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Analytical solutions for quantum radiation reaction in high-intensity lasers
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While the Landau-Lifshitz equation, which describes classical radiation reaction, can be solved exactly
and analytically for a charged particle accelerated by a plane electromagnetic wave, no such solutions are
available for quantum radiation reaction (the recoil arising from the successive, incoherent emission of hard
photons). Yet upcoming experiments with ultrarelativistic electron beams and high-intensity lasers will explore
the regime where both radiation-reaction and quantum effects are important. Here we present analytical solutions
for the mean and variance of the energy distribution of an electron beam that collides with a pulsed plane
electromagnetic wave, which are obtained by means of a perturbative expansion in the quantum parameter χ0.
These solutions capture both the quantum reduction in the radiated power and the stochastic broadening, and are
shown to be accurate across the range of experimentally relevant collision parameters, i.e., GeV-class electron
beams and laser amplitudes a0 � 200.
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I. INTRODUCTION

The electromagnetic fields produced by focused high-
power lasers are so strong that the dynamics of relativistic
particles enters the regime of strong-field QED [1–3]. One
process that has attracted much interest is quantum radiation
reaction, i.e., the accumulated recoil from the emission of
individual high-energy photons [4], which can be as signifi-
cant to the particle and plasma dynamics as the acceleration
induced by the background electromagnetic field [2]. Experi-
ments with high-intensity lasers have already shown evidence
of radiation reaction [5,6], and investigation of strong-field
QED effects, including quantum radiation reaction, is a key
part of the science case for upcoming and planned laser facil-
ities [7–12].

Quantum radiation reaction has many possible exper-
imental signatures, including stochastic broadening [13],
straggling [14], quenching [15], and increased angular diver-
gence [16,17], all of which arise because photon emission
is inherently probabilistic. These works rely largely on the
results of numerical simulations, as the theory for quantum
radiation reaction is not generally amenable to analytical
solution. By contrast, the Landau-Lifshitz equation [18],
which describes classical radiation reaction, can be solved
exactly for a general plane-wave background [19] (see also
Refs. [20–22]). It would be helpful for guidance of future
experiments to have analytical solutions that apply in the
quantum regime. In this work we consider the radiation re-
action of an ultrarelativistic electron beam in an intense laser
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background, but note that similar phenomena can be explored
with aligned crystals [23–26].

Consider a beam of ultrarelativistic electrons, which has a
distribution of Lorentz factors γ , dNe

dγ
, characterized by a mean

μ = 〈γ 〉, variance σ 2 = 〈(γ − μ)2〉, and other higher-order
moments including ς3 = 〈(γ − μ)3〉 and κ4 = 〈(γ − μ)4〉,
which are related to the skewness and kurtosis, respectively.
This beam collides with a intense laser pulse, which is mod-
eled as a plane electromagnetic wave with angular frequency
ω0 and normalized amplitude a0, such that the electric field as
a function of phase φ is E(φ) = mω0a0 f (φ)/e. Here e and m
are the elementary charge and the electron mass, respectively,
and we work in natural units where h̄ = c = 1. As the electron
beam propagates through the laser pulse, it emits radiation and
decelerates.

If the electrons are ultrarelativistic, radiation emission and
reaction may be treated within the semiclassical framework
proposed by Baier and Katkov [27]. Provided that γ � a0 and
a0 is large enough that the locally constant field approximation
holds [28–31], the evolution of the mean and variance of the
energy distribution is given by [32,33]

dμ

dφ
= − 2Rc

3μ0
| f (φ)|2〈γ 2g(χ )〉, (1)

and

dσ 2

dφ
= − 4Rc

3μ0
| f (φ)|2〈(γ − μ)γ 2g(χ )〉

+ 55Rcχ0

24
√

3μ2
0

| f (φ)|3〈γ 4g2(χ )〉, (2)

where Rc = αa0χ0 is the classical radiation reaction param-
eter, χ0 = 2a0μ0ω0/m is the quantum parameter, and μ0 is
the initial value of the mean. The unsubscripted χ appearing
in these equations is the instantaneous value of the quantum
parameter χ = 2a0γω0| f (φ)|/m, which depends on the in-
stantaneous γ and field amplitude. The two functions g(χ )
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and g2(χ ) describe the role of quantum corrections to radia-
tion reaction and are discussed in Sec. II.

