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Investigation of a non-Hermitian edge burst with time-dependent perturbation theory
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Edge burst is a phenomenon in non-Hermitian quantum dynamics discovered by a recent numerical study
[Phys. Rev. Lett. 128, 120401 (2022)]. It finds that a large proportion of particle loss occurs at the system
boundary in a class of non-Hermitian quantum walk. In this paper, we investigate the evolution of real-space
wave functions for this lattice system. We find the wave function of the edge site is distinct from the bulk sites.
Using time-dependent perturbation theory, we derive the analytical expression of the real-space wave functions
and find that the different evolution behaviors between the edge and bulk sites are due to their different nearest-
neighbor site configurations. We also find the edge wave function primarily results from the transition of the two
nearest-neighbor nondecay sites. Besides, the numerical diagonalization shows the edge wave function is mainly
propagated by a group of eigenmodes with a relatively large imaginary part. Our work provides an analytical
method for studying non-Hermitian quantum dynamical problems.
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I. INTRODUCTION

The Hermiticity of the Hamiltonian is a fundamental re-
quirement for a closed system in quantum physics [1]. In
many situations, however, one is only interested in a limited
subspace of the whole system, and it can be encapsulated in an
effective non-Hermitian Hamiltonian [2,3]. Such systems in-
clude but are not limited to optical systems with gain and loss
[4–14], open systems with dissipation [15–22], and electron
systems with finite-lifetime quasiparticles [23–28]. Another
important class of non-Hermitian systems is provided by lat-
tices, where the role of topology has attracted tremendous
interest [29–115]. A unique feature of non-Hermitian lattices
is the non-Hermitian skin effect (NHSE), namely, the local-
ization of an enormous number of bulk-band eigenstates at the
edges under open boundary conditions [35–39,59–61,73,89–
93]. A significant consequence of the NHSE is the breakdown
of the conventional bulk-boundary correspondence, which can
be recovered by using the localized skin modes replacing the
extended Bloch waves of Hermitian lattices [33–35,43,76–
78,83]. It indicates that the boundary is even more impor-
tant in non-Hermitian physics compared with their Hermitian
counterparts.

Recently, a novel boundary-induced dynamical phe-
nomenon named “edge burst” is reported in Ref. [116] and
an experimental verification is reported in Ref. [117]. When a
quantum particle (called “quantum walker”) walks freely in a
class of lossy lattices, it is intuitively expected that the decay
probability is dominated by the lossy sites near the initial
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location of the walker. Surprisingly, the numerical study finds
that there is an unexpected remarkable loss probability peak
at the edge, with an almost invisible loss probability tail in
the bulk [116]. The appearance of such an edge peak has also
been reported in an earlier work with an incorrect explanation
[84], which is based on topology. The edge burst was regarded
as an interplay of the NSHE and the imaginary gap closing
in Ref. [116], where the authors give a criterion based on
the property of the Hamiltonian. Although previous work has
investigated the edge burst phenomenon, however, the relation
between the real-space dynamical behavior of the system and
the formation of this burst edge lossy peak is still unknown.

In this work, we investigate the real-space dynamical
behavior of quantum particles in a lossy lattice. Numeri-
cal simulations show the edge burst phenomenon is closely
related to the distinct dynamical behaviors of wave func-
tions between the edge and bulk sites. To further understand
how the walker propagates in the lattice, we introduce time-
dependent perturbation theory in non-Hermitian systems and
evaluate the analytical expression of the real-space quantum
walk wave functions. Due to the NHSE, the walker mainly
hops nonreciprocally along the nondecay chain. The analysis
of real-space wave functions shows the different evolution
features between the edge and bulk can be attributed to their
nearest-neighbor site configurations, which limits the possible
path the walker can travel from the initial state. Besides, we
find that the main contribution to the edge wave function
originates from the interference transition of the two nearest-
neighbor nondecay sites. Furthermore, we discuss the relation
between the evolution of the system and its open (periodic)
boundary eigenmodes by numerical diagonalization. The re-
sult shows the walker is mainly propagated by a group of
eigenmodes which have a large imaginary part when it arrives
at the edge. Our work gives an explicit illustration of the edge

2469-9926/2024/109(2)/022236(10) 022236-1 ©2024 American Physical Society

https://orcid.org/0000-0002-6899-8132
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.022236&domain=pdf&date_stamp=2024-02-26
https://doi.org/10.1103/PhysRevLett.128.120401
https://doi.org/10.1103/PhysRevA.109.022236


PENGYU WEN, JINGHUI PI, AND GUI-LU LONG PHYSICAL REVIEW A 109, 022236 (2024)

FIG. 1. Schematic diagram of the non-Hermitian lattice. Each
unit cell, labeled by spatial coordinate x, contains two sites A and
B.

burst phenomenon in real space and provides an alternative
method to investigate non-Hermitian dynamical problems.

