsequence we can now easily see that the following relation holds ∀n, m ∈ N,

where the norm used above is the operational norm [14] which has a nice operational interpretation: The distance between two
transformations is related to the probability of discriminating them through the best possible procedure one can implement. This
norm is well defined over the spaces of transformation since, as observed in the main text, these can be embedded in a real vector
space. Furthermore, it satisfies the monotonicity property [14]

‖T ‖op � ‖E T C ‖op,

where E ∈ Transf(C→D) and C ∈ Transf(A→B) are deterministic transformations—the equality holds if both E and C are
reversible—which is what was used in the last steps of the proof.
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What this implies is that the sequence of deterministic states of this particular subsequence of (C6) is Cauchy.
We can therefore conclude that the subsequence considered in this point, and consequently (C6), converges to

where |ρ)B′ = limn→∞ |ρn)B′ . With this we conclude our proof, since we found the desired result. �
Theorem 4. In a causal MOPT whenever one considers a Cauchy sequence of generic transformations obtained as parallel

and sequential composition of the elements in (C2),

ρn

Cn

anB′
n A′

n

A

S(1)
n

A′
n B′

n

S(2)
n

B

En

n∈N

,

(C7)

there always exists a subsequence where the systems En, A′
n, B′

n and the permutations S (1)
n , S (2)

n are fixed:

Proof. The proof of this result consists in going over the first two points of the proof of Theorem 3, and applying them to the
case considered here. �

APPENDIX D: MINIMAL CLASSICAL THEORY

We will now discuss in detail minimal classical theory (MCT). The procedure for the construction of generic OPTs presented
in Ref. [15] guarantees that the postulates here presented are sufficient to to construct a well-defined operational theory.

Postulate 1 (Classicality, convexity, and type of systems). The theory � is classical, convex, and satisfies local discriminability.
In addition to the trivial system, for every integer D � 1, Sys(�) contains a type of system of size D.

Postulate 2 (Preparation and observation tests). Given any system A ∈ Sys(�), a collection {ρx}x∈X ⊂ St(A) is a preparation
test if and only if

∑
x∈X (e|ρx )A = 1. The observation tests of every system A ∈ Sys(�) are all the collections {ay}y∈Y ⊂ EffR(A)

of generalized effects such that {(ay|A � IE}y∈Y ⊂ EffR(AE) maps preparation tests of AE to preparation tests of E for all
E ∈ Sys(�).

Where EffR(A) for every A ∈ Sys(�) is defined by Postulate 1 through the property of joint perfect discriminability.
Postulate 3 (Transformations and tests). The only allowed tests are the ones given by the composition of the elements of

A
,

A B

B A , {ρi}i∈I

A
,

A {aj}j∈J (D1)

where {ρi}i∈I and {a j} j∈J are all the possible preparation tests and observation tests allowed in the theory by Postulate 2, and the
limits of all Cauchy sequences of tests of this type. Thus the only allowed transformations are the ones obtainable by sequential
and parallel composition of the elements of

A
,

A B

B A , ρ
A

,
A

a

(D2)

for every A, B ∈ Sys(�), |ρ) ∈ St(Θ), and (a| ∈ Eff(Θ), and the limits of all the Cauchy sequences of events of this type that
belong to a test of the theory.
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We recall the following definitions.
Definition 3 (Convex OPT). An OPT � is convex if St(A) coincides with its convex hull for all A ∈ Sys(�).
Definition 4 (Local discriminability). It is possible to discriminate any pair of states of composite systems using only local

measurements [14].
On top of this, we remind that this theory is causal since every state is proportional to a deterministic one [14].

1. MCT has full compatibility of observation tests

We will now prove that MCT satisfies the property of full compatibility of observation tests. Let us consider two of them. The
most generic form they can take in an n-dimensional system is the following:

{ax}x∈X = {
p0

0(0| + p0
1(1| + · · · + p0

n(n|, p1
0(0| + p1

1(1| + · · · + p1
n(n|, . . . , pm

0 (0| + pm
1 (1| + · · · + pm

n (n|} ∈ Eff(A)

{by}y∈Y = {
q0

0(0| + q0
1(1| + · · · + q0

n(n|, q1
0(0| + q1

1(1| + · · · + q1
n(n|, . . . , qk

0(0| + qk
1(1| + · · · + pk

n(n|} ∈ Eff(A),

where
∑m

i=0 pi
j = 1 ∀ j = 0, . . . , n with pi

j ∈ [0, 1] ∀i, j and analogously for qi
j . Defining now

{c(i, j)}(i, j)∈I×J = {
r0

0 (0|, s0
0(0|, r1

0 (0|, s1
0(0|, . . . , ri

j (j|, si
j (j|, . . .

} ∈ Eff(A),

where ri
j = min{pi

j, q j} and si
j = max{pi

j, qi
j} − min{pi

j, qi
j}, one can verify from direct calculation that this is an effect of the

theory, since it complies with Postulate 2, and that it satisfies the following relations,

(ax|A =
∑

(i, j)∈Vx

(c(i, j)|A ∀x ∈ X,

(by|A =
∑

(i, j)∈Wy

(c(i, j)|A ∀y ∈ Y,

where the ensembles {Vx}x∈X and {Wy}y∈Y are appropriate disjoint partitions of I × J. The proof is now concluded since we have
shown that the two observation tests are compatible.

2. A property of MCT’s tests

An interesting aspect of MCT’s tests is that the ancillary system C can always be neglected and considered only through a
coarse-graining operation.

To show this it is sufficient to observe that any state of the theory can be uniquely decomposed on the vertices of the simplex
which is the state space, and that any effect can be written as coarse graining of the effects that perfectly discriminate the vertices
of the simplex:

|ρ)A =
DA∑

i=1

pi|i)A,

(a|A =
DA∑

j=1

d j (j|A,

where pi ∈ [0, 1] ∀i = 1, . . . , DA and
∑DA

i=1 � 1, and d j ∈ [0, 1] ∀ j = 1, . . . , DA.

022239-13



ERBA, PERINOTTI, ROLINO, AND TOSINI PHYSICAL REVIEW A 109, 022239 (2024)

This property still holds also for states and effects of composite systems. Therefore, any transformation of MCT obtained as
parallel and sequential composition of the elements in (D2) can be rewritten as

ρ

C

aB′ A′

A

S(1)

A′ B′

S(2)

B

E

=
DB′∑

i=1

DA′∑

j=1

DC∑

m=1

DC∑

m′=1

pmidm′j

(mi)

C

(m′i)B′ A′

A

S(1)

A′ B′

S(2)

B

E

=
DB′∑

i=1

DA′∑

j=1

DC∑

m′=1

pmidm′j

m
C

m′

A

S(1)

A′
j i

B′

S(2)

B

E

=
DB′∑

i=1

DA′∑

j=1

DC∑

m=1

DC∑

m′=1

pmidm′jδm,m′

A

S(1)

A′
j i

B′

S(2)

B

E

=
DB′∑

i=1

DA′∑

j=1

DC∑

m=1

pmidmj

A

S(1)

A′
j i

B′

S(2)

B

E .
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