The purpose of this work is to find analytical predictions
of the mean and variance in the regime where quantum effects
are important, but not dominant. Equivalent results for the
classical regime χ0 = 0 have been obtained by Neitz and
Di Piazza [13] and Vranic et al. [17,34]. This analysis is
extended to the quantum regime and to the whole hierarchy
of moments by Niel et al. [33]. The dynamics of the energy
distribution itself, rather than its moments, under quantum
radiation reaction is treated analytically in Bulanov et al. [35].
Furthermore, the evolution of the mean and variance in a con-
stant field has been obtained by Torgrimsson [36,37], using a
resummation approach. The strategy here is to solve Eqs. (1)
and (2) perturbatively in the small parameter χ0. Additionally,
to break the infinite hierarchy that arises because the evolution
of a given moment depends on higher-order moments, we
make the approximation that successive moments are smaller
than each other, i.e., μ � σ � κ . We begin by discussing
the functions g(χ ) and g2(χ ), and then we present analytical
solutions for the mean and variance of the distribution.

II. QUANTUM CORRECTIONS

Quantum effects are manifest in the two functions g(χ )
and g2(χ ), which relate moments of the quantum and classical
synchrotron emissivities. In particular, g(χ ) represents the re-
duction in the radiation power caused by quantum corrections
to the synchrotron spectrum.

We define the nth moment of the radiation spectrum to be

M(n, χ ) =
∫

(χs)n dWγ

ds
ds, (3)

where dWγ

ds is the photon emission rate per unit proper time, per
unit photon normalized energy s = ω′/(γ m), as calculated in
the locally constant field approximation [28,38]:

dWγ

ds
= αm√

3π

[(
1 − s + 1

1 − s

)
K2/3(ξ ) −

∫ ∞

ξ

K1/3(t ) dt

]
,

(4)

where ξ = 2s/[3χ (1 − s)] and Kn is a modified Bessel func-
tion of the second kind. The classical emission rate is obtained
by replacing 1 − s → 1 wherever it appears. The zeroth
moment is the total emission rate M(0, χ ) = Wγ . The nor-
malized nth moment is

M̃(n, χ ) = Mq(n, χ )

Mcl(n, χ )
. (5)

The subscripts denote whether the quantum or classical emis-
sion rates are to be used when evaluating the integrals. For
example, the quantum correction to the radiated power [38],
sometimes called the Gaunt factor [2], is given by g(χ ) =
M̃(1, χ ). Similarly, the function that controls variance growth
due to stochasticity [32] is given by g2(χ ) = M̃(2, χ ).

The classical moments can be evaluated directly:

Mcl(n, χ ) = 3n
√

3�
(

n
2 + 1

6

)
�
(

n
2 + 11

6

)
2π (n + 1)

αmχ2n+1, (6)

where the � function is defined by �(z) = ∫ ∞
0 t z−1e−z dz.

The quantum moments cannot be expressed in closed form,
so it is more convenient to quote their normalized values. The
first step is to express M̃ as a single integral:

M̃(n, χ ) = 2

�
(

n
2 + 1

6

)
�
(

n
2 + 11

6

) ∫ ∞

0

[
(n + 1)yn(8 + 12χy + 9χ2y2)K2/3(y)

(2 + 3χy)n+3
− yn+1K1/3(y)

(2 + 3χy)n+1

]
dy, (7)

which can be evaluated numerically for any n and χ . Limiting values of Eq. (7) are, for χ 	 1,

M̃(n, χ ) = 1 − 3(n + 1)�
(

n
2 + 2

3

)
�
(

n
2 + 7

3

)
�
(

n
2 + 1

6

)
�
(

n
2 + 11

6

) χ + (n + 1)(3n + 1)[28 + n(3n + 17)]

8
χ2 + · · · , (8)

and, for χ � 1,

M̃(n, χ ) = − (n + 1)[28 + 9n(n + 3)]�
( − 1

3

)
�
(

2
3

)
�
(
n + 1

3

)
27 �

(
n
2 + 1

6

)
�
(

n
2 + 11

6

)
�(n + 3)

(3χ )−n−1/3. (9)

Examples of moments at specific orders are given in Table I.

