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One of the most remarkable features of quantum physics is that attributes of quantum objects, such as the
wavelike and particlelike behaviors of single photons, can be complementary in the sense that they are equally
real but cannot be observed simultaneously. Quantum measurements, serving as windows providing views
into the abstract edifice of quantum theory, are basic tools for manifesting the intrinsic behaviors of quantum
objects. However, a quantitative formulation of complementarity that highlights its manifestations in general
measurement scenarios remains elusive. Here we develop a general framework for demonstrating quantum
complementarity in the form of information exclusion relations (IERs), which incorporates the wave-particle
duality relations as particular examples. Moreover, we explore the applications of our theory in entanglement
detection and elucidate that our IERs lead to an extended form of entropic uncertainty relations, providing
insights into the connection between quantum complementarity and the preparation uncertainty.
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I. INTRODUCTION

Quantum mechanics imposes fundamental limits on an
observer’s information gain in complementary measurements.
In the light of Bohr’s complementarity principle [1], quan-
tum systems possess mutually exclusive properties that are
equally real, and a measurement to reveal one property would
inevitably preclude all the complementary ones. Character-
izing this subtle relationship between measurement strategy
and information gain is significant for the sophisticated ma-
nipulation of quantum measurements in various tasks, from
demonstrating genuine nonclassical features of quantum ob-
jects to general quantum information processing.

Wootters and Zurek [2] proposed the first quantita-
tive statement of complementarity relation by taking an
information-theoretical perspective into the competitive trade-
off between the wavelike and particlelike behaviors of single
photons. This kind of wave-particle duality relations (WP-
DRs) is currently expressed in a concise inequality form [3–6]
for photons within the Mach-Zehnder interferometer (MZI;
see Fig. 3). For example, Jaeger et al. [4] and Englert [6]
obtained the duality relation V2 + D2 � 1 between fringe vis-
ibility (wave property) V and path distinguishability (particle
property) D. It is thus obvious that better which-way informa-
tion implies less wave information, and vice versa.

Heisenberg’s uncertainty principle [7] is another funda-
mental concept in quantum mechanics which captures similar
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underlying physics of complementarity. It states that specific
quantum observables, such as position and momentum of
single particles, cannot be known with arbitrary precision
simultaneously or both measured with certainty. Modern for-
mulations of the uncertainty principle typically use entropic
uncertainty measures due to their operational significance
[8,9], known as entropic uncertainty relations (EURs). EURs
have widespread applications in quantum information pro-
cessing tasks [10], e.g., the security analysis of quantum
protocols [11–13]. The connections and contrasts between un-
certainty and complementarity have been intensively debated
[14–20]. It has been wondered whether novel complemen-
tarity relations can be derived directly from the well-studied
and already-proven EURs. Particularly, Coles et al. [20–23]
proved that several WPDRs can be equivalently reformu-
lated as EURs for measuring complementary observables,
i.e., measurements in mutually unbiased bases (MUBs). Two
fundamental concepts of quantum mechanics are thus unified
in this simple case.

Nevertheless, entropy is a natural measure of lack of
information regarding only observation-independent proper-
ties and becomes conceptually inadequate [24] for quantum
properties which are contextual and do not exist prior to
measurements [25,26]. To avoid this dilemma, Brukner and
Zeilinger proposed an operationally invariant information
measure of quantum systems [27]. This measure is natu-
rally aligned with the concept of complementarity as being
elegantly defined as the sum of individual measures of in-
formation gain over a complete set of MUBs (CMUBs)
[28–31]. Furthermore, it is independent of particular choices
of CMUBs and invariant under any unitary time evolution.
These intriguing properties inspired a series of insightful
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investigations [32–39], including quantum state estimation
[32,33] and uncertainty relations for MUBs [37,38].

In this paper, we adopt the operationally invariant measure
[27] of complete information content contained in quantum
systems and develop a general framework for characterizing
quantum complementarity beyond WPDRs, in terms of basic
limits on one’s ability to gain information about quantum
systems under certain measurement setups, i.e., information
exclusion relations (IERs). In contrast to the IERs [40–44]
for nondegenerate observables in terms of Shannon entropic
mutual information or deriving complementarity relations
from EURs [20–23], our framework applies to generalized
measurements. We emphasize that when considering general-
ized measurements, identifying certainty of outcome statistics
with information gain or visibility of physical property faces
conceptual challenge: an outcome predictable with 100% cer-
tainty not necessarily reflects the complete information of the
measured system. We thus introduce a measure of information
gain in individual measurements which well captures the com-
plete information of quantum systems as conserved quantities
comprised of complementary pieces. On the way, we establish
IERs applicable to much more general measurement scenarios
compared with previous ones, and show how they lead to tight
WPDRs in the MZI arrangement. Aside from the significance
of our IERs in interpreting quantum complementarity, we
also explore their applications in entanglement detection and
derive from them an extended form of EURs.

This paper is structured as follows. In Sec. II A, we intro-
duce some preliminary notations. In Sec. II B, we propose
a measure of information gain in individual measurements
while formalizing the concept of complementary informa-
tion. In Secs. II C and II D, we proceed to establish IERs
which restrict one’s weighted sum of information gains over
multiple measurements, with and without quantum memory,
respectively. In Sec. II E, we show how our IERs lead to
tight WPDRs. In Sec. II F, we explore practical applica-
tions of our IERs. Finally, we briefly conclude this work in
Sec. III.

II. RESULTS

A. Preliminary

On a d-dimensional Hilbert space Hd , each gener-
alized measurement, i.e., positive-operator-valued measure
(POVM), is a collection of positive-semidefinite operators
(called effects) M = {Mi} that sum up to the identity oper-
ator: Mi � 0 and

∑
i Mi = 1d . In particular, the measurement

of a nondegenerate observable is described by rank-1 projec-
tors onto its eigenvectors, i.e., rank-1 projective measurement.
When a quantum state ρ is measured, the outcome probabili-
ties are given by Born’s rule, pi = tr(Miρ).

The Choi-Jamiołkowski isomorphism [45] allows us to
elegantly represent each operator O on Hd as a vector |O〉
in the product space H⊗2

d :

|O〉 =
√

dO ⊗ 1d |ψd〉 =
d−1∑

i, j=0

Oi, j |i〉 ⊗ | j〉∗,

O =
√

d tr2(|O〉〈ψd |), (1)

where ∗ denotes the complex conjugate and |ψd〉 =
1√
d

∑d−1
i=0 |i〉 ⊗ |i〉∗ is the maximally entangled isotropic state.

Meanwhile, tr2(·) denotes the partial trace over the second
space.

A useful property of Eq. (1) that will be exploited is that
〈O1|O2〉 = tr(O+

1 O2) holds for any two operators O1 and O2

on Hd . With the notations above, it is convenient to restate
Born’s rule as pi = 〈Mi|ρ〉. Observe here the probability pi

is exactly the expansion coefficient of the vector |ρ〉 in the
basis |Mi〉. This provides us an intuitive picture on how the
information of a density operator is encoded in the outcome
probabilities under a certain measurement, which enables us
to formalize our concept of complementary information in the
subsequent subsection.

B. Measure of information gain

In the light of Kochen-Specker’s theorem [25] (see also
Ref. [26]), it is impossible to assign a definite value to ev-
ery quantum observable without specifying the measurement
arrangement. During a measurement, all that an observer
has is the probabilistic occurrence of one outcome (labeled
truth value 1), which simultaneously negates the occurrence
of other outcomes (labeled truth values 0). The information
content of quantum systems is thus reflected in the statistics
of these binary strings.

