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In the present work, the results obtained by Strange [Phys. Rev. Lett. 104, 120403 (2010)] about the revivals of
a relativistic fermion wave function on a torus are considerably expanded. In fact, all the possible quantum states
exhibiting revivals are fully characterized. The revivals are exact, that is, are true revivals without taking any
particular limit such as the nonrelativistic one. The present results are of interest since they generalize the Talbot
effect and the revivals of the Schrödinger equation to a relativistic situation with nonzero mass. This makes the
problem nontrivial, as the dispersion relation is modified and is not linear. The present results are obtained by
the use of arithmetic tools, which are described in certain detail. In addition, several plots of the revivals are
presented, which are useful for exemplifying the procedure proposed in the present paper.
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I. INTRODUCTION

One of the historical situations where the revivals of an
initial state was of particular interest is the Talbot effect. This
replication phenomenon appears when a plane electromag-
netic wave is incident upon a periodic diffraction grating and
the image of the grating is repeated at regular distances away
from the grating plane [1–9]. This effect, of course, is related
to wave equations, which are nondispersive.

The existence of revivals in the context of quantum
mechanics is instead more surprising. The Schrödinger equa-
tion is an example of a dispersive equation and it implies
that when time evolves the solution is expected to randomize
or spread out. This can be intuitively visualized as follows.
Given an equation of the form ∂t� + P(∂x )� = 0, with P(x)
a polynomial, if a solution of the form � = exp(iωt − ikx) is
assumed, this is consistent if and only if the dispersion relation
ω(k) = iP(ik) is satisfied. This implies that the velocity for a
wave number k is given by v(k) = k−1ω(k) and is k depen-
dent, unless P(x) = x; this last case corresponds to the wave
equation. In particular, if an initial localized wave packet �0 is
expressed as a Fourier transform �0 = ∫

eikx�(k)dk, then for
the wave equation the resulting evolved modes corresponding
to different k values travel at the same speed. The result is a
traveling wave which does not change its shape. Instead, for
other equations, the Fourier modes for different values of k
travel at different speeds and they start to cancel by destructive
interference. The original initial solution �0 spreads out. For
the particular case of the Schrödinger equation, a basic ex-
plicit example in quantum mechanics describing a dispersive
behavior is the evolution of an initial Gaussian packet, which
at a time t is given by

�(r, t ) = exp
[− 1

2 (a + ih̄t/m)−1r · r
]

(πa)3/4(1 + ih̄t/ma)3/2
.

It is clear that the modulus of this wave function spreads out
with time. In the quantum mechanics context, this is inter-
preted as a manifestation of the uncertainty principle.

Despite the considerations given above about disper-
sive behavior, there are exceptions to the rule. In fact, in
some situations there is a coherence between the phase
velocities causing quantum revivals. This is an exact or ap-
proximate periodicity in time. For instance, if the energy
spectrum is discrete, say, {En}∞n=1, and there exists s ∈ R+
such that {sEn}∞n=1 ⊂ Z, then the solutions of the Schrödinger
equation are of the form

�(r, t ) =
∞∑

n=1

anψn(r)e−iEnt/h̄

and an exact revival �(r, t ) = �(r, t + Trev) appears, with
Trev = 2πs

h̄ the revival time. A simple example of this situation
is the infinite quantum well. The changes suffered by the
initial state at a fractional multiple of the revival time and
its fractalization for irrational multiples have been studied for
several quantum systems in many works [1–3,5,10,11], estab-
lishing some interesting connections with the classic Talbot
effect in optics and certain topics in number theory [6].