III. MEAN ENERGY LOSS

We begin by expanding Eq. (1) to first order in χ0. This
requires g(χ ) to first order in χ , which is given in Table I:

dμ̂

dφ
= −2

3
Rc| f (φ)|2μ̂2

[(
1 + σ 2

μ2

)

− 55
√

3

16
χ0| f (φ)|μ̂

(
1 + 3σ 2

μ2
+ ς3

μ3

)]
, (10)

where μ̂ = μ/μ0 is the mean energy normalized to its initial
value. The expansion in Eq. (10) is effectively an expansion
to first order in h̄, even though we work in natural units,

because Rc ∝ h̄0 by virtue of the factor of α. If the corrections
due to the higher-order moments σ 2 and ς3 are subleading
with respect to the quantum correction ∝ χ0μ̂, we may ne-
glect all terms containing those higher-order moments and
solve this perturbatively by introducing μ̂ = μ̂(0) + χ0μ̂

(1) +
TABLE I. Moments of the classical and quantum photon emis-

sion rates.

n Mcl (n, χ ) M̃(n, χ ) at χ 	 1 M̃(n, χ ) at χ � 1

0 5
2
√

3
αmχ 1 − 8

5
√

3
χ + 7

2 χ 2 28�(2/3)
35/615

χ−1/3

1 2
3 αmχ 3 1 − 55

√
3

16 χ + 48χ 2 128π

35/6243�(7/3)
χ−4/3

2 55
24

√
3
αmχ 5 1 − 448

√
3

55 χ + 777
4 χ 2 236�(5/3)

35/6495
χ−7/3
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O(χ2
0 ). The result is

μ̂(φ) = 1

1 + 2
3 RcI (φ)

+ 55χ0

8
√

3
[
1 + 2

3 RcI (φ)
]2

∫ φ

−∞

Rc| f (ψ )|3
1 + 2

3 RcI (ψ )
dψ, (11)

where I (φ) = ∫ φ

−∞ | f (ψ )|2dψ . The first term is the classical
result, where the total energy loss depends on the integrated
flux [19]. The second term is positive, indicating that the total
radiated energy is reduced [38].

A comparison of Eq. (11) with the results of numerical sim-
ulations, performed with the Monte-Carlo particle-tracking
code PTARMIGAN v1.3.2 [39,40], is given in Fig. 1. In these
simulations an electron beam with a mean energy of 500,
1000, or 2000 MeV (Gaussian energy distribution, with 10%
energy spread) collides with a plane-wave laser pulse with
a Gaussian temporal envelope, normalized amplitude a0, a
wavelength of 0.8 µm, and a full width at half maximum
(FWHM) duration of 30 fs. We vary a0 in the range 2 < a0 <

200 and use either a quantum (stochastic) model of radiation
reaction, which builds on photon emission rates calculated
in the locally constant field approximation (LCFA) [28,38],
or a classical model, which uses the Landau-Lifshitz equa-
tion [18]. One may see that the agreement is rather good
across the full range of parameters, even though χ0 is not
necessarily much smaller than unity. This may be explained by
the fact that our results are first order in χ0, but “all order” in
the radiation-reaction parameter Rc: as the electron beam loses
energy, its instantaneous quantum parameter is reduced and so
too the importance of quantum corrections (see Ref. [41] for
a similar result).

It may be seen, however, that the theory generally un-
derestimates the energy loss in the quantum case. This is
particularly visible for E0 = 2000 MeV around a0 � 15. We
explain this by referring the reader to the neglect of higher-
order moments in Eq. (10). If the electron energy distribution
is very broad (σ ∼ μ), the first term, which describes energy
loss, is increased in magnitude. This is not generally signifi-
cant under classical radiation reaction, because the variance
only ever decreases. Under quantum radiation reaction, by
contrast, stochastic effects make it possible for an initially mo-
noenergetic electron beam to develop a broad energy spread.
It is reasonable to expect that the error made by Eq. (11) is
largest for those collision parameters where the energy spread
midway through the laser pulse is largest. We turn, therefore,
to the solution of Eq. (2), which describes how the variance of
the energy distribution evolves.

IV. BROADENING AND NARROWING
OF THE ENERGY SPECTRUM

Expanding Eq. (2) to first order in χ0, and neglecting mo-
ments of order higher than σ 2 for brevity, yields an equation of
motion for the normalized variance σ̂ = σ/μ0:

d σ̂ 2

dφ
= −8

3
Rc| f (φ)|2μ̂σ̂ 2 + 55

√
3

4
Rcχ0| f (φ)|3μ̂2σ̂ 2

+ 55

4
√

3
Rcχ0| f (φ)|3μ̂2

(
σ̂ 2 + μ̂2

6

)
. (12)

FIG. 1. The mean final energy from simulations (points) and as
predicted by Eq. (11), for quantum (solid) and classical (dashed)
radiation reactions. The electron beam is initialized with a mean
energy of (a) 500 MeV, (b) 1000 MeV, or (c) 2000 MeV. The laser
pulse has a normalized amplitude of a0, a wavelength of 0.8 µm, and
a FWHM duration of 30 fs.