This paper is organized as follows: We introduce the non-
Hermitian quantum walk model and describe the edge burst
phenomenon with numerical simulations in Sec. II. A sketch
of the time-dependent perturbation theory for a non-Hermitian
Hamiltonian is given in Sec. III. We apply the theory in a con-
crete quantum walk model and solve the evolution equation
analytically in Sec. IV. By the analysis of wave functions,
we elucidate the propagation process of the walker and the
formation of edge burst in real space directly. In Sec. V, we
discuss the relation between the evolution of the edge wave
function and the eigenstates of the system. Finally, a summary
and discussion are given in Sec. VI.

II. MODEL AND NON-HERMITIAN EDGE BURST

Let us consider a one-dimensional non-Hermitian lattice
(see Fig. 1), from which the walker can escape during the
quantum walk. The state of the system |ψ〉 evolves according
to the following equations of motion (we set h̄ = 1):

i
dψA

x

dt
= t1ψ

B
x + i

t2
2

(
ψA

x−1 − ψA
x+1

) + t2
2

(
ψB

x−1 + ψB
x+1

)
,

i
dψB

x

dt
= t1ψ

A
x − i

t2
2

(
ψB

x−1 − ψB
x+1

) + t2
2

(
ψA

x−1 + ψA
x+1

)
− iγψB

x , (1)

where ψA
x = 〈x, A|ψ〉 and ψB

x = 〈x, B|ψ〉 are the amplitudes
of the walker on the sublattices A and B at the site x. Without
loss of generality, we choose the hopping amplitude param-
eters t1 and t2 to be real numbers. The onsite imaginary
potential −iγ describes the loss particles on B sites with
rate 2γ . This model differs from the previous quantum work
model [7], as it features the NHSE. This can be seen clearly
by mapping a similar model in Ref. [29], to the non-Hermitian
Su-Schrieffer-Heeger (SSH) model with nonreciprocal hop-
ping [35]. The mathematical relation of these lattice models
can be seen in Appendix A.

For a general Hamiltonian Ĥ = Ĥ − i�̂, where Ĥ and �̂

are Hermitian operators, the norm of a quantum state |ψ〉
evolves according to d

dt 〈ψ |ψ〉 = −2〈ψ |�̂|ψ〉. In the non-
Hermitian quantum walk model we consider, the system
decays according to d

dt 〈ψ |ψ〉 = −∑
x 2γ |ψB

x |2, and the local

decay probability on site x is

Px =
∫ ∞

0
2γ

∣∣ψB
x (t )

∣∣2
dt . (2)

If the initial state |ψ (0)〉 is normalized, the decay probabil-
ity distribution satisfies

∑
x Px = 1. Now, suppose a walker

starts from some sublattice A of site x at time t = 0, namely,
ψA

x (0) = δx,x0 , ψ
B
x (0) = 0, and involves freely under the equa-

tions of motion (1). The hop between different sites drive
the walker away from x0, and during this quantum walk, the
walker can escape from any B sites. This can be seen clearly
in Figs. 2(a) and 2(b), which is the numerical solution of Px.
The distribution of Px is left-right asymmetric and it originates
from the NSHE, the walker tends to jump towards the left as
all eigenstates are localized at the left edge.

A fascinating property of the system is the edge burst
[116], namely, the appearance of a prominent peak in the
loss probability at the edge, with the nearby almost invisible
decaying tail [see Fig. 2(a)]. Such an unexpected peak was
numerically seen in the earlier Ref. [84] and was attributed
to topological edge states. This interpretation was regarded as
wrong in Ref. [116] for the disappearance of the high peak in
the topological nontrivial region. To explore how the walker
propagates in the lattice and forms a burst loss probability
peak at the edge, we focus on the time evolution of ψB

x .
The numerical result shows that ψB

x are purely imaginary.
Furthermore, when there is the edge burst phenomenon, the
dynamical evolution of wave function at the edge is distinct
from the bulk one. We can see this clearly in Fig. 2(c) that ψB

1
has a tremendous large increased amplitude peak after the first
tiny peak, while other ψB

x �=1 oscillate with a decreasing ampli-
tude as t becomes larger. This interesting feature is crucial to
form a burst edge peak. There is no such tremendous large
increased peak for ψB

1 in Fig. 2(d), where all ψB
x have the

same decreased oscillation behavior, and the corresponding
edge loss probability P1 in Fig. 2(b) is very small.