There exist simulations related to quantum particles in
boxes [7,8] which might suggest that, by taking into account
relativistic effects, the coherence of the phase velocities is
lost and one can only expect approximate quantum revivals
(as it occurs in many models; cf. [9]). However, Ref. [12]
shows a different truth. In this reference, a fermionic Dirac
particle confined to a circle of radius R is studied and it is
shown that if the dimensionless quantity q = McR

h̄ , where M is
the mass, is a positive even integer, then one can construct a
finite number of plane-wave spinor solutions presenting exact
quantum revivals. An elegant part of the argument is that these
plane waves are associated with Pythagorean triples. These
are integral solutions of the algebraic equation x2 + y2 = z2
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(see Sec. 13.2 in [13]) which constitute a very old topic in
pure mathematics. This observation introduces a connection
between quantum revivals and number theory, to be explored
further in the present paper.

With the methods developed in [12], it follows that for
q ∈ 2Z+ there are only a few possible plane-wave solutions
which exhibit quantum revivals. These solutions are related
to the divisors of q [on average, this number goes like log q
(see Sec. 18.2 in [13]). This fact suggests that there is little
freedom to construct examples following those lines. In this
paper this model is analyzed with more advanced arithmetic
tools. In these terms, it turns out that for each q satisfying a
less restrictive condition, apart from some trivial cases, there
are infinitely many plane-wave solutions such that any linear
combination of them presents exact revivals. In fact, for each
valid q all the states showing these revivals are characterized
in an algorithmic way. The exponential growth of the energies
explains some fractal-like quantum carpets (which are density
plots of the state along a period [14]) and connects with some
topics in fractal geometry. The case of particles confined in a
square flat torus is also studied. The number of plane waves
serving as building blocks to obtain the states possessing exact
quantum revivals is still infinite for suitable fixed values of q
in a dense set, but in this two-dimensional case the possible
energies present a mild growth, allowing high degeneracies
and more freedom to choose the initial conditions. This will
be described in detail throughout the text and involves an
interesting connection with Fuchsian groups.

The present work is organized as follows. In Sec. II the
defining equation and the representation employed throughout
the text are clarified. Also, the main problem of characteriza-
tion of revivals is stated. In Sec. III the possible revivals in a
one-dimensional torus are characterized in terms of solutions
of Pell’s equations and the presence of an infinite number of
states exhibiting quantum revivals is pointed out. In Sec. IV
the two-dimensional case is analyzed. This situation is more
complex and its analysis relies on arithmetic topics related to
Fuchsian groups. Section V contains several examples with
numerical simulation, which are aimed at clarifying the main
procedure described throughout the text. Section VI discusses
the results presented.

II. BASIC MODEL

In the following, the plane-wave solutions of the Dirac
equation in one time and two spatial dimensions iγ μ∂μ� −
m� = 0, under the representation γ 0 = σ 0, γ 1 = iσ 1, and
γ 2 = iσ 2, with σ i the standard Pauli matrices, will be consid-
ered, following standard textbooks such as [15]. The particles
will be assumed to be confined in a flat two-dimensional torus
obtained by identifying the opposite sides of [2πR1, 0] ×
[0, 2πR2]. In this situation the Cartesian coordinates may be
parametrized as x = R1φ1 and y = R2φ2, with φ1 and φ2 two
2π -periodic angles. This corresponds to periodic boundary
conditions on the wave function, which correspond to rela-
tivistic Bloch states u exp(− ik·x

h̄ ), and imposes the following
quantization of the momentum:

�k =
(

h̄n1

R1
,

h̄n2

R2

)
with �n = (n1, n2) ∈ Z2.

Let ω�n = h̄−1E�n > 0 be the angular frequency for each �n and
consider the complex quantity

z�n = h̄n1

R1
+ ih̄n2

R2
,

associated with the momentum. The generic energy equation
E2 = M2c4 + c2�k2 implies

ω�n = c

h̄

√
M2c2 + |z�n|2,

which in particular gives the useful relation(
h̄ω�n

c
+ Mc

)2

+ |z�n|2 = 2h̄ω�n
c

(
h̄ω�n

c
+ Mc

)
.