In the classical limit χ0 → 0, we have

σ̂ 2
cl(φ) = σ̂ 2

0[
1 + 2

3 RcI (φ)
]4 , (13)

which can be expressed as σ/σ0 = (μ/μ0)2 in agreement
with Neitz and Di Piazza [13] and Vranic et al. [34]. This
could, in principle, be corrected for nonzero χ0 in much the
same way as done for the mean energy loss, by expand-
ing σ̂ 2 = σ̂ 2

(0) + χ0σ̂
2
(1), where σ̂ 2

(0) is the classical result in
Eq. (13). However, the quantum terms in Eq. (12) are not nec-
essarily small corrections to the classical terms. Consider an
initially monoenergetic beam, with σ̂ = 0: the leading-order
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term in this scenario is the purely quantum term ∝ μ̂4, which
drives growth of the variance. The first and second terms,
which represent the reduction in the variance due to (quantum-
corrected) radiation losses, do not dominate until σ̂ has grown
to a sufficiently large value.

Therefore, we introduce a new parameter V , defined by
σ̂ 2 = χ0V , before perturbatively expanding in χ0, i.e., V =
V (0) + χ0V (1). The equation of motion for V (0) contains the
first and last terms of Eq. (12), the competing growth and
suppression, at the same order, as desired. Solving this, and
then writing σ̂ 2 = χ0V (0), we obtain

σ̂ 2
q (φ) = 1[

1 + 2
3 RcI (φ)

]4

(
σ̂ 2

0 + 55Rcχ0

24
√

3

∫ φ

−∞
| f (ψ )|3 dψ

)
.

(14)

One can identify two regimes of behavior in Eq. (14): in the
first, the initial variance is sufficiently large that the stochas-
tically driven growth is a small correction; and in the second,
the radiation-loss-driven reduction in the variance is a small
correction to the growth. Niel et al. [33] refer to these as the
cooling and heating regimes, respectively.

We now compare this prediction to the results of numerical
simulations. Here we consider the case of quantum radiation
reaction and investigate the role of the initial variance σ 2

0 . The
electron beam is initialized with a Gaussian energy distribu-
tion, with a mean of 500, 1000, or 2000 MeV and a spread
(defined by the FWHM) of either 10% or 50% of the mean.
As before, the laser pulse is a plane wave with a Gaussian
temporal envelope, normalized amplitude a0, a wavelength of
0.8 µm, and a FWHM duration of 30 fs. Our results are given
in Fig. 2. The qualitative agreement between the theory (solid
lines) and simulation results (points) is reasonably good. We
see that if the initial energy spread is small, stochasticity
drives broadening of the spectrum that is maximized at a
particular a0. However, if the a0 is increased beyond this point,
radiative cooling dominates and the energy spread is reduced.
If, on the other hand, the initial energy spread is large, no
stochastic broadening is visible.

The quantitative agreement is not as good as that found
for the mean energy, because the contribution of higher-order
moments is generally more important for the evolution of σ 2.
(Stochastic broadening leads to increases in both the variance
and the skewness, see, for example, Ref. [33].) However, this
may be improved significantly by scaling a0 → a0/

√
2 in

Eq. (14). With this correction, shown by the dashed lines in
Fig. 2, the agreement is good across the full range of a0. The
effectiveness of this ad hoc approach may be explained by the
fact that it reduces the cooling, which Eq. (12) overestimates
because it contains no higher-order moments.

Figure 2 also shows the standard deviation predicted by
Eq. (17) in Vranic et al. [17], which is derived under the
assumptions that the initial energy spread is small and that the
laser pulse is long enough that the variance has grown to its
maximal value before beginning to shrink. This scaling law
is in excellent agreement with our simulation results if a0 is
large, where these assumptions are valid: both our Eq. (16)
and Eq. (17) in Ref. [17] predict that σ 2

f ∝ a−5
0 if a0 � 1. It is

less accurate for intermediate a0, where stochastic broadening
and radiative cooling are comparable in magnitude, or if the
initial energy spread is large.

