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Many quantum paradoxes based on a realistic view of weak values were discussed in the last decades. They
lead to astonishing conclusions such as the measurement of a spin component of a spin-1/2 particle resulting
in 100h̄, the separation of a photon from its polarization, and the possibility of having three particles in two
boxes without any two particles being in the same box, among others. Here, we show that the realistic view of
the weak values present in these (and other) works is equivalent to a realistic (and highly controversial) view
of quantum measurements, where a measurement reveals the underlying reality of the measured quantity. We
discuss that all quantum paradoxes based on weak values simply disappear if we deny these realistic views of
quantum measurements and weak values. Our work thus aims to demonstrate the strong assumptions and the
corresponding problems present in the interpretation of these quantum paradoxes.
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I. INTRODUCTION

The concept of weak value was introduced by Aharonov
et al. in a seminal paper in 1988 [1]. This concept has
found many important applications. In the field of quantum
metrology, it is associated to the weak value amplification,
a technique that can amplify the perturbation one wants to
measure, making it detectable by existing detector schemes
[2–5]. The measurement of weak values is also useful for
directly obtaining complex quantities of quantum systems,
such as wave functions [6–8] and geometrical phases [9,10],
among other applications [11–13].

Besides the many applications using the weak value con-
cept, many quantum paradoxes based on it were discussed
in the past decades. The title of the original paper states one
of these paradoxes: “How the result of a measurement of a
component of the spin of a spin-1/2 particle can turn out to
be 100h̄” [1]. In the three-box paradox [14,15], the authors
say that there may be a situation with one quantum particle
and three boxes where, “in spite of the fact that we have only
one particle in the above situation, we find this particle with
probability one in any one of the first two boxes” [14]. In the
past-of-a-quantum-particle paradox [16,17], the authors state
that “the photons tell us that they have been in the parts of
the interferometer through which they could not pass” [17].
In the quantum Cheshire cat paradox [18,19], the authors
state that “in the curious way of quantum mechanics, photon
polarization may exist where there is no photon at all” [18].
In a sequence of the quantum Cheshire cat paradox [20,21], it
was stated that it would be possible to “decouple two photons
from their respective polarizations and then interchange them
during recombination” [20]. In the quantum violation of the
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pigeonhole principle paradox [22–25], the authors say that
they “find instances when three quantum particles are put in
two boxes, yet no two particles are in the same box” [22].

Something that is not always clearly stated in many of the
papers dealing with quantum paradoxes based on weak values
is that their paradoxical conclusions depend on a realistic in-
terpretation of the weak values. In other (nonrealistic) views,
the experimental predictions and experimental results can be
understood as simple quantum interference effects. Simple in-
terferometric descriptions, free from paradoxical conclusions,
were presented for the paradoxes of the spin measurement re-
sulting in 100h̄ [26], of the past of a quantum particle [27–29],
of the quantum Cheshire cat [30,31] and its sequence [32],
and of the quantum violation of the pigeonhole principle [32],
while the three-box paradox was experimentally implemented
with classical light [15], thus also having an interferometric
explanation.

The main objective of the present paper is to present a sin-
gle argument to criticize all quantum paradoxes cited above,
among others (including one proposed here), associating a
realistic view of the weak values to the following realistic
interpretation of a quantum measurement [33]: A measure-
ment performed on a quantum system reveals the underlying
ontological value of the measured quantity, that continues the
same after the measurement is performed. This interpretation
is highly controversial, generating numerous paradoxes. For
instance, if a measurement reveals a preexisting value for the
measured quantity, this value must depend on which other
compatible observers are simultaneously measured, due to
quantum contextuality [34]. In the present work, we conclude
that all the cited paradoxes disappear if we simply deny this
realistic and controversial interpretation of a quantum mea-
surement, also denying a realistic view of the weak values. In
this sense, the cited paradoxes can be seen as demonstrations
that realistic interpretations of quantum measurements and of
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weak values lead to inconsistencies, not as demonstrations of
astonishing behaviors of nature.