Consider an experimental setup to perform the measure-
ment M = {Mi} on individual copies of a quantum state
that is unknown to the experimenter. Each time the ith
outcome occurs, the experimenter gets a squared deviation
[1 − tr(Mi )/d]2 from the expectation tr(Mi )/d for the com-
pletely mixed state (least information state) or gets [0 −
tr(Mi)/d]2 otherwise. After repeating the experiments large
enough N times, the total squared deviation is D2

i = N{pi[1 −
tr(Mi)/d]2 + (1 − pi )[tr(Mi )/d]2}, which consists of two con-
tributions D2

i = �2
i + B2

i . Wherein �2
i = N[pi(1 − pi )] is

the total uncertainty (variance), which determines the width
2�i/N of the confidence interval [pi − 1

N �i, pi + 1
N �i] for

estimating the outcome probabilities {pi}.
What truly discriminates the measured state from the com-

pletely mixed state, on the other hand, is the total squared
bias B2

i = N[pi − tr(Mi)/d]2. We suggest the measure of in-
formation gain on the state ρ in each individual trial of the
measurement M = {Mi} to be the sum of mean-squared bias
over all outcomes

G(M)ρ =
∑

i

[pi − tr(Mi )/d]2 =: 〈ρ|Ĝ(M)|ρ〉. (2)

In the above, we leverage the isomorphism (1) to define the
view operator of a measurement M as

Ĝ(M) =
∑

i

|M̃i〉〈M̃i|, (3)

where M̃i = Mi − 1
d tr(Mi )1d is traceless or, equivalently,

|M̃i〉 = |Mi〉 − |ψd〉〈ψd |Mi〉 is orthogonal to |ψd〉. View
operators are positive semidefinite, Ĝ � 0 on the (d2 − 1)-
dimensional subspace H⊥ψd of H⊗2

d orthogonal to |ψd〉, and
vanish for trivial POVMs whose effects are all proportional to
the identity Mi = 1

d tr(Mi )1d .
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FIG. 1. Illustration of the information complementarity, where
the vector |ρ̃〉 encodes the complete information of the state ρ. For
a two-outcome measurement M = {Mi}1

i=0, the vectors {|M̃i〉} span
a two-dimensional space (colored horizontal plane), on which the
view operator Ĝ(M) is a bijective transform. While the horizontal
component |ρ̃H 〉 of |ρ̃〉 can be reconstructed from the vector |ρ̃M〉
encoding the outcome statistics, the vertical component |ρ̃V 〉 contains
only information complementary to what is accessible through M.

Now we are able to formalize our idea of comple-
mentary information. Let ρ̃ = ρ − 1d/d , observe that the
outcome probabilities of a measurement M on the state
ρ are encoded in the expansion coefficients of the vec-
tor |ρ̃M〉 = Ĝ(M)|ρ〉 = Ĝ(M)|ρ̃〉 = ∑

i[pi − tr(Mi )/d]|M̃i〉
under the basis {|M̃i〉}. The vector |ρ̃M〉 encodes the complete
information of ρ if |ρ̃〉 lies in the subspace of H⊥ψd on which
the view operator Ĝ(M) is invertible, whereas if |ρ̃〉 is orthog-
onal to that space, |ρ̃M〉 vanishes and M cannot be employed
to distinguish ρ from the completely mixed state (see Fig. 1
for an illustration of the geometric relations between the above
vectors). In the sense above, two nontrivial measurements M1

and M2 satisfying

Ĝ(M1) · Ĝ(M2) = 0 (4)

are complementary since, if the complete information of ρ

is accessible through M1, then no information gain (2) is
accessible through M2, and vice versa. We prove in Ap-
pendix A that measurements in MUBs [28–31] are mutually
complementary.

It is worth mentioning that the combined view operator
Ĝ = ∑

θ Ĝ(Mθ ) associated with a set of POVMs M = {Mθ }
on Hd can be positive definite (invertible) on H⊥ψd . In this
case, no POVM can be complementary to all POVMs of M si-
multaneously. This means that M is informationally complete
and Ĝ offers a complete view to all d-dimensional quantum
states. Utilizing the isomorphism (1), arbitrary unknown state
ρ can then be reconstructed from the vector Ĝ|ρ̃〉 = |ρ̃M 〉
encoding the outcome statistics as follows:

ρ =
√

d tr2(Ĝ−1|ρ̃M 〉〈ψd |) + 1d/d. (5)

For further readings on the topic of state estimation, we
recommend Refs. [46,47].

Interestingly, the combined view operator associated with
CMUBs in Hd , i.e., d + 1 MUBs [28–31], is simply the
identity operator 1⊥ψd = 1d ⊗ 1d − |ψd〉〈ψd | on H⊥ψd (see
Appendix A). Thus, the operationally invariant measure [27]
of complete information content contained in quantum states

can be restated in our language as

Icom(ρ) = 〈ρ|1⊥ψd |ρ〉 = tr(ρ2) − 1/d. (6)

This measure naturally coincides with Bohr’s idea [1] that
only the totality of complementary properties together ex-
hausts the complete information of objects.

C. Local information exclusion relations

To formulate quantum complementarity into information
exclusion relations, next we focus on the measurement sce-
narios where distinct measurements on individual quantum
systems in the same state are selected with biased (nonuni-
form) probabilities.

Theorem 1. For a set of measurements {Mθ } with selection
probabilities {wθ }, the average information gain on the state ρ

satisfies ∑
θ

wθG(Mθ )ρ = 〈ρ|ĝ|ρ〉 � ‖ĝ‖ · Icom(ρ), (7)

where ĝ = ∑
θ wθ Ĝ(Mθ ) is the average view operator and

‖ · ‖ denotes the operator norm, i.e., the largest eigenvalue of
an operator.

Proof. According to Eqs. (1) and (3), for any density
operator ρ on Hd there is 〈ψd |ρ〉〈ρ|ψd〉 = 1/d , 〈ρ|ρ〉 =
tr(ρ2), and 〈ρ|M̃i|θ 〉 = pi|θ − tr(Mi|θ )/d . Hence, we have∑

i,θ wθ [pi|θ − tr(Mi|θ )/d]2 = 〈ρ|ĝ|ρ〉 � ‖ĝ‖ · 〈ρ|1⊥ψd |ρ〉 =
‖ĝ‖ · [tr(ρ2) − 1/d]. �

Theorem 1 limits an observer’s weighted average infor-
mation gain over multiple measurements to be less than a
proportion ‖ĝ‖ of the complete information content (6) con-
tained in quantum states. We show in Appendix A that 1

�
�

‖ĝ‖ � 1 for a number � of rank-1 projective measurements.
Specifically, for nondegenerate observables with one or more
common eigenstates, we have ‖ĝ‖ = 1 and the rightmost side
of Eq. (7) is achieved by density operators whose eigenvectors
corresponding to positive eigenvalues form a subset of the
common eigenstates of observables, which means that no
state-independent information exclusion exists. In contrast,
we have ‖ĝ‖ = maxθ {wθ } � 1 for MUBs. Particularly, for
random measurements in one of � MUBs, w1 = · · · = w� =
1
�

, thereby ‖ĝ‖ = 1
�

. We therefore see that the average infor-
mation gain is rather limited with an increasing number of
MUBs.