FIG. 2. The standard deviation of the final energy from simu-
lations (points), and as predicted by Eq. (14) (solid lines), for an
electron beam with an initial mean energy of (a) 500 MeV, (b)
1000 MeV, or (c) 2000 MeV undergoing quantum radiation reaction.
Dashed lines give an ad hoc corrected Eq. (14) (see text for details).
Gray, dot-dashed lines give Eq. (17) from Vranic et al. [17]. The
electron beam is initialized with a Gaussian energy distribution, with
FWHM equivalent to 10% (solid disks) or 50% (open triangles) of
the mean energy. The laser pulse has a normalized amplitude of a0, a
wavelength of 0.8 µm, and a FWHM duration of 30 fs.

V. DISCUSSION

Here we present Eqs. (11) and (14) in a more practi-
cal form. We consider the case of a linearly polarized laser
pulse with a Gaussian temporal envelope, for which f (φ) =
ex sin φ exp(−2 ln 2 φ2/τ 2). Assuming further that the phase
duration τ � 2π , we may average over the fast oscillations
and obtain I (φ) = (τ/8)

√
π/ ln 2 [1 + erf(2

√
ln 2 φ/τ )]. The

integral in Eq. (11) cannot be performed analytically: how-
ever, it may be shown to be a function of the single parameter
Rcτ , so we evaluate it numerically for various Rcτ and find
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a suitable fitting function. Under quantum radiation reaction,
the final (normalized) mean and variance are

μ̂f = 1

1 + 0.355 Rcτ

[
1 + 3.969 χ0 F (Rcτ )

1 + 0.355 Rcτ

]
,

F (Rcτ ) = 0.369 Rcτ

1 + 0.171(Rcτ )3/5 + 0.0819 Rcτ
, (15)

and

σ̂ 2
f = σ̂ 2

0 + 0.173 χ0Rcτ

[1 + 0.178 Rcτ ]4
, (16)

where we have included the the ad hoc correction discussed
in Sec. IV. Under classical radiation reaction, we have instead
μ̂f = (1 + 0.355Rcτ )−1 and σ̂ 2

f = σ̂ 2
0 /(1 + 0.355Rcτ )4. The

collision parameters are given by

χ0 = 0.812

(
E0

GeV

)(
I0

1022 W cm−2

)1/2

,

τ = 1.85

(
T

fs

)(
λ

µm

)−1

,

Rcτ = 0.954

(
E0

GeV

)(
I0

1022 W cm−2

)(
T

fs

)
, (17)

where E0 is the mean initial energy of the electrons, I0 is the
laser intensity, T is the full-width-at-half-maximum duration
of the pulse intensity profile, and λ is the laser wavelength.

Let us consider what these results imply about the col-
lision parameters under which stochastic broadening may
be expected. We see from Eq. (16) that the ratio of the fi-
nal and initial standard deviations, σf/σ0, is a function of
two parameters: a scaled quantum parameter χ0μ

2
0/σ

2
0 and

a duration-weighted radiation-reaction parameter Rcτ . The
region in which stochastic broadening overcomes both the
initial energy spread and the effect of radiative cooling is
indicated in orange in Fig. 3. It is accessed by increasing
the quantum parameter and reducing the initial variance. By
contrast, an increase in Rcτ is generally associated with an in-
crease in radiation losses, which eventually reduce the energy
spread. Differentiating Eq. (16) with respect to Rcτ reveals
that there is a maximum at positive Rcτ if σ 2

0 � 0.25χ0μ
2
0,

namely, max(σ 2
f ) � 0.10χ0μ

2
0/[1 − σ 2

0 /(χ0μ
2
0)]3. This is in

reasonable agreement with the maximum energy spread (the
“turning point” [17] or “threshold variance” [33]) calculated
by Vranic et al. [17] and Niel et al. [33].

The competition between these factors means that stochas-
tic broadening is maximized at a particular a0 [42], which
we derive from Eq. (16) under the assumption that the initial
variance is small and all other quantities are held constant:

aopt
0 � 160

(
E0

GeV

)−1/2(T

fs

)−1/2(
λ

µm

)
. (18)

The value of the standard deviation at the given optimum is

σf = 370

(
E0

GeV

)5/4(T

fs

)−1/4

MeV. (19)

These predict that aopt
0 = {33, 23, 17} and σf = {67, 160, 380}

MeV for initial energies of {0.5, 1, 2} GeV, which is consistent
with the results shown in Fig. 2. By expressing σf/σ0 as

FIG. 3. The ratio of the final and initial standard deviations,
σf/σ0, predicted by the corrected Eq. (16), with broadening (σf > σ0)
shown in orange and narrowing (σf < σ0) in blue. Contour lines
indicate where σf/σ0 is equal to the labeled value.

a function of ln a0 and expanding around ln aopt
0 to second

order, we can also estimate the width of this maximum to be
(1/3)aopt

0 � a0 � 3aopt
0 ; this too is consistent with Fig. 2.