The normalized solution is in these terms

��n(φ1, φ2, t ) =
√

E�n + Mc2

2E�n

(
z∗
�n

E�n+Mc2

1

)
ei(n1φ1+n2φ2−ω�nt ).

We restrict ourselves to the fermionic case since similar con-
siderations hold for antifermions.

Some particular limits are in order. The one-dimensional
case corresponds to letting R1 → ∞, so the periodicity in the
x coordinate is eliminated, k1 = 0, and the particle is confined
to move in a (flat) circle of radius R = R2 given by a 2πR-
periodic y coordinate. The two-dimensional case corresponds
to the model above and choosing R = R1 = R2 (a square flat
torus). Therefore, z�n = ih̄n2

R in the first case and z�n = h̄(n1+in2 )
R

in the second one.
Both cases above corresponding to R1 = R2 = R can be

written in a unified way by introducing the dimensionless
positive quantity q = McR

h̄ , from which ω�n = c
R

√
�n2 + q2, and

the formula

��n(φ1, φ2, t ) = 1√
2

(
1 + q√

�n2 + q2

)1/2

×
(

n1−in2

q+
√

�n2+q2

1

)
ei(n1φ1+n2φ2−ω�nt ) (2.1)

follows. The one-dimensional case corresponds to setting
n1 = 0 (so the state does not depend on φ1) and the two-
dimensional case to leaving it free. The 1

2π
factor is taken

apart from the normalization in order to avoid conflicts with
the choice of the dimension.

In order to make a comparison with [12], note that Strange
considers a wave function with four components, and the
corresponding γ μ matrices are of order 4 × 4. This is different
from the present case. However, the revival issues, which are
of central importance in the present paper, are sensitive only
to the phase and not to the normalization factors or the number
of components of the spinor.

The spinor given above is an energy eigenfunction. A
generic state having a discrete, finite, and non-negative energy
spectrum is a superposition of the form


 =
∑
�n∈N

c�n��n with c�n ∈ C − {0}, (2.2)

where N = {�n0, �n1, . . . , �nN } contains N vectors, �n j =
(k j, l j ) ∈ Z2, and k j = 0 in the one-dimensional model. The
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energy spectrum is related to the squared norm of the �n j . It
can be described as the set

E =
{

ch̄

R

√
k2

j + �2
j + q2 : (k j, � j ) ∈ N

}
.

The cardinality #E of this set may be different from N , as
there is a possible degeneracy of states with the same energy
value. At this point, it is important to state the following
assertion, which is a direct and simple consequence of the
spinor formulas given above.

Proposition 1. The state described by the formulas (2.1)
and (2.2) is periodic in time, and thus exhibits quantum
revival, if and only if for each 0 � j � N there exists an
irreducible fraction a j

b j
> 0 such that

k2
j + �2

j + q2 = a2
j

b2
j

(
k2

0 + �2
0 + q2). (2.3)

Here N is the number of elements of the state (2.2). The
revival time is given by the formula

Trev = 2πL

ω�n0

with L = lcm
({b j}N

j=0

)
, (2.4)

where, as usual, lcm denotes the least common multiple.
Proof. This proposition follows directly from the formulas

just stated. In fact, consider a generic wave function (2.2)
expanded in terms of the eigenfunctions (2.1). For fixed values
of φ1 and φ2, recalling the formula for ω�n, there will be a
revival if for all the 0 � j � N there is a time Trev, the revival
time, such that√

�n2
j + q2cTrev = 2πRmj, mj ∈ Z.

The timelike phase of the state (2.2) in this case will be a
multiple of 2π and will reproduce the initial wave function
at t = 0. Now, as the preceding formula follows from every j,
it follows that

(
�n2

j + q2
) = m2

j

m2
0

(
�n2

0 + q2
)
.