Example 1. For random measurements on a qubit in
one of two bases {|i1〉} and {| j2〉}, Eq. (7) gives 〈ρ|ĝ|ρ〉 �
cmaxIcom(ρ). Here, cmax = maxi, j{|〈i1| j2〉|2} is the maximal
overlap between bases and in this simple example 1

2 � cmax

� 1. By definition, cmax = 1
2 holds for MUBs, while for com-

patible bases cmax = 1.
We remark that for those measurement strategies with

which the associated view operator ĝ ∝ 1⊥ψd , the rightmost
side of Eq. (7) can be achieved by any density operator
on Hd . Typical examples include random measurements in
CMUBs, random selection of measurements from a com-
plete set of mutually unbiased measurements [48], and other
design-structured POVMs [49–54] (see Appendix A for
details).
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FIG. 2. (a) Sketch of the proposal. (b) When Alice chooses to
measure a qubit in one of three orthogonal directions, Bob’s total lack
of information (uncertainty) about Alice’s measurement outcomes
is negative linearly related to the recoverable entanglement fidelity
F pg(A|B) of the initial state, which is time invariant if there exits no
information exchange with environments or between subsystems A
and B.

D. Information exclusion relations with memory

We move on to investigate the basic limits on an observer’s
information with respect to measurements on a distant quan-
tum system, given access to another system (called memory).
To illustrate, let us consider the guessing game [12] involving
two participants, Alice and Bob. As depicted in Fig. 2(a), in
the beginning, Bob prepares a bipartite system in the state ρAB,
and sends subsystem A to Alice. Upon receiving subsystem A,
Alice chooses a measurement according to the value θ of a
random variable drawn from the probability distribution {wθ },
and announces her choice to Bob. Bob’s win condition is to
guess the final state on Alice’s side correctly.

To quantify Bob’s lack of information about system A
while possessing a memory system B, we define the condi-
tional linear entropy as below

SL(A|B) = 1 − dF pg(A|B). (8)

Here, F pg(A|B) = 1
d tr{[(1A ⊗ ρ

−1/4
B )ρAB(1A ⊗ ρ

−1/4
B )]

2} is
the recoverable entanglement fidelity with which ρAB can be
transformed into a maximally entangled state through the
pretty good recovery operation on system B [55,56], and d
denotes the dimension of system A. In the case of a product
state ρAB = ρA ⊗ ρB, system B offers no side information
about system A and Eq. (8) reduces to the linearized entropy
SL(ρA) = 1 − tr(ρ2

A), i.e., the complement of the information
content (6) contained in the state ρA. More generally, ac-
cording to the data-processing inequality [57,58] we have
SL(A|B) � SL(ρA), thereby a memory helps to reduce Bob’s
ignorance. Further, ρAB is necessarily entangled if SL(A|B) <

SL(
√

ρB) ≡ 0 since one’s ignorance about the overall system
in a separable state does not increase with the removal of any
its local subsystem [59,60].

For brevity, we will focus on rank-1 projective measure-
ments. Bob has no direct access to system A once it is sent
to Alice, his understanding of the overall system when Alice
chooses the θ th measurement is described by the classical-
quantum state

ρMθ B =
∑

i

|i〉〈i| ⊗ trA[(Mi|θ ⊗ 1B)ρAB], (9)

where Mi|θ denotes the ith effect of the θ th POVM Mθ and
{|i〉〈i|} are the measurement outcomes stored in a classical
register. Then, the conditional linearized entropy (8) evalu-
ated on the classical-quantum state (9), denoted SL(Mθ |B) =
1 − dF pg(Mθ |B), measures Bob’s ignorance about Alice’s
measurement outcomes. Indeed, F pg(Mθ |B) is now precisely
the probability for Bob to correctly guess Alice’s measure-
ment outcome by performing the pretty good measurement on
system B [61,62].

Theorem 2. Suppose ρAB describes a bipartite system and
{Mθ } are rank-1 projective measurements on system A with
selection probabilities {wθ }. The average conditional lin-
earized entropy is bounded below by∑

θ

wθSL(Mθ |B) � (1 − ‖ĝ‖) · [1 − F pg(A|B)]. (10)

We prove in Appendix B a result that is valid for more
general measurements. Like the memoryless IER (7), Eq. (10)
becomes an equality saturated by arbitrary bipartite state if
the equality ĝ = ‖ĝ‖ · 1⊥ψd holds. Consequently, in the ab-
sence of information exchange with environments or between
systems A and B, Bob’s total information with respect to
measurements on system A in CMUBs, as well as other
design-structured measurements [49–54], is time invariant.

Impressively, the right-hand side of Eq. (10) is a product of
two independent terms controlled by Alice and Bob, respec-
tively. The first term, 1 − ‖ĝ‖ =: X , is a state-independent
signature of information exclusion and Alice is free to ma-
nipulate it through her measurement strategy. It varies in the
range X ∈ [0, 1 − 1

�
] when the number of observables under

consideration is �. To keep her measurement outcomes secret,
Alice should avoid measuring observables that share a com-
mon eigenstate (X = 0), as Bob can completely eliminate his
uncertainty by preparing system A precisely in that eigenstate.
In contrast, Bob’s uncertainty will be maximized if Alice
randomly selects one of � MUBs (X = 1 − 1

�
). The special

case when Alice chooses to measure the Pauli observables of
a qubit is illustrated in Fig. 2(b). We need to mention here that
a set of � MUBs may not exist for sufficiently large �, and
numerical methods can be utilized to maximize the exclusivity
X in such cases.

As for the second term, it decreases monotonically with
the recoverable entanglement fidelity F pg(A|B) of the initial
state ρAB. Bob’s pretty good guessing probability [61,62]
F pg(Mθ |B) would be less than 1 whenever F pg(A|B) < 1.
However, he can prepare an appropriate entangled state such
that this fidelity enables him to guess the outcomes of mea-
surements on system A with high probability. Indeed, it is well
known that maximally entangled states provide perfect side
information. For example, two systems in the state |ψd〉 =

1√
d

∑d−1
i=0 |i〉A ⊗ |i〉∗B are perfectly correlated with no local
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FIG. 3. Mach-Zehnder interferometer. Each input photon is di-
rected into two paths by an asymmetric beam splitter (BS1) and then
is recombined on a 50:50 beam splitter (BS2) to trigger two detectors
(D). Modulating the phase shift φ ∈ [0, 2π ] in the upper path, the
phenomenon that the probability of clicking in each detector oscil-
lates periodically reflects the interference pattern of path amplitudes,
which is a signature of wave property. When BS2 is removed, the
detection probabilities then reflect the path information of photons,
which are independent of the local phase shift φ.

information content at all, Icom(ρB) = Icom(ρA) = 0, whereas
the joint information content Icom(ρAB) = 1 − 1/d2 is max-
imal. This leads to F pg(A|B) = 1, namely, the correlation
between A and B is strong enough to completely remove Bob’s
uncertainty. Just as is mentioned in Refs. [24,27], the informa-
tion content of a maximally entangled state is “exhausted in
defining the joint properties” and “none is left for individual
systems.”