II. GENERAL ARGUMENT

In a weak measurement procedure, a quantum system is
preselected in a state |ψi〉 and postselected in a state |ψ f 〉.
Between the pre- and postselection, the system interacts with
a probe (which is also a quantum system) that extracts some
information. The weakness of the interaction means that the
quantum system induces a small change on the probe state. So,
considering the probe system as a pointer, the central position
of the pointer wave function is displaced by an amount much
smaller than its initial quantum uncertainty. This displacement
is proportional to the real part of the weak value 〈O〉w of the
observable O from the system that rules the system-pointer
interaction, defined as [1,11]

〈O〉w = 〈ψ f |O|ψi〉
〈ψ f |ψi〉 . (1)

The weak value 〈O〉w may assume values outside the eigen-
value spectrum of the observable O, including complex
values. Since the real part of 〈O〉w is associated to the shift of
the measuring device pointer, 〈O〉w is sometimes considered
to be a quantity associated to the result of a measurement.
However, since in a weak measurement procedure the shift
of the pointer must be much smaller than its quantum un-
certainty, many repetitions of the protocol are necessary to
experimentally extract the weak value [1,11]. In fact, for an
accurate determination of the weak value, infinite repetitions
are necessary [35].

Our method for associating a realistic interpretation of the
weak values to the cited realistic interpretation of quantum
measurements applies to observables O that can be written as
the sum of an observable P from which the preselected state
is an eigenvector with eigenvalue p and an observable Q from
which the postselected state is an eigenvector with eigenvalue
q:

O = P + Q, with P|ψi〉 = p|ψi〉, Q|ψ f 〉 = q|ψ f 〉. (2)

For observables O that obey Eq. (2), the weak value can be
written as

〈O〉w = 〈P〉w + 〈Q〉w = 〈ψ f |P|ψi〉
〈ψ f |ψi〉 + 〈ψ f |Q|ψi〉

〈ψ f |ψi〉 = p + q,

(3)

where Eq. (2) and the fact that q is real were used. In our
argument, the operators P and Q may commute or not. For
most of the observables O relevant in the quantum paradoxes
to be treated in the next section, their decomposition as in
Eq. (2) are done with operators P and Q that do not commute.

In this work we use tildes to represent physical quantities
with an object reality, under the realistic assumptions we
discuss. For instance, if Sz is the operator representing the
z component of the spin of a spin-1/2 particle, by writing
S̃z = h̄/2 we are assuming that the z component of the particle
spin has the ontological value h̄/2 at that time. The realistic as-
sumption that leads to all the quantum paradoxes cited before
[1,14–25] is that the weak value 〈O〉w of an operator O reveals
the objective reality of the physical quantity Õ associated to

this operator at a time between the pre- and postselections.
Under this realistic view of the weak values, for observables
that can be written as in Eq. (2) we have P̃ = 〈P〉w = p,
Q̃ = 〈Q〉w = q, and Õ = 〈O〉w = p + q.

Let us now consider the cited realistic interpretation of
quantum measurements in this situation. Since it is assumed
that a measurement reveals the underlying ontological value
of the measured quantity, considering that the postselection
of the state |ψ f 〉 includes a measurement of the observable
Q resulting in the eigenvalue q, we conclude that we have an
objective value Q̃ = q for this physical quantity before this
measurement. With the assumption that the objective value
of the measured quantity continues the same after the mea-
surement is performed, considering that the preselection of
the state |ψi〉 includes a measurement of the observable P
resulting in the eigenvalue p, we conclude that P̃ = p after
this measurement. So, at a time between the pre- and post-
selection, we have P̃ = p, Q̃ = q, and, consequently, Õ =
P̃ + Q̃ = p + q. Note that the equality Õ = P̃ + Q̃ only holds
because both physical quantities P̃ and Q̃ have definite values
at the same time in this example under our assumptions. We
thus see that, when the observable O can be written as in
Eq. (2), the attribution of a physical reality to the weak value
〈O〉w is equivalent to adopting the cited realistic interpretation
of quantum measurements, since both assumptions lead to the
same objective value for the physical quantity Õ: Õ = p + q.

In the following, we show that all observables used in the
cited quantum paradoxes based on weak values [1,14–25] can
be written as in Eq. (2). Since the cited realistic interpretation
of quantum measurements is highly controversial, a reason-
able way to avoid all the cited quantum paradoxes is to deny
this realistic interpretation of quantum measurements, also
denying the realistic view of the weak values.