This is of the form (2.3) after simplifying the common factors
between m0 and mj . We have

ω�n0
2π

Trev = mj
ω�n0
ω�n j

= mj
bj

a j
. Since

mj is a multiple of a j and Trev is defined as the minimal period,
ω�n0
2π

Trev equals L, as stated in (2.4). �
The revival problem has been reduced to the problem of

solving Eq. (2.3). The corresponding solutions are not neces-
sarily trivial from the arithmetic point of view. In fact, as it will
be shown below, they are described in terms of the generalized
Pell equations in the one-dimensional case and they relate to
some Fuchsian groups in the two-dimensional (2D) case.

The philosophy that will guide the present paper is per-
haps different from the standard one. Instead of looking for
particular states which exhibit quantum revivals, the intention
is to characterize all of them, which is achieved by fixing a
specific vector state �n0 and considering all possible 
 in (2.2)
containing ��n0 .

Philosophy. Consider a pivot eigenstate ��n0 . The idea is to
characterize the possible sets N containing �n0 such that quan-
tum revivals appear. More concretely, given �n0, we want to

determine the maximal set of quantum numbers N0 including
�n0 such that the wave function


 =
∑
�n∈N

c�n��n (2.5)

verifies


 is periodic in t ⇔ N is a finite subset of N0. (2.6)

Note that, once the revival set Ni for an arbitrary pivot
eigenstate ��ni is determined, given a composite wave function


c =
∑

i

ci��ni ,

its most general revival wave function is


r =
∑
�n∈NI

c�n��n,

where NI is the intersection of all the sets Ni. In addition, it
is not difficult to see that N0 is not uniformly bounded. This
can be exemplified even in the simplest case, in which one
forces all the states to have the same energy, that is, #E = 1.
In the one-dimensional situation �(0,�0 ) can be accompanied
by only �(0,−�0 ), giving obvious revivals in (2.2) and N0 =
2. This situation is uninteresting. However, in the 2D case
the situation is less trivial because #N can be arbitrarily
large while keeping #E = 1 because the function giving the
number of representations as a sum of two squares is un-
bounded.1 So N0 is finite but not uniformly bounded in terms
of �n0. For instance, �n0 = (178, 19) can be complemented with

63 other integral pairs to get the same
Rω�n j

c =
√

�n2
0 + q2 =√

32 045 + q2. Examples of these pairs are

1782 + 192 = 1662 + 672 = 1572 + 862 = 1792 + 22

= 1422 + 1092 = 1632 + 742 = · · · .

This phenomenon of unbounded degeneracy of the energy
leads typically to intricate density probabilities for a fixed time
(see Sec. V) and it is linked to some unsolved problems about
the structure of the nodal lines [16,17].

The rest of the present work is aimed at showing the com-
plexity of the set N0 without restricting the attention to just
one energy eigenvalue.

III. ONE-DIMENSIONAL CASE

Recall that in the one-dimensional case the first coordinate
of �n is set to 0 and the necessary and sufficient condition (2.3)
for having quantum revivals becomes

�2
j + q2 = a2

j

b2
j

(
�2

0 + q2
)

for 0 � j � N. (3.1)

Since l0, l j , a j , and b j are integers, it is clear that q2 should be
rational. In fact, if q2 
∈ Q+ then a j

b j
= 1 and #E = 1, leading

1However, it is π on average, as is easily checked by approximating
the number of integer points in a circle by its area (see Theorem 339
in [13]).
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to a trivial case in which the wave function is composed of
two eigenstates corresponding to l0 and −l0, as mentioned
before. Therefore, it can be safely assumed that q2 ∈ Q+.
In fact, it is convenient to focus on q2 ∈ Z+ because it is
somewhat simpler and contains all the ingredients appearing
in the general situation.

Some concepts of arithmetic are in order. First, the standard
number theory notation a|b will be employed to express that
the integer a divides the integer b. In addition, recall that a
positive integer is said to be square-free if it is not divisible
by a square different from 1. Each positive integer m admits a
unique factorization as a product of a square-free and a square
integer in the form m = Dr2 such that

√
D /∈ Q and r ∈ Z.