E. Origin of tight WPDRs

We argue that the tight WPDRs are particular examples of
the IERs (7) and (10) for measuring complementary observ-
ables. To see this, let us consider two complementary setups
of the Mach-Zehnder interferometer depicted in Fig. 3: (i) the
second beam splitter is removed to gain the path information
of single photons inside the interferometer (let σ p denote the
associated path observable with binary outcomes +1 and −1,
corresponding to clicks in detectors D0 and D1, respectively);
(ii) BS2 is inserted in and the phase shift φ is adjustable to
reveal wave properties of photons (let σ w

φ denote the associ-
ated wave observable with binary outcomes ±1). It takes some
calculation (see Appendix C) to see that Eq. (7) leads to the
equality

G
(
σ w

φ

)
ρ

+ G
(
σ w

φ′
)
ρ

= cos(φ′ − φ)
〈
σ w

φ

〉〈
σ w

φ′
〉

+ [Icom(ρ) − G(σ p)ρ] sin2(φ′ − φ),
(11)

where 〈σ 〉 = tr(σρ) denotes the average of observable σ , and
G(σ p)ρ = 1

2 〈σ p〉2 and G(σ w
φ )ρ = 1

2 〈σ w
φ 〉2 are the respective

information gains (2) for measuring the path and wave ob-
servables in the qubit ρ.

Observe that the information gain regarding an individual
wave observable oscillates as the phase shift φ varies, Eq. (11)

FIG. 4. Interference pattern of information amplitude. (a) In the
double-slit experiment, filtering out the component containing path
information from photon’s density operator, the remaining compo-
nents lead to a fringe with 100% contrast on the screen. The intensity
varies periodically at different locations, corresponding to the in-
tensity oscillation in the MZI as the phase shift φ varies. (b) The
information gains on single photons in the MZI when two comple-
mentary wave observables (φ′ − φ = π/2) are measured constitute
the complete description of the wavelike behavior. The fringe visi-
bility is given by the diameter of the gray circle.

essentially depicts an interference pattern of the wave infor-
mation. To make it clearer, let φ and φ′ be two real unit vectors
at an angle of φ′ − φ. Equation (11) can then be restated as∣∣〈σ w

φ

〉 φ + eiπ
〈
σ w

φ′
〉 φ′∣∣2

= 2[Icom(ρ) − G(σ p)ρ] sin2(φ′ − φ). (12)

It is interesting to note that the average values of wave ob-
servables behave like the “amplitudes of wave information”
and interfere with each other [see Fig. 4(a)]. Notably, the
average interference intensity I = Icom(ρ) − G(σ p)ρ on the
right-hand side of Eq. (12) disappears if the photon exhibits
particle property only: the complete information content of
ρ is accessible through measuring the path observable or,
formally, Icom(ρ) = G(σ p)ρ . In this view, the average inten-
sity I = G(σ w

φ )ρ + G(σ w
φ+π/2)ρ [see the case φ′ − φ = ±π

2
in Eq. (12)] emerges as a measure of wave property which
can be determined by measuring two complementary wave
observables.

Conventionally, the wave property is frequently quantified
by the fringe visibility [3–6]

V = max
φ

∣∣p0
φ − p1

φ

∣∣, (13)

where pi
φ is the probability that the ith detector clicks when

the observable σ w
φ is measured. We remark here that the

average interference intensity is precisely half of the fringe
visibility squared, i.e., V = maxφ |〈σ w

φ 〉| = √
2I [see also

Fig. 4(b) for an illustration]. Combined with the squared
path distinguishability D2 = 〈σ p〉2 = 2G(σ p)ρ , we then ar-
rive at the WPDR V2 + D2 = 2tr(ρ2) − 1 [63]. We therefore
see that the WPDR originates from the IER [G(σ w

φ )ρ +
G(σ w

φ+π/2)ρ] + G(σ p)ρ = Icom(ρ) for three complementary
observables, including the path observable and two wave ob-
servables with phase difference satisfying φ′ − φ = ±π/2.

Example 2. Suppose the first beam splitter in the MZI
(see Fig. 3) is so arranged such that it implements the
transformation |0〉 → |ψ〉 = cos γ |0〉 + sin γ |1〉 for some
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FIG. 5. Delayed choice experiment controlled by an ancilla qubit
(red line) in the state cos β|0〉 + sin β|1〉. The beam splitters in
the two-way interferometer are now equivalently represented by
the Hadamard gates H: H|0〉 → (|0〉 + |1〉)/

√
2 and H|1〉 → (|0〉 −

|1〉)/
√

2.

γ ∈ [0, π/2]. With BS2 removed, the two detectors click,
respectively, with probabilities cos2 γ and sin2 γ in response
to each input photon, and an observer’s path information
gain is G(σ p)|ψ〉 = (cos2 γ − 1

2 )2 + (sin2 γ − 1
2 )2. Obviously,

when γ = π/4 the detectors click at random, from which
no path information can be gained. With BS2 inserted in,
on the other hand, the detectors click, respectively, with
probabilities 1

2 |eiφ cos γ + sin γ |2 and 1
2 |eiφ cos γ − sin γ |2,

and an observer’s wave information gain is G(σ w
φ )|ψ〉 =

1
2 sin(2γ )2 cos2 φ. Hence, the amount of information for de-
scribing a photon’s wave property, defined as the sum of
information gains over two complementary wave observables,
is G(σ w

φ )|ψ〉 + G(σ w
φ+π/2)|ψ〉 = 1

2 sin(2γ )2, which equals to
half of the squared fringe visibility (13) V2 = sin2(2γ )
and is maximized when the corresponding path information
vanishes (γ = π/4). Combining the wave and path informa-
tion then leads us to the complete information Icom(|ψ〉) =
1
2 sin(2γ )2 + (cos2 γ − 1

2 )2 + (sin2 γ − 1
2 )2 = 1

2 .
Theorem 1 applies to more sophisticated measurement se-

tups, including the quantum delayed-choice experiment [64]
where complementary properties of photons are measured in
a single experimental setup. As shown in Fig. 5, the presence
of BS2 is controlled by an ancilla qubit, the value of which
determines whether to reveal the wave property or particle
property. In this case, Eq. (7) limits an observer’s weighted
average information gain about three complementary observ-
ables, with (unnormalized) weights w1 = cos2 β for the path
observable and w2 = w3 = 1

2 sin2 β for the wave observables.
We therefore see that, although quantum complementarity
does not prohibit the observation of complementary properties
in a single measurement setup, it restricts one’s average in-
formation gain about complementary properties in individual
measurements. Similar analyses apply also to the quantum-
controlled reality experiment (QCRE) [65] where the presence
of BS1, instead of BS2, is controlled by an ancilla qubit.