III. NON-HERMITIAN TIME-DEPENDENT
PERTURBATION THEORY

The analytical expression of ψB
x (t ) can be obtained via

time-dependent perturbation theory. The sketch of this the-
ory is encapsulated as follows: We consider a non-Hermitian
Hamiltonian Ĥ (t ) such that it can be split into time-
independent part Ĥ0 and time-dependent part Ĥ ′(t ), namely,

Ĥ (t ) = Ĥ0 + Ĥ ′(t ). (3)

The corresponding Schrödinger equation is

i
∂

∂t
|�(t )〉 = Ĥ (t )|�(t )〉. (4)

When Ĥ ′(t ) = 0, Eq. (4) can be solved if we know the solu-
tion of eigenequations Ĥ0|n〉 = En|n〉 with eigenstates |n〉 and
eigenvalues En, that is

|�(t )〉 = e−iĤ0t |�(0)〉, (5)

where |�(0)〉 is the linear combination of |n〉. If Ĥ ′(t ) �= 0,
it is no longer a stationary problem and we are interested
in the case that the initial state |k〉 is one of the eigenstates
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FIG. 2. (a), (b) The spatially resolved loss probability Px for a walker initiated at x0 = 50. t1 = 0.4 for panel (a) and t1 = 0.8 for panel (b).
The chain length L = 60. (c), (d) The corresponding time evolution of ψB

x to panels (a) and (b) respectively. The common parameters t2 = 0.5
and γ = 0.8 are fixed throughout panels (a)–(d).

of Ĥ0. Due to the perturbation of Ĥ ′(t ), the state |k〉 is an
unstable state. We assume the system is a superposition of the
eigenstates of Ĥ0 for t > 0 and given by

|�(t )〉 =
∑

n

|ψn(t )〉 =
∑

n

cn(t )e−iEnt |n〉. (6)

Substituting this ansatz wave function into Schrödinger equa-
tion (4) and multiplying by the state 〈m|, we get a coupled
differential equation of wave function expansion coefficient
under unperturbed representation Ĥ0:

i
dcm(t )

dt
=

∑
n

H ′
mn(t )cn(t )ei(Em−En )t , (7)

where H ′
mn(t ) = 〈m|Ĥ ′(t )|n〉. To solve the differential equa-

tion (6) with the initial condition cm(0) = δmk , we take the
perturbation expansion of cm(t ) and use the iteration method.
Specifically, cm(t ) can be written as

cm(t ) = c(0)
m + c(1)

m + c(2)
m + · · · , (8)

where c(1)
m , c(2)

m , . . . signify amplitudes of the first order,
second order, and so on in the strength parameter of time-
dependent Hamiltonian. Plugging Eq. (8) into Eq. (7) and
comparing the order of perturbation, we can get the lth-order

equation:

i
d

dt
c(l )

m (t ) =
∑

n

H ′
mn(t )c(l−1)

n (t )ei(Em−En )t . (9)

This equation can be solved easily by integrating it directly if
we know all of (l − 1)st-order solutions c(l−1)

n . Thus, we can
solve Eq. (7) step by step, and the solution up to lth-order is

cm(t ) � c(0)
m (t ) + c(1)

m (t ) + · · · + c(l )
m (t ). (10)

It should be noticed that this approximate solution has a
convergent radius t0, which is related to the perturbation ex-
pansion order and the strength parameters of perturbation.

IV. BURST PEAK FROM TIME-DEPENDENT
PERTURBATION THEORY

In the non-Hermitian quantum walk model, the onsite
potential operator is set as the unperturbed Hamiltonian
Ĥ0. Its real-space matrix elements are 〈x, s|Ĥ0|x′, s′〉 =
− iγ

2 δxx′δss′ [1 − (σz )ss′ ], where x, x′ referring to the location
of the unit cell and s, s′ = A, B referring to the sublattice
label. The eigenequation is Ĥ0|x, s〉 = Es

x |x, s〉, with two N-
fold eigenvalues EA

x = 0 and EB
x = −iγ , respectively. The

hopping of the walker is treated as the perturbation operator
Ĥ ′ and its matrix elements are H ′

xs,x′s′ = 〈x, s|Ĥ ′|x′, s′〉. Thus,
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FIG. 3. (a), (b) The modulus of the wave functions ψA
x (t ) for a walker initiated at x0 = 12. t1 = 0.4 for panel (a) and t1 = 0.8 for panel (b).