III. QUANTUM PARADOXES REVISITED

A. Measurement of spin resulting in 100h̄

Let us discuss the paradox of the original paper from
Aharonov et al. dealing with a spin-1/2 particle [1]. The
particle is preselected by a Stern-Gerlach apparatus with the
magnetic field in a direction ξ in the xz plane that makes
an angle α with the x direction, obtaining a spin component
+h̄/2 in this direction ξ . The postselection is made by a
Stern-Gerlach apparatus with magnetic field in the x direction,
obtaining a spin component +h̄/2 in the direction x. The weak
value of the z component of spin can be computed by Eq. (1)
and the result is 〈Sz〉w = (h̄/2) tan(α/2) [1]. For α = 179.43◦,
we have 〈Sz〉w ≈ 100h̄. If, between the pre- and postselec-
tion, the quantum particle interacts with a small nonuniform
magnetic field in the z direction, its average momentum gain
will be the same as the one of a particle with spin 100h̄
(and the same gyromagnetic ratio) [1]. This fact may lead
to the attribution of a physical reality to the z component of
the particle spin as being S̃z = 〈Sz〉w ≈ 100h̄. In this realistic
view, the measurement of the particle momentum deviation
would be a measurement of the particle spin component in
the z direction between the two Stern-Geralch apparatuses.
However, this weak measurement procedure only works if
the momentum deviation is much smaller than the initial
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FIG. 1. Realistic view of the spin components in the paradox of
a spin measurement resulting in 100h̄ [1].

momentum quantum uncertainty of the particle in the z di-
rection, such that the result can be completely understood in
interferometric terms [26]. The postselection selects a portion
of the initial momentum wave function with higher values of
momentum, such that the average momentum of the selected
wave function has a relatively large value, but only contains
momentum components that were already present in the initial
distribution. So, there is no need to attribute a physical reality
to the weak value of the z component of the particle spin [26].

Let us now see what are the conclusions about the value
of the z component of the particle spin between the Stern
Gerlach measurements using the cited realistic interpretation
of quantum measurements. Under the pre- and postselection,
we attribute objective values to the spin components in the
directions of the apparatuses’ magnetic fields at a time be-
tween the measurements S̃ξ = h̄/2, S̃x = h̄/2. As depicted
in Fig. 1, these values for these spin components imply a z
component of the spin S̃z = (h̄/2) tan(α/2) equal to 〈Sz〉w.
The equivalence between S̃z and 〈Sz〉w occurs because we
have Sz = [Sξ − cos(α)Sx]/ sin(α), which is in the form of
Eq. (2) with O = Sz, P = Sξ / sin(α), and Q = −Sx/ tan(α).
The realistic interpretation of the particle spin as the vectors
represented in Fig. 1 is certainly controversial, and leads to the
same conclusions as the realistic view of the weak values, with
the z component of spin having the value S̃z = (h̄/2) tan(α/2)
at a time between the measurements. Since both realistic inter-
pretations lead to the same conclusions here and in the other
cases we treat, we say they are equivalent.

B. Three-box paradox

Let us now consider the three-box paradox, where a re-
alistic view of the weak values leads to the conclusion that
a quantum particle can be found at two different boxes with
probability 1 in each box [14]. A quantum particle is prepared
in a superposition state of being in three orthogonal states
|A〉, |B〉, and |C〉, which can be considered as the states of
the particle inside boxes labeled A, B, and C, respectively.
The preselected state is |ψi〉 = (|A〉 + |B〉 + |C〉)/

√
3 and the

postselected state is |ψ f 〉 = (|A〉 + |B〉 − |C〉)/
√

3. Projectors
� j = | j〉〈 j| (with j = {A, B,C}) are associated to the pres-
ence of the particle in box j, with an eigenvalue 1 representing
the presence and an eigenvalue 0 the absence of the particle in
the corresponding box. For this configuration, we compute the
following weak values using Eq. (1): 〈�A〉w = 1, 〈�B〉w = 1,
〈�C〉w = −1. By adopting a realistic view of the weak values,
the authors conclude that the probability of the particle to
be found in box A is 1 (since 〈�A〉w = 1), as well as the

probability that the particle to be found in box B (since
〈�B〉w = 1) [14].