Example 3. Let us consider a two-way interferometer with
each beam splitter controlled by an ancilla qubit and sup-
pose the one-photon state before entering the interferometer
is ρ0 = |0〉〈0|. In this setup, an input photon, depending on
the presence of BS1, either travels along its initial direc-
tion like a particle or evolves into the state |+〉 = 1√

2
(|0〉 +

|1〉) which has wave property only after entering the inter-
ferometer. Meanwhile, the overall state of the photon and
the ancilla qubit controlling BS1 becomes cos β|0〉|0〉anc +
sin β|+〉|1〉anc, a superposition between two “complementary
realities” [65]. First, the whole setup above can be viewed as

a device to probabilistically perform measurements on input
photons. Let σ ab

φ denote the observable when the phase shift
is φ, with a, b ∈ {0, 1} labeling the presence of BS1 and BS2,
respectively. For two complementary observables {σ 0b

φ , σ 1b
φ },

Theorem 1 then requires an observer’s average information
gain in individual measurements to satisfy 〈ρ0|ĝ|ρ0〉 � ‖ĝ‖ ·
Icom(ρ0), where ĝ = cos2 βĜ(σ 0b

φ ) + sin2 βĜ(σ 1b
φ ). Second,

one might be interested in the photon state inside the interfer-
ometer and BS1 can be viewed as a device to prepare a photon
in one of the two states {ρ0, ρ1 = |+〉〈+|} probabilistically.
Considering the equivalence between a unitary transforma-
tion of measurement bases (view operators) and that of
states 〈ρ|H+ ⊗ HĜH ⊗ H+|ρ〉 = 〈HρH+|Ĝ|HρH+〉, Theo-
rem 1 then constrains an observer’s average information gain
about two “complementary realities” when measuring a single
observable, cos2 β〈ρ0|Ĝ(σ 0b

φ )|ρ0〉 + sin2 β〈ρ1|Ĝ(σ 0b
φ )|ρ1〉 �

‖ĝ‖ · Icom(ρ0).
Another meaningful issue concerns the WPDRs when an

observer has side information about single photons in the
MZI, but without direct access to them. Let us consider two
photons in the bipartite state ρAB. As a measure of information
about photon A conditioned on photon B, we turn to the
complement of the conditional linearized entropy (8) below:

I (A|B) = dF pg(A|B) − 1/d. (14)

This is non-negative and reduces to the complete information
of the reduced state ρA, I (A|B) = Icom(ρA) when ρAB = ρA ⊗
ρB is a product state.

We derive in Appendix C the following generalization of
Eq. (12):

tr[(ρφB + eiπ ρφ′B)2]

= 2[I (A|B) − I (σ p|B)] sin2(φ − φ′). (15)

Here, ρφB = trA[(ρ−1/4
B ρABρ

−1/4
B )(σ w

φ ⊗ 1B)] φ is the “am-
plitude of conditional information” which connects to the
conditional information I (σ w

φ |B) through its squared modulus
tr(ρ 2

φB) = 2I (σ w
φ |B).

Equation (15) manifests the interference pattern of con-
ditional information amplitude, with the right-hand side
of it being the interference intensity. Combining the aver-
age intensity (wave property) I (A|B) − I (σ p|B) = I (σ w

φ |B) +
I (σ w

φ+π/2|B) with the conditional which-way information (par-

ticle property) I (σ p|B), we then obtain the WPDR [I (σ w
φ |B) +

I (σ w
φ+π/2|B)] + I (σ p|B) = I (A|B). Again, we see that a tight

WPDR saturated by all bipartite systems with dimension
dA = 2 arises from an IER for three complementary ob-
servables, wherein two complementary wave observables
constitute the complete description of wave property.

F. Applications

Our theory for characterizing information complementarity
from a measurement-based perspective enables us to analyze
the behaviors of quantum systems through their manifesta-
tions in versatile measurement setups, without delving into
the exhaustive calculations with quantum state parameters. As
two examples, we explore the implications of our IERs (7) and
(10) for entanglement detection and EURs, respectively.
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FIG. 6. Numerical comparison of the critical value of η for the
state (17) to be entangled (denoted η∗) and that to violate Eq. (16)
under four different choices of three local observables, with equal
weights and optimized weights, respectively (denoted ηequ and ηopt).
The three local observables considered here are σy ⊗ σy, σz ⊗ σz

and (a) σx ⊗ σx , (b) σz ⊗ σx , (c) ( 1
2 σz +

√
3

2 σx ) ⊗ ( 1
2 σz +

√
3

2 σx ),
(d) σz ⊗ σz.

1. Entanglement detection

Quantum correlation tends to suppress the local informa-
tion content contained in individual subsystems. For example,
a pair of maximally entangled qubits possess only joint prop-
erties in the sense that each single qubit is in the completely
mixed state. We introduce the correlation measure J (ρAB) =∑

i,θ wθ |tr(Ji|θρAB)| for local measurements {MA
θ ⊗ MB

θ } on
individual copies of the bipartite state ρAB, where Mi|θ de-
notes the ith effect of the θ th measurement and Ji|θ = [MA

i|θ −
1

dA
tr(MA

i|θ )1A] ⊗ [MB
i|θ − 1

dB
tr(MB

i|θ )1B] are the correlation de-
tection operators. We show in Appendix D the following.

Theorem 3. For any bipartite separate state ρAB, it holds that

J (ρAB) �
√

LALB, (16)

where L = ‖ĝ‖(1 − 1/d ) is the state-independent upper
bound on local information gain given by Eq. (7).

Consequently, a violation of Eq. (16) necessarily indicates
the presence of entanglement. As a concrete example, we
can apply Eq. (16) to the mixture of a pure two-qubit state
|ψ (β )〉 = cos β|00〉 + sin β|11〉 (−π

4 � β � π
4 ) and white

noise:

ρη,β = η|ψ (β )〉〈ψ (β )| + (1 − η)14/4 (0 � η � 1). (17)

Note that the noiseless state |ψ (β )〉 is entangled as long as
β �= 0. Now the question is how much noise it can resist
from being separable, i.e., the critical value η∗ of η below
which ρη,β ceases to be entangled. In Fig. 6, we present
numerical results regarding the critical values ηequ and ηopt for
the state (17) to violate Eq. (16), under measurements with
equal weights and optimized weights, respectively. As de-
picted, three complementary observables with equal weights
are enough to detect all the entanglement (ηequ = ηopt = η∗).
For more general observables ηopt � ηequ, an optimization
over the weights {wθ } yields better performance.

2. Implications for EURs

Entropic uncertainty relations (EURs) that take into ac-
count information leakage from a memory system play a
crucial role in various aspects of quantum information pro-
cessing [10], particularly in the security analysis of quantum
protocols [12]. However, existing EURs [10] are thus far
limited since they are restricted to providing lower bounds on
simply entropy sums. On a conceptual level, there is no reason
to assign equal weights, instead of biased weights, to different
measurements. Based on Theorem 2, we have the following
lower bounds on the weighted sum of entropies over multiple
measurements (see the proof in Appendix. E).

Theorem 4. Suppose ρAB describes a bipartite system
and {Mθ } are rank-1 projective measurements to be per-
formed on system A with selection probabilities {wθ }. The
smooth minimum entropy evaluated on the state (9) satisfies∑

θ wθH ε
min(Mθ |B) � qε

min, where

qε
min = − log2[‖ĝ‖ + F pg(A|B)(1 − ‖ĝ‖)] − log 2

2

ε2
. (18)

The conditional smooth minimum entropy [66] (see also
Ref. [10]) is a fundamental tool for the security analysis
of quantum protocols. In quantum cryptographic protocols
where an eavesdropper aims to know an experimenter’s
measurement outcomes by probing a memory system, the
weighted EURs we introduced provide guidance for adjust-
ing the probabilities of selecting distinct measurements to
minimize potential information leakage. It is conceivable that
equal selection probabilities are not optimal for biased mea-
surements. Optimized selection probabilities are thus crucial
for elaborating the measurement strategies to enhance security
and achieve stronger levels of protection. Importantly, this
optimization does not require additional quantum costs and
can be easily done on a classical computer.