Consider such a decomposition for �2
0 + q2,

�2
0 + q2 = Ds2, (3.2)

with D square-free. Then (3.1) can be arranged as

� j − D

(
a js

b j

)2

= −q2. (3.3)

As D is square-free and q2 is an integer, a j s
b j

is an integer too.

So all the possibilities for � j and the corresponding a j

b j
are in

a one-to-one correspondence with the integer solutions of the
generalized Pell equation

x2 − Dy2 = −q2. (3.4)

In these terms, Proposition 1 of the preceding section, adapted
to the one-dimensional case, is the following.

Proposition 2. Given �0 ∈ Z and q2 ∈ Z+ and defining D
and s as in (3.2), the set N0 of quantum numbers to have (2.6)
when (0, �0) ∈ N is

N0 = {(0, x) : x2 − Dy2 = −q2 with (x, y) ∈ Z2}. (3.5)

Moreover, the revival time is given by

Trev = 2πRL

cs
√

D
= 2πL

ω�n0

,

where L is the lcm of the denominators of

a j

b j
= 1

s

√
�2

j + q2

D

for (0, � j ) ∈ N .

In view of the last proposition, it is mandatory to review
the solutions of the generalized Pell equation (3.4) that allows
us to describe the structure of N0 for any choice of �0 ∈ Z and
q2 ∈ Z+. Some studies about this equations can be found in
[18].

The case D = 1 is somewhat trivial because x2 − Dy2 =
(x − y)(x + y) = −q2 implies that x − y and x + y are divi-
sors of q2, leaving only a finite number of possibilities. In
other words, if �2

0 + q2 is a square, N0 is finite. This includes
the case covered in [12] using Pythagorean triples. If D 
= 1,
N0 is instead an infinite set, which can be seen as follows. For
the standard Pell equation

x2 − Dy2 = 1, (3.6)

a classic result due to Lagrange is of fundamental importance
for finding the solution.

Lagrange algorithm. If the constant D ∈ Z+ is not a square
(this is ensured in the present case since D is square-free and
D 
= 1) then Eq. (3.6) always has infinitely many solutions
(x, y) ∈ Z+ × Z+. These can be expressed in a synthetic way
as

x + y
√

D = (xp + yp

√
D)n with n ∈ Z+, (3.7)

where (xp, yp) is the minimal positive solution, namely, the
one having xp and hence yp as small as possible.

It can be checked directly that the preceding formula gives
solutions by simply multiplying by the conjugate because

(xp + yp

√
D)(xp − yp

√
D) = x2

p − Dy2
p = 1.

In the present case, it is deduced from (3.2) that (�0, s) is an
integer solution of (3.4). The same argument just employed,
using the conjugate, shows that

x + y
√

D = ±(�0 + s
√

D)(xp + yp

√
D)n with n ∈ Z

(3.8)

are infinitely many integer solutions of (3.4), proving that N0

is infinite. The ± and the extension of the range of n from Z+
to Z are only to take into consideration different combinations
of signs. Note that xp − yp

√
D = (xp + yp

√
D)−1.

By defining the nth family of solutions as xn + yn

√
D =

(xp + yp

√
D)n, it follows that (3.7) can be written as

xn+1 + yn+1

√
D = (xp + yp

√
D)(xn + yn

√
D).

This leads to the first-order recurrence

xn+1 = xnxp + Dynyp, yn+1 = xpyn + xnyp.

Repeating this step once more leads to an expression for xn+2

as a linear combination of xn and yn, and similarly for xn+1.
By eliminating the yn variable with these two equations, we
obtain a second-order linear recurrence for xn of the generic
form

xn+2 = αxn+1 + βxn,

with α and β constants depending on D, xp, and yp. The vari-
able xn is the fundamental quantity describing N0. A concrete
example is given in the following sections, more precisely in
the formula (5.1).