The gradient blue (red) curves represent the sites that are on the left (right) side of the initial site, namely, from |ψA
11(t )| to |ψA

2 (t )| [|ψA
13(t )|

to |ψA
20(t )|]. The lighter the blue (red) color of the curve is, the further the site is away from the initial site. Specifically, the black curve

represents the initial 12A site while the purple curve represents the left edge site 1A. The chain length L = 20. (c), (d) The corresponding
spatially resolved loss probability Px to panels (a), (b) respectively. Panels (e) and (f) are the edge wave functions ψB

1 (t ). The blue solid line
means the Runge-Kutta numerical solution. The evaluation of both analytical (red dashed) and main paths (black dotted) are up to 90th-order
perturbation. The common parameters t2 = 0.5 and γ = 0.8 are fixed throughout panels (a)–(f).

according to the perturbation procedure in Sec. III, we can
evaluate the evolution of the amplitude of the walker on any
site. Specifically, Eq. (7) will be reduced to

i
dcs

x(t )

dt
=

∑
x′s′

H ′
xs,x′s′cs′

x′ (t )ei(Es
x −Es′

x′ )t . (11)

One can integrate both sides of this equation and get the
formal solution,

cs
x(t ) = −i

∑
x′s′

∫ t

0
Hxs,x′s′cs′

x′ (t ′)ei(Es
x −Es′

x′ )t ′
dt ′. (12)

with the relation ψ s
x (t ) = e−iEs

x t cs
x(t ), the formal solution can

be written as the relation between the amplitude of the differ-
ent sites:

ψ s
x (t ) = −ie−iEs

x t
∑
x′s′

∫ t

0
eiEs

x t ′
Hxs,x′s′ψ s′

x′ (t ′)dt ′. (13)

Initial conditions ψA
x (0) = δx,x0 and ψB

x (0) = 0 guarantee that
the amplitudes ψA

x (t ) remain real and ψB
x (t ) remain purely

imaginary for all t . This follows from the perturbation analysis
(see details in Appendix B). Alternatively, one can check this
conclusion through the iteration equation (13). For example,

if the sublattice label s = A, the nonzero factors Hxs,x′s′ψ s′
x′ (t ′)

are imaginary under the assumption that ψ s′
x′ (t ′) are real for

s′ = A and imaginary for s′ = B. The amplitudes ψA
x (t ) thus

keep real, which is a self-consistent result for equation (13).
For concreteness, we consider a 20-site lattice with the

walker initially prepared on sublattice A of site 12. Analytical
expressions of wave functions ψ s

x (t ) are obtained using time-
dependent perturbation theory, and these expressions agree
well with the numerical results at the desired time. It finds
that the dynamical behavior of the walker along the A chain is
crucial to forming a remarkable loss peak at the edge. Increas-
ing the hopping parameter t1 strengthens the coupling between
chains A and B for fixed t2 and γ , thereby accelerating walker
dissipation and consequently shortening its travel time on
chain A. This manifests in Figs. 3(a) and 3(b), where ψA

x (t )
exhibits smaller amplitudes and faster convergence to zero for
larger t1 upon the walker’s arrival at x. Another perspective to
see this is that the dissipation probabilities Px near the initial
location is larger as t1 increases [see Figs. 3(c) and 3(d)]. If
the system satisfies the imaginary gapless condition t1 < t2,
the walker will decay slowly with the algebraic behavior of
bulk Px [96,116], which leads a large amplitude of ψA

1 [see
Fig. 3(a)]. On the other hand, this non-Hermitian lattice model
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features the NHSE, namely, the exponential localization of all
eigenstates at the edge, which is characterized by the gener-
alized Bloch factor β with |β| = √|(t1 − γ /2)/(t1 + γ /2)|.
In the case |β| < 1 for t1 > 0, all skin modes are localized at
the left edge. The NHSE induces leftward walking along the
A chain with max[|ψA

x<x0
|] much larger than max[|ψA

x>x0
|], as

shown in Figs. 3(a) and 3(b). The walker becomes trapped at
the left edge once it arrives at A1, which leads to the Rabi-like
oscillation between sublattice A1 and B1. With such a Rabi-
like oscillation picture in mind, one can easily combine the
prominent burst of the purple |ψA

1 (t )| curve in Fig. 3(a) with
the dissipation probability burst in B1 in Fig. 3(c). A larger
|ψA

1 (t )| will result in a larger amplitude of the quantum jump
|1, A〉 → |1, B〉.