III. DISCUSSIONS

Quantum complementarity is a topic of intense debates
and fruitful insights. Early investigations mainly focus on the
WPDRs [3–6] for single photons in a two-way interferometer.
Since then, more and more exquisite proposals have been de-
signed to provide in-depth interpretations of complementarity
from diverse perspectives [65,67–72]. Our basic idea is that
every meaningful feature of physical systems must be testable
under specific experiments and quantum complementarity ne-
cessitates a description in terms of measurement outcomes
only.

We have developed a general approach to formulate the
complementarity principle quantitatively in the form of basic
limits on one’s ability to gain information on quantum sys-
tems under versatile measurement setups, with and without
memory, respectively. In contrast to previous IERs [40–44]
which describe upper bounds on the sum of an observer’s
Shannon entropic mutual information over multiple measure-
ment bases, we adopt the operationally invariant information
measure [27] of quantum systems and obtain upper bounds
on the weighted sum of information gains over generalized
measurements. Our IERs thus enable us to address much more
general measurement scenarios where distinct measurements
are selected with biased probabilities. Further, we showed that
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the tight WPDRs for photons in a two-way interferometer are
particular examples of IERs for which-way measurement and
two wave measurements.

We remark that formulating complementarity from a
measurement-based perspective naturally circumvents the
exhaustive calculations with quantum state parameters, high-
lighting how complementarity manifests itself differently with
respect to different measurement strategies. As applications,
we first showed that our IERs can be utilized to certify genuine
quantum features of physical systems, such as entanglement
based on local measurement outcomes. We also introduced an
extended form of EURs, which turn out to be advantageous in
practical quantum information processing [73].
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APPENDIX A: VIEW OPERATOR AND PROPERTIES

Consider a set of POVMs {Mi|θ } assigned with weights
{wθ } (wθ � 0,

∑
θ wθ = 1). We define the associated average

view operator to be

ĝ =
∑
i,θ

wθ Ĝ(Mθ ) =
∑
i,θ

wθ |M̃i|θ 〉〈M̃i|θ |, (A1)

where M̃i|θ = Mi|θ − 1
d tr(Mi|θ )1d is traceless or, equiva-

lently, |M̃i|θ 〉 = |Mi|θ 〉 − |ψd〉〈ψd |Mi|θ 〉 is orthogonal to |ψd〉.
View operators are positive semidefinite, Ĝ � 0 on the
(d2 − 1)-dimensional subspace H⊥ψd of H⊗2

d orthogonal to
|ψd〉, and vanish for trivial POVMs whose effects satisfy
Mi|θ = 1

d tr(Mi|θ )1d .
The matrix representation of ĝ under an orthonormal basis

{|a〉} of H⊥ψd takes the form

ga,a′ =
∑
i,θ

wθ 〈a|M̃i|θ 〉〈M̃i|θ |a′〉 = (RR+)a,a′ . (A2)

Here, the matrix elements of R are given by Ra,b(i,θ ) =√
wθ 〈a|M̃i|θ 〉, with b being a bijection from the labels {(i, θ )}

of POVM effects to the labels {a} of the basis vectors {|a〉}.
Note that the positive eigenvalues of g = RR+ are identical to
those of the Gram matrix for the vectors {√wθ |M̃i|θ 〉}, that is,
ḡ = R+R. To obtain eigenvalues of a view operator ĝ, it will
be enough to deal with the Gram matrix ḡ, whose elements are
ḡb(i,θ ),b( j,θ ′ ) = √

wθwθ ′ 〈M̃i|θ |M̃ j|θ ′ 〉.

Claim 1. POVMs that form a design structure are mutually
complementary.

Claim 2. The combined view operator associated with a
complete set of design-structured POVMs is proportional to
the identity operator on H⊥ψd .

Claim 3. The average view operator of a set of MUBs with
weights {wθ } satisfies ‖ĝ‖ = maxθ {wθ }.

Proof. Design-structured measurements include complete
sets of mutually unbiased measurements (MUMs) [48], gen-
eral symmetric informationally complete POVMs [52–54],
POVMs from equiangular tight frames [51], and POVMs from
general quantum designs [49,50]. Without loss of general-
ity, we prove the above claims for MUMs. MUMs [48] are
d-outcome POVMs satisfying tr(Mi|θ ) = 1, tr(Mi|θMj|θ ′ ) =
1
d , and tr(Mi|θMj|θ ) = κδi j + 1−κ

d−1 (1 − δi j ) for all i, j = 0,

. . . , d − 1 and θ �= θ ′. Here κ ∈ ( 1
d , 1] is called the efficiency

parameter, wherein κ = 1 corresponds to projective measure-
ments in MUBs [28–31]. �

Consider the view operator Ĝmum = ∑
θ Ĝ(Mθ ) associ-

ated with a set of MUMs [48] on Hd , according to Eq. (A2)
the corresponding Gram matrix Ḡ is given as

Ḡb(i,θ ),b( j,θ ′ ) = 〈M̃i|θ |M̃ j|θ ′ 〉 = tr(Mi|θMj|θ ′ ) − 1

d

= δθθ ′

[
κd − 1

d − 1
δi j + 1 − κd

d (d − 1)

]
. (A3)

According to Eq. (A3), obviously two MUMs are complemen-
tary since Ĝ(Mθ ) · Ĝ(Mθ ′ ) = 0 whenever θ �= θ ′. Next, let
us focus on the d × d submatrix

Ḡb(i,1),b( j,1) = κd − 1

d − 1
1d − κd − 1

d (d − 1)
Q, (A4)

where Q denotes the matrix satisfying Qi, j = 1 for all
i, j = 0, . . . , d − 1. This submatrix (A4) has d − 1 identi-
cal nonzero eigenvalues (κd − 1)/(d − 1), thus, the view
operator of a complete set of d + 1 MUMs (CMUMs) has
(d + 1)(d − 1) = d2 − 1 identical nonzero eigenvalues. In
other words, ĜCMUM = κd−1

d−1 1⊥ψd , with 1⊥ψd = 1d×d −
|ψd〉〈ψd | being the identity operator on the (d2 − 1)-
dimensional space H⊥ψd . Claim 3 follows from the fact that
MUBs (i.e., MUMs with efficient parameter κ = 1) are com-
plementary, thus ‖ĝ‖ = maxθ {wθ‖Ĝ(Mθ )‖} = maxθ {wθ }.

Claim 4. For arbitrary d-outcome POVMs M = {Mi} on
Hd that consists of equal-trace effects (ETE-POVMs), i.e.,
tr(M0) = · · · = tr(Md−1), we have ‖Ĝ(M)‖ � 1.

Claim 5. For any set of d-outcome ETE-POVMs {Mθ } on

Hd , ‖ĝ‖ = ‖ ∑
θ wθ Ĝ(Mθ )‖ � ∑

θ wθ‖Ĝ(Mθ )‖ � 1.
Claim 6. For a number � of d-outcome ETE-POVMs {Mθ }

on Hd with equal weights, ‖ĝ‖ = 1
�

‖∑
θ Ĝ(Mθ )‖ = 1 iff the

overlap matrix W , defined as Wb(i,θ ),b( j,θ ′ ) = tr(Mi|θMj|θ ′ ), is
reducible.