A complication of the theory (related to deep topics in
number theory such as unique factorization and class number
[19]) is that a finite number of similar families of solutions
may exist. More specifically, in our case, families of integer
solutions may appear that replace �0 and s by a and b with
(x, y) = (a, b) satisfying (3.4); however, it can be proved that
0 < a < q(1 + √

2xp)/2 [20] and then there is only a finite
number of possibilities to explore. All the possible families
obey the same recurrence law because they always come from
the multiplication by xp + yp

√
D.

Note that (3.8) always can be translated in one-sided re-
currence formulas by dividing into n � n0 and n < n0. With
this remark and the previous considerations, the following is
deduced.

Proposition 3. There exists a finite number of sequences
c(1)

n , . . . , c(J )
n satisfying a second-order linear recurrence
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such that

N0 = {(
0,±c( j)

n

)
for 1 � j � J, n � 0

}
.

Let us illustrate the situation with an example. If �0 = 5
and q = √

2 then (3.2) produces D = 3 and s = 3. A direct
search shows that (xp, yp) = (2, 1) is the minimal positive
solution of x2 − 3y2 = 1. The values n = −1, 0, 1, 2 in (3.8)
give

x + y
√

3 = ±(1 +
√

3),±(5 + 3
√

3),±(19 + 11
√

3),

±(71 + 41
√

3).

Hence (0,±1), (0,−5), (0,±19), and (0,±71) are in the N0

corresponding to (0, �0) = (0, 5). For this example, it can be
proved that (see Sec. V)

N0 = {(0,±cn) where cn+2 = 4cn+1 − cn with

c0 = 1, c1 = 5}. (3.9)

There are not more families because the bound 0 < a <

q(1 + √
2xp)/2 only allows (a, b) = (1,±1), which belong

to the same family as (�0, s) = (5, 3) because 1 + √
3 = (5 +

3
√

3)(2 + √
3)−1 and 1 − √

3 = −(5 + 3
√

3)(2 + √
3)−2.

The sequence, due to (3.8), has exponential growth

{cn} = {1, 5, 19, 71, 265, 989, 3691, 13 775, 51 409, 191 861,

716 035, 2 672 279, 9 973 081, . . . }.
Depending on the elements chosen to compose N0, the re-
vival time can be at most 6π

ω�n0
, because a j s

b j
= 3a j

b j
must be an

integer and hence L divides 3. For an exhaustive description
of the generalized Pell equation, some interesting references
are [19–22].

The next task is to show how the previous ideas can be
modified to cover the remaining cases q2 ∈ Q+ − Z attaining
the same result. This will be done briefly. In this situation,
Eq. (3.2) is replaced by the square-free–square decomposition
of the numerator and the denominator of �2

0 + q2 to get

�2
0 + q2 = Ds2

D∗s2∗
with D and D∗ square-free.

Clearing denominators in (3.3), it is obtained that (� j,
a j s
b j

) is
a solution of

D∗s2
∗x2 − Dy2 = −q2D∗s2

∗.

In fact, it is an integral solution because −q2D∗s2
∗ ∈ Z and the

tentative denominator of ( a j s
b j

)2 could not be canceled with D
because the latter is square-free. So, to cover the full rational
case in the affirmation above, N0 must be generalized to

N0 = {(0, x) : D∗s2
∗x2 − Dy2 = −q2D∗s2

∗ with (x, y) ∈ Z2}.
(3.10)

Note that this is actually a generalization because D∗s2
∗ = 1 if

q2 ∈ Z.
The case D = D∗ = 1 leads, as before, to a finite number

of possibilities because s∗x + y and s∗x − y are divisors of

−q2s2
∗. The explicit description of N0 is

N0 =
{(

0,
q2s2

∗ − d2

2s∗d

)
: d

∣∣∣∣ q2s2
∗

and
q2s2

∗
d

− d multiple of 2s∗

}
.