The complete analytical expression of ψ s
x (t ) can be in-

terpreted as the sum of all physically allowed paths the
walker traverses from |x0, A〉 to |x, s〉 during time t . For
example, the walker can reach |x0, B〉 via only one single-
step quantum jump from |x0, A〉, while four distinct paths
exist for a two-step jump. These paths correspond to the
first- and second-order perturbation contributions in ψB

x0
(t ),

respectively. We can classify every perturbation process by its
final-step quantum jump. The sum of all perturbation terms
with the same final-step quantum jump is the total transi-
tion amplitude from a certain nearest-neighbor site of |x, s〉
to |x, s〉. This is the physical interpretation of the integral
formula (13). When the walker travels from |x0, A〉 to |x, s〉
for a bulk site x, there are five transition process, correspond-
ing to five final step quantum jumps |x′, s′〉 → |x, s〉 with
s′ = A, B for x′ = x ± 1 and s′ �= s for x′ = x. However, the
number of different final step quantum jumps is reduced to
three if the walker arrives at x = 1. This feature leads the
nonzero hopping matrix element Hxs,x′s′ in equation (13) to
be five for the bulk x and three for the edge one. Thus, the
contrasting evolution of bulk and edge wave functions in the
edge burst phenomenon originates from their distinct nearest-
neighbor site configurations. These configurations constrain
the permissible paths a walker can travel from the initial state.
For example, a quantum jump process |x + 1, A〉 → |x, B〉 →
|x − 1, A〉 → |x, B〉 is allowed in the bulk sites but forbidden
in the edge site. Another perspective to see this is that if
we neglect the back transition from the two forward nearest-
neighbor sites, the bulk wave function evolves like the edge
wave function as it can be viewed as the new physical edge
artificially. Furthermore, we find that the edge wave function
ψB

1 (t ) can be approximated by the interference of transition
amplitude from two adjacent nondecay sites A1 and A2, or
symbolically,

ψB
1 (t ) � −ie−γ t

∫ t

0
eγ t ′

[
t1ψ

A
1 (t ′) + t2

2
ψA

2 (t ′)
]

dt ′. (14)

Figures 3(e) and 3(f) visually confirm this, as we viewed the
transition paths with final step quantum jumps A1 to B1 or A2

to B1 as the main paths, which fit well with analytical and
Runge-Kutta numerical results. The reason is that the walker
mainly propagates along the A chain and the transition ampli-
tude from the B2 site can be neglected as ψB

2 (t ) is very small.
Compared with the previously mentioned Rabi-like oscilla-
tion between A1 and B1, a more accurate picture can be drawn

now. The walker starts from the initial site and propagates with
a preference to the left due to the NHSE. After its arrival on
site 2, the walker oscillates in an approximately closed loop
formed by A1, A2, and B1 until the particle finally decays
out in B1. B2 can be excluded out of the loop since ψB

2 (t ) is
very small. In the edge burst region, both ψA

1 (t ) and ψA
2 (t )

are relatively large as demonstrated in Fig. 3(a). Whereas they
are fairly small in the region without edge burst as shown in
Fig. 3(b).

The above discussions are all based on the initial condition
that the walker starts from some sublattice A. However, we
note that the initial condition is also crucial for the forma-
tion of the prominent loss peak at the edge. One can easily
check that the edge loss peak is too small to be observed
for the initial case that the walker starts from sublattice B
even though the system features the NSHE and imaginary
gap closing. See the analysis of the effect of the initial site in
Appendix C.

V. THE EIGENMODES AND THE EDGE WAVE FUNCTION

To investigate the role that different eigenstates play in the
evolution process, we decompose the non-Hermitian Hamil-
tonian by the biorthogonal bases

Ĥ =
∑

n

En|nR〉〈nL|, (15)

where |nR〉 and 〈nL| are the right and left eigenstates,
respectively, satisfying biorthogonality 〈mL|nR〉 = δmn and
completeness

∑
n |nR〉〈nL| = I. For the non-Hermitian lat-

tice we investigate, the state of the system evolves
according to

|ψ (t )〉 = e−iĤt |ψ (0)〉, (16)

where the initial state |ψ (0)〉 can be expressed by a superpo-
sition of |nR〉

|ψ (0)〉 =
∑

n

an|nR〉, (17)

where an is determined by the linear equations

ψ s
x (0) =

∑
n

anφ
s
n,x, (18)

with φs
n,x ≡ 〈x, s|nR〉. Thus, we can rewrite the evolution equa-

tion (16) as

|ψ (t )〉 =
∑

n

e−iEnt an|nR〉. (19)

Since En = Re(En) + iIm(En), we can rewrite the evolution
equation (19) as

|ψ (t )〉 =
∑

n

e−iRe(En )t eIm(En )t an|nR〉. (20)

Focusing on evolution equation (20), the long time behavior
of |ψ (t )〉 is determined by the eigenstates with relatively large
imaginary parts of eigenvalues since the exponential factor in
front of them decay more slowly. So the imaginary parts of
the eigenvalues play an important role in the time evolution of
the wave function. Specifically, one can verify that the imag-
inary part of any eigenvalue of the system is always negative
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FIG. 4. (a) The imaginary part of energy En with L = 60. The
red points at t1 = 0.1, t1 = 0.3, and t1 = 0.6 correspond to the eigen-
states we choose to simulate the time evolution of |ψB