There are many different ways to decompose the operators
�A, �B, and �C of the three-box paradox in the form of
Eq. (2). We only show one possible decomposition for each
operator below, in the basis {|A〉, |B〉, |C〉} in matrix form. For
�A, with O = �A, we can write

P =

⎛
⎜⎝

5/3 −7/6 0

−7/6 7/6 1/2

0 1/2 0

⎞
⎟⎠,

Q =

⎛
⎜⎝

−2/3 7/6 0

7/6 −7/6 −1/2

0 −1/2 0

⎞
⎟⎠,

p = q = 1/2. The physical interpretation of the above observ-
ables is not as simple as in the previous case that considered
spin components, but the idea is the same. By assuming the
cited realistic interpretation of quantum measurements, we
obtain an ontological value for the presence of the particle in
box A given by �̃A = P̃ + Q̃ = p + q = 1, in the same way
as by assuming a realistic view of the weak value 〈�A〉w = 1.
For �B, with O = �B in Eq. (2), we can write

P =

⎛
⎜⎝

−1/2 1 1/2

1 0 0

1/2 0 1/2

⎞
⎟⎠, Q =

⎛
⎜⎝

1/2 −1 −1/2

−1 1 0

−1/2 0 −1/2

⎞
⎟⎠,

p = 1, q = 0. By assuming the cited realistic interpretation
of quantum measurements, we obtain �̃B = p + q = 1 =
〈�B〉w. For �C , with O = �C in Eq. (2), we can write

P =

⎛
⎜⎝

1/2 1/2 −1/2

1/2 1/2 −1/2

−1/2 −1/2 3/2

⎞
⎟⎠,

Q =

⎛
⎜⎝

−1/2 −1/2 1/2

−1/2 −1/2 1/2

1/2 1/2 −1/2

⎞
⎟⎠,

p = 1/2, q = −3/2. We obtain �̃C = p + q = −1 = 〈�C〉w
under the cited assumptions. We see that the cited realistic
interpretation of quantum measurements leads to the same
conclusions as the realistic view of the weak values.

As mentioned before, the relevant operators for the paradox
can be decomposed as in Eq. (2) in different ways. Consider
that an operator O can be decomposed as in Eq. (2), but also
as O = P′ + Q′, with P′|ψi〉 = p′|ψi〉 and Q′|ψ f 〉 = q′|ψ f 〉.
Obviously, we must have p + q = p′ + q′. We can consider
that the preselection is performed by the measurement of the
observable P, such that we have P̃ = p under the realistic view
of quantum measurements we consider in this work, or by the
measurement of the operator P′, such that we have P̃′ = p′, or
by both measurements, associating ontological values to both
P̃ and P̃′. Similar considerations can be done for the postselec-
tion. In any case, we have Õ = 〈O〉w = p + q = p’+q’, such
that realistic interpretation of quantum measurements leads to
the same conclusion as the realistic view of the weak values.
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FIG. 2. Scheme of the quantum Cheshire cat paradox [18]. BS1

and BS2 are beam splitters, M1 and M2 are mirrors, PBS is a polar-
izing beam splitter, PS is a phase shifter, HWP is a half-wave plate,
and D1, D2, and D3 are photon detectors.

C. Quantum Cheshire cat

The quantum Cheshire cat paradox considers the inter-
ferometer depicted in Fig. 2 [18]. A photon with horizontal
polarization is sent to the interferometer, such that after
the beam splitter BS1 the preselected state is |ψi〉 = (i|L〉 +
|R〉)|H〉/√2, where |L〉 and |R〉 represent the possible photon
paths in the interferometer, as depicted in the figure, and |H〉
and |V 〉 represent horizontal and vertical linear polarizations
for the photon, respectively. The phase shifter PS includes
a phase π/2 in the corresponding path and the half-wave
plate HWP rotates the polarization from |H〉 to |V 〉, such
that a photon detection by detector D1 corresponds to the
postselection of the state |ψ f 〉 = (|L〉|H〉 + |R〉|V 〉)/

√
2 in-

side the interferometer. The presence of the photon in each
path of the interferometer is associated to the observables
�L = |L〉〈L| and �R = |R〉〈R|. The polarization in the circu-
lar basis |±〉 = (|H〉 ± i|V 〉) is associated to the observable
σz = |+〉〈+| − |−〉〈−|. The circular polarization in each path
is associated to the observables σ (L)

z = �L ⊗ σz and σ (R)
z =

�R ⊗ σz. The following weak values are found with the use
of Eq. (1): 〈�L〉w = 1, 〈�R〉w = 0, 〈σ (L)

z 〉w = 0, 〈σ (R)
z 〉w = 1.