Increasing s∗, being a multiple of 2s∗, imposes a strong con-
dition and N0 might reduce to the trivial set {(0,±�0)} even
if q2s2

∗ has nontrivial divisors. An example of this situation is
�0 = 2 and q = 2

5

√
299.

In the rest of the cases (D and D∗ not simultaneously 1), a
modification of the arguments for q2 ∈ Z applies. Recall that
(�0, s) is a solution of Eq. (3.10). Reasoning as in (3.8) and
multiplying by the conjugate, it is deduced that

xs∗
√

D∗ + ys
√

D = ±(�0s∗
√

D∗ + s
√

D)(xp + ypss∗
√

DD∗)n

with n ∈ Z

gives infinitely many integer solutions where (xp, yp) is the
minimal positive solution of the Pell equation

x2 − s2s2
∗DD∗y2 = 1.

Again, a finite number of other families may appear.
Summing up, for q2 ∈ Q the set N0 is infinite except in the

case in which �2
0 + q2 is the square of an irreducible fraction.

IV. TWO-DIMENSIONAL CASE

The two-dimensional case is much more involved because,
as it will be shown below, the families of eigenstates present-
ing exact quantum revivals are parametrized Fuchsian groups
i.e., discrete subgroups of PSL2(R). Recall that (2.3) implies
q2 ∈ Q except in the case #E = 1 in which a j

b j
= 1. As in the

one-dimensional case, the focus will be on the case q2 ∈ Z
and some conclusions about the fractional case will be made
later on. Some considerations about #E = 1 were included
above and will be expanded in the next section.

Given q2 ∈ Z, consider the decomposition

k2
0 + �2

0 + q2 = Ds2 with D square-free. (4.1)

The condition (2.3) reads

k2
j + �2

j + q2 = D

(
a js

b j

)2

,

where a j s
b j

must be an integer2 and it follows a natural analog
of the one-dimensional result.

Proposition 4. Given (k0, �0) ∈ Z2 and q2 ∈ Z+ and then
defining D and s as in (4.1), the set N0 of quantum numbers
needed for (2.6) with (k0, �0) ∈ N to hold is

N0 = {(y, z) : Dx2 − y2 − z2 = q2 with (x, y, z) ∈ Z3}.
Moreover, the revival time is given by

Trev = 2πRL

cs
√

D
= 2πL

ω�n0

,

2This is because D is square-free and k2
j , �

2
j , q2 ∈ Z.
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where L is the lcm of the denominators of 1
s

√
k2

j +�2
j+q2

D for
(k j, � j ) ∈ N .

This statement suggests that the study of the group that
leaves invariant the quadratic form Q2D = Dx2 − y2 − z2 and
which applies integer solutions to integer solutions is of im-
portance, as it leads to an algorithm generating new solutions.
The resulting group is related to the Lorentz group, but it is
rather clear that it does not contain all the elements. The task
is to determine which elements are to be included. This group
is not present in the one-dimensional case.

It may be convenient to explain the difference between
the one- and two-dimensional cases from an abstract point of
view. As reviewed above, the structure of the solutions in the
one-dimensional case can be summarized by saying that there
are finitely many families of solutions and each family is given
by the action of the discrete group {(xp + yp

√
D)n}n∈Z, which

is isomorphic to Z, producing sparse solutions because of the
exponential growth. In the two-dimensional case, the group is
non-Abelian and gives a denser set of solutions.

In order to study the above-mentioned group, let us start
with the case D = 1, which is no longer trivial. It is known
(see, for instance, [23]) that the map

(
a b

c d

)
�−→

⎛
⎜⎜⎝

a2+b2+c2+d2

2
−a2+b2−c2+d2

2 −ab − cd
−a2−b2+c2+d2

2
a2−b2−c2+d2

2 ab − cd

−ac − bd ac − bd ad + bc

⎞
⎟⎟⎠

(4.2)

establishes an isomorphism between PSL2(R) = SL2

(R)/{±I} and the proper Lorentz group SO+(1, 2) of
linear transformations, leaving invariant the quadratic form

Q2(x, y) = x2 − y2 − z2,

up to a global change of sign. In general, only the matrices
in SO+(1, 2) ∩ M3(Z), with M3(Z) the set of integral 3 × 3
matrices, apply integral solutions to integral solutions. In the
jargon of the quadratic form theory, these matrices are called
integral automorphs.