1 (t )|. Other
parameters are t2 = 0.4, γ = 1 and the walker is initially put at site
40A. (b) The green dashed line represents the simulation by choosing
60 eigenstates with relatively large imaginary parts of eigenvalues.
The blue solid line represents the Runge-Kutta numeric solution.
t1 = 0.1, other parameters are the same as in panel (a). (c) Similar
to panel (b) except that t1 = 0.3. (d) Similar to panel (b) except
that t1 = 0.6. The red dashed line represents the simulation of all
120 eigenstates, which exactly reveal the Runge-Kutta numerical
solution.

owing to the dissipation of the whole system. Moreover, the
imaginary part of the eigenvalues are twofold degenerate and
symmetric to − i

2γ , which is demonstrated in Fig. 4(a). The
reason is that the Hamiltonian of the quantum walk Ĥ can
be divided into two parts Ĥ = Ĥ1 − iγ

2 Î with the first part
Ĥ1 satisfying chiral symmetry and parity-time symmetry [29].
More details about the symmetry analysis of the Hamiltonian
are given in Appendix A.

We still take a 60-site lattice as an example to show the
role of the imaginary part of the eigenvalues play in the time
evolution of the wave function. By picking 60 eigenstates with
relatively large imaginary part of eigenvalues out of all 120
eigenstates, we fit the evolution of the wave function |ψB

1 (t )|
and show its result in Figs. 4(b)–4(d). For t1 = 0.1, as one
can see from the green dashed line in Fig. 4(b), these 60
eigenstates can describe the evolution of |ψB

1 (t )| well as early
as t = 15. This is because the other 60 eigenstates have much
smaller imaginary parts of eigenvalues and their contribution
to the wave function vanishes quickly. While in Fig. 4(c) with
a different t1 = 0.3, these 60 eigenstates can fit the analytical
solution well only after t = 50, which is due to the non-
negligible contribution of other 60 eigenstates before t = 50.
When t1 = 0.6, all eigenstates have the same imaginary part of
the eigenvalues, which indicates that they contribute equally
to the decay behavior of the wave function. If we still choose
half of all eigenstates to fit the evolution of the wave function,
the accurate simulation would fail even at a long-evolution
time. Although the order of magnitude of the wave function

can be well described by half of the eigenstates after t = 110,
the oscillation details are missed due to the exclusion of the
other half of the eigenstates, which is demonstrated clearly in
the green dashed line in the subfigure of Fig. 4(d). Apparently,
the combination of all eigenstates can accurately restore the
evolution of the wave function, which is shown in the red
dashed line in Fig. 4(d).

The above discussions are all based on the imaginary part
of the open boundary condition (OBC) spectrum {En}. An-
other perspective is to investigate the imaginary part of the
periodic boundary condition (PBC) spectrum {E ′

m}, which
differs greatly from the OBC one due to the NHSE. For the
dynamical evolution of the OBC system, one can also expand
the wave function in the eigenstates of its PBC counterpart
through a transform matrix T ,

|ψ (t )〉 =
∑

m

cm(t )|mk〉, (21)

where {|mk〉} are the right eigenstates of the PBC Hamiltonian
HPBC with eigenvalue E ′

m. One can easily find that the time-
dependent coefficient cm(t ) satisfies cm(t ) = ∑

n Tnme−iEnt an.
Obviously, the module of cm(t ) reveals the weight of the
eigenstate |mk〉 plays in the dynamical evolution. To inves-
tigate the relationship between the weight |cm(t )| and the
imaginary part of the eigenvalue, Im(E ′

m), we plot the change
of |cm(t )| over time in Fig. 5 for a 20-site system with the
walker initialized at 15A. We have arranged |cm(t )| according
to the magnitude of Im(E ′

m) in Fig. 5. The darker the color
of the curve |cm(t )| is, the larger Im(E ′

m) is. One can easily
tell that a larger Im(E ′

m) leads to |cm(t )| decays more slowly,
which results in a larger integral area over t . The integral
area of |cm(t )| over t can be viewed as another indicator
of the weight of different eigenstates plays in the evolution
process. By analyzing an OBC dynamical evolution problem
with the PBC eigenstates and eigenvalues, we emphasize the
importance of the imaginary part of the eigenvalues again, no
matter whether the eigenvalues are OBCs or PBCs. Edge burst
is an astonishing phenomenon in OBC. Herein, using the PBC
quantity |cm(t )| to investigate an OBC dynamical problem
may have some connection with the imaginary gap closing
in Ref. [116], where the authors also set a PBC criterion of an
OBC phenomenon.