By adopting a realistic view of the weak values, the authors
conclude that the photon propagates through path L (since
〈�L〉w = 1 and 〈�R〉w = 0), but its polarization propagates
through path R (since 〈σ (L)

z 〉w = 0 and 〈σ (R)
z 〉w = 1) [18]. But

we reinforce that the theoretical predictions [18] and experi-
mental results [19] of the quantum Cheshire cat effect can be
explained as simple quantum interference effects [30,31].

To show that the cited realistic interpretation of quantum
measurements leads to the same conclusions as the realistic
view of the weak values in the quantum Cheshire cat para-
dox, such that these realistic assumptions may be considered
equivalent, we only need to show that each of the observables
�L, �R, σ (L)

z , and σ (R)
z can be decomposed as in Eq. (2). We

do this in Appendix A.

D. Past of a quantum particle

The paradox regarding the past of a quantum particle uses
a scheme like the one depicted in Fig. 3, with a nested
Mach-Zehnder interferometer [16,17]. A photon is sent to the
interferometer with beam splitters projected such that its pres-
elected state inside the interferometer is ψi = (|A〉 + i|B〉 +

FIG. 3. Scheme of the paradox involving the past of a quantum
particle [17]. BS1, BS2, BS3, and BS4 are beam splitters. A, B, C, E,
and F are mirrors. D is a photon detector.

|C〉)/
√

3. A state | j〉 represents the photon in a path that
includes mirror j. A photon detection by the detector D post-
selects the quantum state ψ f = (|A〉 − i|B〉 + |C〉)/

√
3. This

configuration implies that there is destructive interference in
the inner interferometer for light exiting in the direction of
mirror F. The weak values of the projectors �A = |A〉〈A|,
�B = |B〉〈B|, and �E = |E〉〈E | are found to be 〈�A〉w = 1,
〈�B〉w = −1, 〈�E 〉w = 0. By using a realistic view of the
weak values, the authors conclude that the photon passes
through path A (since 〈�A〉w = 1), but not through path E
(since 〈�E 〉w = 0), which is impossible. It is important to
stress that both the theoretical prediction [16] and the experi-
mental implementation [17] of this paradox can be described
as simple interference effects [27–29].

In Appendix B we show that each of the observables �A,
�B, and �E of the paradox involving the past of a quantum
particle can be decomposed as in Eq. (2). In this way, the
cited realistic assumption regarding quantum measurements
leads to the same conclusions as the realistic view of the weak
values, so that these realistic assumptions are equivalent.

E. Quantum pigeonhole paradox

In the quantum violation of the pigeonhole principle [22],
there is a system of three particles, each of which can be in or-
thogonal states |L〉 or |R〉, associated to the presence in one of
two boxes L and R, as well as in superposition states. The pres-
elected state is ψi = |x〉1|x〉2|x〉3, with |x〉 = (|L〉 + |R〉)/

√
2.

The postselected state is ψ f = |+〉1|+〉2|+〉3, with |+〉 =
(|L〉 + i|R〉)/

√
2. The observable �same

1,2 = |L〉1|L〉2〈L|1〈L|2 +
|R〉1|R〉2〈R|1〈R|2 is associated to the presence of the particles
1 and 2 in the same box. The eigenvalue 1 corresponds to the
two particles being in the same box, while the eigenvalue 0
corresponds to the two particles being in different boxes. Us-
ing Eq. (1), the weak value of this observable is 〈�same

1,2 〉w = 0.
Since the pre- and postselected states are symmetric under
the exchange of any two particles, we also have 〈�same

1,3 〉w =
〈�same

2,3 〉w = 0, with obvious notation. So, a realistic view of
the weak values implies that no two particles are in the same
box at times between the pre- and postselection, even if we
have three particles and two boxes. But it is important to stress
that the theoretical predictions [22] and experimental results
[23,24] regarding this paradox can be understood as simple in-
terference effects, without such paradoxical conclusions [32].
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To show that the cited realistic interpretation of quantum
measurements leads to the same conclusions as the realistic
view of the weak values in the quantum violation of the
pigeonhole principle, so that these realistic assumptions may
be considered equivalent, we only need to show that each of
the observables �same

1,2 , �same
1,3 , and �same

2,3 can be decomposed
as in Eq. (2). We do this in Appendix C.