It is important to bear in mind that the results in this work
have been derived for plane-wave laser pulses. Since the elec-
tron beam and the laser pulse in a real experiment are likely
to have comparable transverse dimensions (∼µm), finite-size
effects are significant. Effectively this means that the different
components of the electron beam “see” different peak intensi-
ties. The relevant signals are then integrated over a distribution
of effective a0, dNe/da, where 0 < a < a0: it complicates the
identification of quantum radiation reaction effects if the laser
pulse and the electron beam have comparable transverse sizes
(see analysis in Poder et al. [6]). Indeed, broadening of the
electron energy distribution would be expected even under
classical radiation reaction. The question of whether stochas-
tic broadening is still observable, despite finite-size effects,
can be approached directly using three-dimensional (3D) sim-
ulations. On the other hand, Amaro and Vranic [43,44] have
shown that plane-wave scaling laws, such as those we have
here, can be adapted to the fully 3D situation by considering
the structure of dNe/da.

The mean and variance that characterize a beam of elec-
trons are

μ̂f,b = 1

Ne

∫ a0

0

dNe

da
μ̂f (a) da, (20)

σ̂ 2
f,b = 1

Ne

∫ a0

0

dNe

da

[
μ̂2

f (a) + σ̂ 2
f (a)

]
da − μ̂2

f,b, (21)

where we emphasize that μ̂f and σ̂f , i.e., Eqs. (15) and (16),
are functions of the effective amplitude a. Let us consider an
electron beam with spherically symmetric, Gaussian charge
density (rms size R) that collides with a focused laser pulse
with waist w0. Assuming that R is much smaller than the laser
Rayleigh range, and that there is no transverse displacement
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FIG. 4. The final standard deviation in energy of a 1-GeV elec-
tron beam (10% energy spread, transverse size R) that collides with
a 30-fs laser pulse that is focused to w0 = 2.5 µm and a0 = 30:
from (points) simulations and Eq. (21) for (solid line) quantum and
(dashed line) classical radiation reactions.

between the beams, we have [17]

dNe

da
= New

2
0

aR2
exp

(
w2

0

R2
ln

a

a0

)
. (22)

As an example, we compare these 3D-weighted scaling laws
with simulations in Fig. 4, for a0 = 30, w0 = 2.5 µm, λ =
0.8 µm, T = 30 fs, μ0 = 1000 MeV, and σ0 equivalent to 10%
energy spread. This set of collision parameters is close to the
optimum identified in Eq. (18) (see also Fig. 3). We find not
only good agreement between the theory and simulations but
also that broadening occurs in both the classical and quantum
cases. The two can be distinguished, and specifically stochas-
tic effects observed, only if the transverse size of the electron
beam is smaller than the laser waist.

VI. SUMMARY

We have presented analytical predictions for the mean and
variance of the energy distribution of electron beams that col-
lide with high-intensity laser pulses. This work extends results
obtained earlier for classical radiation reaction [13,17,19,34]
to the quantum regime. Despite the fact our results are derived
assuming that the quantum parameter χ0 is small, we find
that they give accurate predictions for parameters relevant for
upcoming experiments, namely, a0 < 200 and initial electron
energies in the GeV range. In particular, we are able to show
how the initial energy spread of the electron beam affects the
possibility to observe stochastic broadening. As it focuses on
statistical measures of the electron spectrum, this work will be
relevant for upcoming experiments, which will achieve many
more collisions at high intensity than were obtained in the first
experimental campaigns [5,6].

From our analysis it may be concluded that the best ap-
proach to experimental observation of stochastic broadening
is to optimize the energy spread and stability of the elec-
tron beam, rather than pushing towards higher intensity or
electron-beam energy. Increasing the laser intensity in partic-
ular is likely to be counterproductive, as it enhances radiative
cooling (Rc ∝ a2

0) more than it increases the quantum param-
eter (χ ∝ a0). The scaling laws presented here indicate that a
conclusive observation of quantum radiation reaction is well
within the capability of current high-intensity laser facilities.

Simulation results were obtained with PTARMIGAN

v1.3.2 [40], available from Ref. [39], and may be reproduced
using the Supplemental Material [45].
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