VI. SUMMARY AND DISCUSSION

In this paper, we study the real-space dynamical evolu-
tion of quantum particles in the lossy lattices. We find the
edge burst phenomenon is closely related to the distinct evo-
lution features between the edge wave function and bulk
wave functions by a numerical simulation. We then give
a sketch of time-dependent perturbation theory for a non-
Hermitian Hamiltonian and evaluate the analytical expression
of the quantum walk wave function. Through the analy-
sis of the perturbation solution, we find the walker mainly
propagates nonreciprocally along the nondecay chain as the
non-Hermitian lattices feature the NHSE. Moreover, the dif-
ferent evolution behaviors between the edge and bulk can be
attributed to their nearest-neighbor site configurations, which
limit the possible path that the walker can travel from the
initial site. Besides, it finds that the main contribution to the
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FIG. 5. The PBC eigenstates weight |cm(t )| versus t . The gradi-
ent color represents different {|cm(t )|} with different eigenvalues. The
darker the color of the curve is, the larger the imaginary part of the
eigenvalue is. One can tell that |cm(t )| with a larger imaginary part
of the eigenvalue has a larger integral over t for both panels (a) and
(b). (a) The edge burst region. t1 = 0.1, t2 = 0.4, γ = 1, the initial
walker was put in 15A for a 20-site lattice. (b) The region without
edge burst. Similar to panel (a) except for t1 = 0.6.

edge wave function results from the interference transition
of the two nearest-neighbor sites. Furthermore, the numerical
diagonalization shows that the walker is mainly propagated by
a group of eigenmodes that have a relatively large imaginary
part.

Our work gives an explicit illustration of the edge burst
phenomenon in real space directly and provides an alternative
method to study this kind of non-Hermitian dynamical prob-
lem, for example, the quantum walk with a nonuniform loss
rate [118] (details see Appendix D).
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APPENDIX A: MATHEMATICAL RELATION
BETWEEN SEVERAL LATTICE MODELS

In Appendix A, we mainly discuss the mathematical rela-
tion of lattice models mentioned in Sec. II. The Hamiltonian
of the quantum walk model with N unit cell is

Ĥ = Ĥ1 − iγ

2
I2N×2N , (A1)

where Ĥ1 has chiral symmetry and parity-time (PT ) sym-
metry [29]. The chiral symmetry is defined by � = ⊕

n σ n
y ,

�Ĥ1� = −Ĥ1 and the PT symmetry is defined by P =⊕
n σ n

y , T iT = −i, PT Ĥ1T −1P−1 = Ĥ1. The Hamiltonian
Ĥ1 can be transformed to the non-Hermitian SSH model with
left-right asymmetric hopping by a π/2 rotation about the
x-axis to each spin if we viewed every sublattice as a pseu-
dospin, or symbolically,

Ĥ2 = R−1Ĥ1R, (A2)

where

Ĥ2 =

⎡
⎢⎢⎢⎢⎢⎣

0 t1 + γ

2 0 0 · · ·
t1 − γ

2 0 t2 0 · · ·
0 t2 0 t1 + γ

2 · · ·
0 0 t1 − γ

2 0 . . .
...

...
...

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦

2N×2N

,

(A3)
and the spin rotate operator is R =⊕

ne−i π
4 σ n

x . The Hamilto-
nian Ĥ2 can also be related to the stand standard SSH model
via a similarity transformation [35], or symbolically,

Ĥ3 = S−1Ĥ2S, (A4)

where

Ĥ3 =

⎡
⎢⎢⎢⎢⎢⎣

0 t ′
1 0 0 · · ·

t ′
1 0 t ′

2 0 · · ·
0 t ′

2 0 t ′
1 · · ·

0 0 t ′
1 0 . . .

...
...

...
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎦

2N×2N

, (A5)

and S is a diagonal matrix with

S =
⊕

n
Sn, Sn ≡ βn−1

[
1 0
0 β

]
. (A6)

Here the parameter is β = √
(t1 − γ /2)/(t1 + γ /2), t ′

1 =
(t2

1 − γ 4/4)1/2, t ′
2 = t2. Since the spin rotation and similarity

transformation does not change eigenvalues, then Ĥ1, Ĥ2, and
Ĥ3 share the same eigenspectrum. Thus, for an eigenstate
|�3〉 = (ψ1,A, ψ1,B, . . . , ψN,A, ψN,B)T of Ĥ3, there are corre-
sponding eigenstate |�2〉 = S|�3〉 of Ĥ2 and |�1〉 = R|�2〉
of Ĥ1 both exponentially localized at an end of the chain
when γ �= 0, namely, features the non-Hermitian skin effect.
The Hamiltonian of another related quantum walk model in
Ref. [7] is

Ĥ4 = Ĥ3 + iγ

2

⊕
n
σ n

z − iγ

2
I2N×2N . (A7)

This model does not have edge burst phenomenon due to the
lack of non-Hermitian skin effect.