F. A different paradox with a spin-2 particle

In this subsection we propose and criticize a different para-
dox based on a realistic view of the weak values. The paradox
is inspired in the situation used in Ref. [33] to criticize the
realistic interpretation of quantum measurements we are dis-
cussing here. Consider that a spin-2 particle is preselected
in the state |2h̄〉x, an eigenstate of Sx with eigenvalue 2h̄,
and post-selected in the state |2h̄〉z, an eigenstate of Sz with
eigenvalue 2h̄ (Si is the i component of the particle spin).
It can be readily shown that the weak value of S2

y is given
by 〈S2

y 〉w = −2h̄2. We could argue that in this situation the
square of the y component of the particle spin has a negative
value, demonstrating an astonishing behavior of nature and
contradicting the notion that the square of a real quantity must
be positive or zero. But this conclusion would be based on a
realistic view of the weak values that we can simply deny.

The same paradoxical conclusion is achieved with the
cited realistic interpretation of quantum measurements, as
discussed in Ref. [33]. We can write S2

y = S2 − S2
x − S2

z , with
any state of a spin-2 particle being an eigenstate of S2 with
eigenvalue 6h̄2. The operator S2

y can be decomposed as in
Eq. (2), with O = S2

y , P = S2 − S2
x , and Q = −S2

z . So, if
we simultaneously attribute physical reality to the quantities
S̃2 = 6h̄2, S̃2

x = 4h̄2, and S̃2
z = 4h̄2 at a time between the pre-

and postselection, due to the results of the performed mea-
surements, we conclude that S̃2

y = S̃2 − S̃2
x − S̃2

z = −2h̄2.

IV. CONCLUSION

The assumption that a quantum measurement reveals
the underlying reality of the measured quantity is certainly
controversial, incapable of describing quantum phenomena
without generating numerous paradoxes [33]. We have shown
that this realistic assumption regarding quantum measure-
ments leads to the same conclusions as the realistic view of
the weak values in many quantum paradoxes described in the
literature [1,14–25] and in one proposed here. So, instead of
assuming the validity of the bizarre behaviors of nature de-
scribed in these works, one may simply deny the cited realistic
interpretation of a quantum measurement, also denying the
realistic view of the weak values. Quantum mechanics is a
very rich, complex, and difficult subject. We believe that the
numerous quantum paradoxes based on a realistic view of the
weak values present in the literature tend to obscure, rather
than to clarify, the understanding of quantum phenomena. Af-
ter all, we can interpret these paradoxes as showing that these
realistic views of quantum measurements and weak values are
not reasonable. We hope our work contributes to reinforce this
point of view.
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APPENDIX A: OBSERVABLES OF THE QUANTUM
CHESHIRE CAT PARADOX

Here, we show that each of the observables �L,
�R, σ (L)

z , and σ (R)
z of the quantum Cheshire cat para-

dox can be decomposed as in Eq. (2), in the basis
{|L〉|H〉, |L〉|V 〉, |R〉|H〉, |R〉|V 〉} in matrix form. One possible
decomposition for �L, with O = �L in Eq. (2), is

P =

⎛
⎜⎜⎜⎝

2 1 −i −1

1 1 −i −1

i i 2 −i

−1 −1 i 1

⎞
⎟⎟⎟⎠,

Q =

⎛
⎜⎜⎜⎝

−1 −1 i 1

−1 0 i 1

−i −i −2 i

1 1 −i −1

⎞
⎟⎟⎟⎠,

p = 1, q = 0, which results in �̃L = 1 = 〈�L〉w with the
cited realistic interpretation of quantum measurements. For
�R, with O = �R in Eq. (2), we can write