Proof. Consider the Gram matrix Ḡi, j = 〈M̃i|M̃ j〉 =
tr(MiMj ) − 1

d . We can rewrite it as Ḡ = W − Q/d , where
Wi, j = tr(MiMj ) is referred to as the overlap matrix, and
Qi, j = 1 for all i, j. Note W is doubly stochastic, i.e.,∑

i Wi, j = ∑
j Wi, j = 1, its first eigenvalue (arranged in

descending order) must be λ1(W ) = 1. Moreover, the corre-
sponding eigenvector v1 = (1, . . . , 1)T is also an eigenvector
of Q which corresponds to the unique nonzero eigenvalue d
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of Q. Immediately Ḡv1 = 0, and ‖Ĝ(E )‖ = ‖Ḡ‖ = λ2(W ) �
λ1(W ) = 1. Claim 5 follows directly from Claim 4. Further,
considering that the matrix 1

�
W is doubly stochastic, accord-

ing to Theorem 3.1 of Ref. [74] we have λ2( 1
�

W ) = 1 iff W
is reducible. �

APPENDIX B: PROOF OF THEOREM 2

Let {Mi|θ } be a set of generalized measurements such
that the POVM effects of each measurement are equal-trace,
i.e., tr(M0|θ ) = · · · = tr(Mlθ−1|θ ) = d/lθ , where lθ denotes the
number of effects in the θ th POVM. After Alice performed
the θ th measurement on system A, Bob’s understanding of the
overall system is then described by the classical-quantum state

ρMθ B =
lθ −1∑
i=0

|i〉〈i| ⊗ (Ki|θ ⊗ 1B)ρAB(K+
i|θ ⊗ 1B). (B1)

Here, {Ki|θ } are the Kraus operators [75] which satisfy
K+

i|θ Ki|θ = Mi|θ by definition.
To prove Theorem 2, we only need to show the operator

�̂AB = ‖ĝ‖1A ⊗ ρ
1/2
B +

( ∑
θ

wθ

lθ
− 1

d
‖ĝ‖

)
ρ̄AB

−
∑

θ,i,x,x′
wθK+

i|θ |x〉A〈x′|Ki|θ ⊗ A〈x|Ki|θ ρ̄ABK+
i|θ |x′〉A

(B2)

is positive semidefinite on the space HA ⊗ HB, where
{|x〉}d−1

x=0 is an orthonormal basis of HA and ρ̄AB = (1A ⊗
ρ

−1/4
B )ρAB(1A ⊗ ρ

−1/4
B ). Notice that the measurement-induced

local transformation ρAB → ρMθ B commutes with the map
ρAB → ρ̄AB, from �̂AB � 0 we have

tr(�̂ABρ̄AB) = ‖ĝ‖ +
(∑

θ

wθ /lθ − ‖ĝ‖/d

)
tr
(
ρ̄2

AB

)

�
∑
i,θ

wθ tr[Ki|θ ρ̄ABK+
i|θ Ki|θ ρ̄ABK+

i|θ ]

=
∑

θ

wθ tr
(
ρ̄2
Mθ B

)
, (B3)

where ρ̄Mθ B = (1A ⊗ ρ
−1/4
B )ρMθ B(1A ⊗ ρ

−1/4
B ). This leads

us to

∑
θ

wθSL(Mθ |B) � 1 − ‖ĝ‖ −
(∑

θ

wθ /lθ − ‖ĝ‖/d

)

× [1 − SL(A|B)]. (B4)

In the case of rank-1 projective measurements, l1 = · · · = l�
are equal to the dimension d of system A. With Eq. (B4),
Theorem 2 is already obvious.

Next, we proceed to show �̂ � 0. Observe the operator
below is positive semidefinite:

�̂ = ‖ĝ‖ · (
1⊗2

d − |ψd〉〈ψd |
) − ĝ

= ‖ĝ‖ · 1⊗2
d −

∑
i,θ

wθ |Mi|θ 〉〈Mi|θ |

+
( ∑

θ

wθd/lθ − ‖ĝ‖
)

|ψd〉〈ψd | � 0, (B5)

and, accordingly, so does its partial transpose over the second
space

�̂T2 = ‖ĝ‖ · 1⊗2
d −

∑
i,θ

wθ (|Mi|θ 〉〈Mi|θ |)T2

+
(∑

θ

wθd/lθ − ‖ĝ‖
)

F̂ � 0. (B6)

In the above

F̂ = (|ψd〉〈ψd |)T2 = 1

d

d−1∑
i, j=0

|i〉〈 j| ⊗ | j〉〈i|, (B7)

and

(|Mi|θ 〉〈Mi|θ |)T2

= d (K+
i|θ Ki|θ ⊗ 1d |ψd〉〈ψd |K+

i|θ Ki|θ ⊗ 1d )T2

=
∑
x,x′

K+
i|θ |x〉〈x′|Ki|θ ⊗

∑
y,y′

(Ki|θ )xy|y′〉〈y|(K+
i|θ )y′x′ . (B8)

Let �̂AC be the operator �̂ when defined on the space HA ⊗
HC . Similarly, ρCB and ρAB denote the same density operator
ρ but defined on different spaces. Then, with TC denoting to
the partial transpose over the space HC , it can be checked that

�̂AB = trC
(
�̂

TC
AC ρ̄CB

)
. (B9)

As a positive-semidefinite Hermitian operator, �̂ can be writ-
ten as the sum of (unnormalized) rank-1 projectors �̂ =∑

x |πx〉〈πx|, thereby

�̂AB =
∑

x

trC[(|πx〉AC〈πx|)TC ρ̄CB]

=
∑

x

trC[
√

ρ̄CB(|πx〉AC )TC (AC〈πx|)TC
√

ρ̄CB]

=
∑

x

trC (�+
x �x ), (B10)

where �x = √
ρ̄CB(|πx〉AC )TC . Considering that �+

x �x � 0
are positive-semidefinite operators on the space HA ⊗ HB ⊗
HC , immediately we have �̂AB � 0. This completes the proof
of Theorem 2.

For design-structured measurements, the corresponding
combined view operators are proportional to 1⊥ψd = 1⊗2

d −
|ψd〉〈ψd |, then �̂ = �̂AB = 0 and Eq. (B3) becomes an equal-
ity saturated by arbitrary state ρAB on HA ⊗ HC .

022235-9



HUANG, LIU, ZHAO, YIN, CHEN, AND WU PHYSICAL REVIEW A 109, 022235 (2024)

APPENDIX C: INTERFERENCE PATTERN
OF INFORMATION AMPLITUDE

We denote by {|iφ〉}i=0,1 the measurement basis with re-
spect to the experimental setup where BS2 of the two-way
interferometer (see Fig. 3) is inserted in and the phase shift
is φ. Then, the associated view operator is

Ĝw
φ =

∑
i=0,1

|iφ〉〈iφ| ⊗ |iφ〉∗〈iφ| − |ψ2〉〈ψ2|

= 1

2

∑
i, j=0,1

(−1)i+ j |iφ〉〈 jφ| ⊗ |iφ〉∗〈 jφ|

= 1

2

∣∣σ w
φ

〉〈
σ w

φ

∣∣, (C1)

where |σ w
φ 〉 = |0φ〉 ⊗ |0φ〉∗ − |1φ〉 ⊗ |1φ〉∗ is the vector rep-

resentation of the wave observable σ w
φ = |0φ〉〈0φ| − |1φ〉〈1φ|

given by the isomorphism (1). Similarly, the view operator
associated with the path observable σ p is given as Ĝp =
1
2 |σ p〉〈σ p|.