022236-7



PENGYU WEN, JINGHUI PI, AND GUI-LU LONG PHYSICAL REVIEW A 109, 022236 (2024)

FIG. 6. The spatially resolved loss probability Px for a walker
initialized at sublattice B of site 50. Other parameters are the same
as those in Fig. 2(a).

APPENDIX B: PROOF OF WAVE FUNCTION
REAL-IMAGINARY PROPERTY

In Appendix B, we prove that ψA
x (t ) are real and ψB

x (t )
are purely imaginary under the initial condition ψA

x (0) =
δx,x0 , ψ

B
x (0) = 0. Since ψ s

x (t ) = e−iEs
x t cs

x(t ) and e−iEs
x t is real,

we only need to consider cs
x(t ) and the recursion equation is

i
dcs

x(t )

dt
=

∑
x′s′

H ′
xs,x′s′cs′

x′ (t )ei(Es
x −Es′

x′ )t . (B1)

The lth order recursion perturbation equation is

dcs(l )
x

dt
= −i

∑
x′s′

H ′
xs,x′s′cs′(l−1)

x′ ei(Es
x −Es′

x′ )t . (B2)

For l = 0, we have cA
x = δx,x0 , cB

x = 0 and the first-order per-
turbation cs(1)

x can be acquired from Eq. (B2). We note that
cA(1)

x±1 are real and cB(1)
x±1 , cB(1)

x are imaginary. If we suppose all
nonzero cA(l−1)

x are real and cB(l−1)
x are imaginary, the cA(l )

x
then can be deduced to be real. The argument is as follows,
the matrix elements H ′

xA,x′A are imaginary and H ′
xA,x′B are real,

the combination −H ′
xs,x′s′c

s′(l−1)
x′ ei(Es

x −Es′
x′ )t thus is always real.

From Eq. (B2), we conclude that cA(l )
x are real. Adding all

perturbation orders of cA(l )
x together, we have

cA
x = cA(0)

x + cA(1)
x + · · · + cA(l )

x + · · · . (B3)

Thus, ψA
x (t ) is proved to be real. We can also prove ψB

x (t ) are
purely imaginary by a similar procedure.

APPENDIX C: EFFECT OF INITIAL SITE ON EDGE BURST

In the main part of the paper, we only discussed the case
where the walker was initially put at some sublattice A. We
note that such initial condition is crucial for the formation
of the edge burst. For the case where the walker starts from
some sublattice B, the edge burst is missing even though
the system features NHSE and the imaginary gap closing
condition.

As a simple example, we showed this phenomenon in
Fig. 6, where the system shares the same parameters as those

FIG. 7. Panels (a) and (b) are the edge wave functions ψB
1 (t )

with perturbation calculation up to 56th order. The parameters are
γx = 0.2x, t1 = 0.4, t2 = 0.5 for panel (a) and γx = 0.2x, t1 = 0.8,
t2 = 0.5.

in Fig. 2(a) except that the walker is initialized at sublattice B
of site 50. The dissipation probability of site B1 is negligible
small in this case due to the fast dissipation process at the
initial site B50, which can be verified by our time-perturbation
analysis. Such result is consistent with the fact that the so-
lution of the dynamical equation (1) depends heavily on the
initial condition.

APPENDIX D: WAVE FUNCTIONS OF QUANTUM WALK
WITH A NONUNIFORM LOSS RATE

In Appendix D, we give details of calculation about the
wave functions of the quantum walk with a nonuniform loss
rate via time-dependent perturbation theory. For simplicity,
the nonuniform loss rate takes the linear form γx = xγ0.
Similar to the uniform loss rate case, we can apply our
analytical method to this different class of problems. By
choosing the onsite potential operator as the unperturbed
Hamiltonian Ĥ0, the matrix elements under the real-space rep-
resentation are 〈x, s|Ĥ0|x′, s′〉 = − ixγ

2 δxx′δss′ [1 − (σz )ss′ ], with
x, x′ referring to the location of the unit cell and s, s′ = A, B
referring to the sublattice label. The hopping of the walker
is treated as the perturbation operator Ĥ ′ and its matrix
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elements are H ′
xs,x′s′ = 〈x, s|Ĥ ′|x′, s′〉. Then, we can use the

perturbation procedure introduced in Sec. III and evaluate
the real-space wave functions. For example, we evaluate the
case where the system size L = 12 with the walker initially
prepared on sublattice A of the eighth site, as shown in

Fig. 7. The analytical results are in agreement with numerical
ones.

The above example shows that we can apply the non-
Hermitian time-dependent theory to the systems without
discrete translational symmetry.
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