P =

⎛
⎜⎜⎜⎝

0 1 i 1

1 1 −i −1

−i i 0 i

1 −1 −i 1

⎞
⎟⎟⎟⎠,

Q =

⎛
⎜⎜⎜⎝

0 −1 −i −1

−1 −1 i 1

i −i 1 −i

−1 1 i 0

⎞
⎟⎟⎟⎠,

p = 1, q = −1, which results in �̃R = 0 = 〈�R〉w under the
realistic assumptions. For σ (L)

z , with O = σ (L)
z in Eq. (2), we

can write

P =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 i

0 0 1 0

0 −i 0 1

⎞
⎟⎟⎟⎠, Q =

⎛
⎜⎜⎜⎝

−1 −i 0 0

i −1 0 −i

0 0 −1 0

0 i 0 −1

⎞
⎟⎟⎟⎠,

p = 1, q = −1, which results in σ̃ (L)
z = 0 = 〈σ (L)

z 〉w under the
realistic assumptions. For σ (R)

z , with O = σ (R)
z in Eq. (2), we

can write

P =

⎛
⎜⎜⎜⎝

1 1 0 −1

1 1 −i −1

0 i 1 −i

−1 −1 i 1

⎞
⎟⎟⎟⎠,
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Q =

⎛
⎜⎜⎜⎝

−1 −1 0 1

−1 −1 i 1

0 −i −1 0

1 1 0 −1

⎞
⎟⎟⎟⎠,

p = 1, q = 0, what results in σ̃ (R)
z = 1 = 〈σ (R)

z 〉w under the
realistic assumptions.

APPENDIX B: OBSERVABLES OF THE PARADOX
REGARDING THE PAST OF A QUANTUM PARTICLE

Here, we show that the relevant observables of the paradox
regarding the past of a quantum particle (�A, �B, and �E )
can be decomposed as in Eq. (2), in the basis {|A〉, |B〉, |C〉} in
matrix form. One possible decomposition for �A, with O =
�A in Eq. (2), is

P = 1

6

⎛
⎜⎝

2 0 1

0 0 3i

1 −3i −1

⎞
⎟⎠, Q = 1

6

⎛
⎜⎝

4 0 −1

0 0 −3i

−1 3i 1

⎞
⎟⎠,

p = q = 1/2, which results in �̃A = 1 = 〈�A〉w with the
cited realistic interpretation of quantum measurements. For
�B, with O = �B in Eq. (2), we can write

P = 1

6

⎛
⎜⎝

1 3i −1

−3i 3 −3i

−1 3i 1

⎞
⎟⎠, Q = 1

6

⎛
⎜⎝

−1 −3i 1

3i 3 3i

1 −3i −1

⎞
⎟⎠,

p = q = −1/2, which results in �̃B = −1 = 〈�B〉w with the
realistic interpretation of quantum measurements. �E is an

eigenstate of |ψ f 〉 with eigevalue 0, so that it can be readily
written in the form of Eq. (2) with O = Q = �E , P = 0, p =
q = 0, which results in �̃E = 0 = 〈�E 〉w under the realistic
assumptions.

APPENDIX C: OBSERVABLES OF THE QUANTUM
PIGEONHOLE PARADOX

Here, we show that each of the observables �same
i, j of the

quantum pigeonhole paradox can be decomposed as in Eq. (2).
All these operators have the same form in the subspace of par-
ticles i and j in the basis {|L〉i|L〉 j, |L〉i|R〉 j, |R〉i|L〉 j, |R〉i|R〉 j}
in matrix form. One possible decomposition, with O = �same

i, j
in Eq. (2), is

P = 1

4

⎛
⎜⎜⎜⎝

5 5 −4 − i −2 + i

5 5 −6 + 5i −5i

−4 + i −6 − 5i 13 1 + 4i

−2 − i 5i 1 − 4i 5

⎞
⎟⎟⎟⎠,

Q = 1

4

⎛
⎜⎜⎜⎝

−1 −5 4 + i 2 − i

−5 −5 6 − 5i 5i

4 − i 6 + 5i −13 −1 − 4i

2 + i −5i −1 + 4i −1

⎞
⎟⎟⎟⎠,

p = 1, q = −1, which results in �̃same
i, j = 0 = 〈�same

i, j 〉w with
the cited realistic interpretation of quantum measurements.
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