Recall that the path observable is complementary to
wave observables and, consequently, the view operators
{Ĝp, Ĝw

φ , Ĝw
φ+ π

2
} are mutually orthogonal and satisfy

Ĝp + Ĝw
φ + Ĝw

φ+ π
2

≡ 1⊥ψ2 . (C2)

Moreover, for arbitrary two-wave observables σ w
φ′ and σ w

φ ,
it can be easily checked that∣∣σ w

φ′
〉 = cos(φ′ − φ)

∣∣σ w
φ

〉 + sin(φ′ − φ)
∣∣σ w

φ+ π
2

〉
. (C3)

This leads us to

sin2(φ′ − φ)Ĝw
φ+ π

2
= sin(φ′ − φ)2

∣∣σ w
φ+ π

2

〉〈
σ w

φ+ π
2

∣∣
= Ĝw

φ′ + Ĝw
φ Ĝw

φ′Ĝw
φ − Ĝw

φ Ĝw
φ′ − Ĝw

φ′Ĝw
φ .

(C4)

Combining Eqs. (C4) and (C2) we have for any qubit
density operator ρ

sin2(φ′ − φ)〈ρ|Ĝp + Ĝw
φ + Ĝw

φ+ π
2
|ρ〉

= sin2(φ′ − φ)
[
G(σ p)ρ + G

(
σ w

φ

)
ρ

] + G
(
σ w

φ′
)
ρ

+ cos2(φ′ − φ)G
(
σ w

φ

)
ρ

− cos(φ′ − φ)
〈
σ w

φ

〉〈
σ w

φ′
〉

= sin2(φ′ − φ)〈ρ|1⊥ψ2 |ρ〉 = sin2(φ′ − φ)Icom(ρ), (C5)

which completes the proof of Eq. (11).
To derive the interference pattern of the “amplitude of

conditional information” as given in Eq. (15), let us consider
the equality

�̂AC = Ĝw
φ + Ĝw

φ′ − Ĝw
φ Ĝw

φ′ − Ĝw
φ′Ĝw

φ

= sin2(φ′ − φ)[1⊥ψ2 − Ĝp]. (C6)

From the proof of Theorem 2 we have

trABC
(
ρ̄AB�̂

TC
AC ρ̄CB

) = sin2(φ′ − φ)
[
1 − tr

(
ρ̄2

σ pB

)]
= tr

(
ρ̄2

σ w
φ B

) + tr
(
ρ̄2

σ w
φ′ B

) − tr
(
ρ̄2

AB

)
− T (φ′ − φ), (C7)

where ρσB denotes the classical-quantum state (B1) after mea-
suring the observable σ and

T (φ′ − φ) = 2 trABC
[
ρ̄CBρ̄AB

(
Ĝw

φ Ĝw
φ′

)TC

AC

]
= 2 cos(φ′ − φ)trABC

[
ρ̄CBρ̄AB

(∣∣σ w
φ

〉〈
σ w

φ′
∣∣)TC

AC

]
= cos(φ′ − φ)

∑
i, j=0,1

(−1)i+ j trABC

× [ρ̄AB|iφ〉A〈 jφ′ | ⊗ | jφ′ 〉C〈iφ|ρ̄CB]

= cos(φ′ − φ)
∑

i, j=0,1

(−1)i+ j trB

× [A〈 jφ′ |ρ̄AB|iφ〉A〈iφ|ρ̄AB| jφ′ 〉A]

= cos(φ′ − φ)trAB
(
σ w

φ′ ρ̄ABσ w
φ ρ̄AB

)
= cos(φ′ − φ)trB

[
trA

(
ρ̄ABσ w

φ ⊗ 1B
)

× trA
(
ρ̄ABσ w

φ′ ⊗ 1B
)]

− cos2(φ′ − φ)
[
tr
(
ρ̄2

AB

) − 1
]
. (C8)

Observe Eq. (C7) can be rewritten as

tr
(
ρ̄2

σ w
φ B

) − 1/2 + tr
(
ρ̄2

σ w
φ′ B

) − 1/2 − cos(φ′ − φ)trB

× [
trA

(
ρ̄ABσ w

φ ⊗ 1B
)
trA

(
ρ̄ABσ w

φ′ ⊗ 1B
)]

= sin2(φ′ − φ)
[
tr
(
ρ̄2

AB

) − tr
(
ρ̄2

σ pB

)]
. (C9)

Let ρφB = ρ̄φB φ = trA(ρ̄ABσ w
φ ⊗ 1B) φ, apparently

tr(ρ 2
φB) = tr(ρ̄ 2

φB) = 2 tr(ρ̄ 2
σφB) − 1 = 2I (σ w

φ |B). Equation (C9)
thus completes the proof of Eq. (15).

APPENDIX D: PROOF OF THEOREM 3

This proof is inspired by the works [76,77] on en-
tanglement detection with MUMs [48]. By definition any
bipartite separable state can be written as a linear com-
bination of product states in the form ρAB = ∑

k pkρAk ⊗
ρBk (pk > 0,

∑
k pk = 1). For a product state ρA ⊗ ρB, obvi-

ously tr(Ji|θρA ⊗ ρB) = [pA
i|θ − 1

dA
tr(MA

i|θ )][pB
i|θ − 1

dB
tr(MB

i|θ )].
Then we have

J (ρA ⊗ ρB)

=
∑
i,θ

√
wθ

∣∣∣∣pA
i|θ − tr

(
MA

i|θ
) 1

dA

∣∣∣∣√wθ

∣∣∣∣pB
i|θ − tr

(
MB

i|θ
) 1

dB

∣∣∣∣

�
[ ∑

i,θ

wθ

[
pA

i|θ − tr
(
MA

i|θ
)
/dA

]2

]1/2

×
[ ∑

i,θ

wθ

[
pB

i|θ − tr
(
MB

i|θ
)
/dB

]2

]1/2

�
√

‖ĝA‖Icom(ρA) · ‖ĝB‖Icom(ρB) �
√

LALB,

with LA = ‖ĝA‖(1 − 1/dA) and LB = ‖ĝB‖(1 − 1/dB) being
state-independent upper bounds on local information gains,
and the first inequality above exploits the Cauchy-Schwarz
inequality. Therefore, for bipartite separable states there
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must be J (ρAB) = ∑
i,θ wθ |tr(Ji|θ

∑
k pkρAk ⊗ ρBk )| �∑

k pk
∑

i,θ wθ |tr(Ji|θρAk ⊗ ρBk )| = ∑
k pkJ (ρAk ⊗ ρBk ) �∑

k pk
√

LALB = √
LALB.

APPENDIX E: PROOF OF THEOREM 4

Observe that in the case of rank-1 projective measurements
Eq. (B3) becomes

‖ĝ‖ + (1 − ‖ĝ‖)F pg(A|B) �
∑

θ

wθ tr
(
ρ̄2
Mθ B

)
. (E1)

Considering that H ε
min(Mθ |B) � − log2[tr(ρ̄2

Mθ B)] − log2
2
ε2

(see Lemma 19 of Ref. [78] and Theorem 7 of Ref. [79]),
immediately

∑
θ

wθH ε
min(Mθ |B) � − log2

[∑
θ

wθ tr
(
ρ̄2
Mθ B

]
− log2

2

ε2

� − log2[‖ĝ‖ + (1 − ‖ĝ‖)F pg(A|B)]

− log2
2

ε2
. (E2)
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[32] J. Řeháček and Z. Hradil, Invariant information and quantum
state estimation, Phys. Rev. Lett. 88, 130401 (2002).
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