Clearly, the fundamental problem is to characterize the
preimage of SO+(1, 2) ∩ M3(Z) by the isomorphism (4.2) in
a simple way. The fact that the 3 × 3 on the right-hand side
of the isomorphism (4.2) is an integral automorph does not,
at first sight, imply that the matrix on the left-hand side has
integer entries a, b, c, and d . The nature of those entries has
to be clarified further. First, let A be the matrix in the image of
(4.2). If A ∈ M3(Z), as its entries are integers, it is seen that

2a2 = a11 + a22 − a12 − a21 ∈ Z.

Other choices of the signs prove that in general
2a2, 2b2, 2c2, 2d2 ∈ Z. On the other hand, using the rest
of the entries and the determinant equation ad − bc = 1,
it is seen that 2ab = a23 − a13 ∈ Z and, similarly,
2ac, 2ad, 2bc, 2bd, 2cd ∈ Z. Considering ai j ± ai′ j′ with
i, j, i′, j′ ∈ {1, 2}, it is deduced that 2a2, 2b2, 2c2, and 2d2 are
all even or all odd. For instance, a11 + a22 leads to

2a2 + 2d2

2
∈ N;

thus 2a2 and 2d2 are simultaneously odd or even. The same
line of reasoning applies for the remaining pairs.

The entries a, b, c, and d can be characterized further.
Consider first the even case. If one selects a nonzero variable,
say, a, then 2a2 is an even integer and thus a2 is an integer.
As reviewed in the preceding section, every positive integer
admits a decomposition as a square-free and a square integer;
therefore a = sa

√
Ra, with Ra a square-free integer. This last

condition means in particular that if Ra 
= 1 the number a is
not an integer. On the other hand, as 2ab, 2ac, 2ad ∈ Z it
follows, for instance, that 2sasb

√
RaRb ∈ Z. Here b = sb

√
Rb

and so on. As 2sasb is an integer, so is
√

RaRb. This last
requirement implies that RaRb is the square of an integer.
On the other hand, the product of two square-free integers
RaRb gives a square integer only if Ra = Rb. After a bit of
reasoning, it follows that Ra = Rb = Rc = Rd = R. In other
words, b, c, and d are integers when divided by

√
R. Finally,

the determinant equation ad − bc = 1 implies R = 1 and it is
concluded that a, b, c, d ∈ Z.

The conditions given above still are not enough. The point
is that the quantities on the right-hand side of (4.2) should
be such that a11, a12, a21, a22 ∈ Z, and this is not necessar-
ily true even when all the conditions above take place. The
task is to derive this further requirement; the result is that
2 | a + b + c + d . This can be seen as follows. Note that
±n2 − n is even for any n ∈ Z and any choice of the sign;
then ai j − 1

2 (a + b + c + d ) ∈ Z for i, j ∈ {1, 2} and hence
ai j ∈ Z requires a + b + c + d to be even.

In these terms, the searched discrete group is composed of
the elements of the so-called θ group

�θ =
{(

a b
c d

)
∈ PSL2(Z) : 2 | a + b + c + d

}
.

This covers the case in which 2a2, 2b2, 2c2, and 2d2 are even
integers.

For the odd case, one may consider the quantities 2(a
√

2)2,
2(b

√
2)2, 2(c

√
2)2, and 2(d

√
2)2, which are clearly even. By

repeating the argument it is deduced that a
√

2, b
√

2, c
√

2, and
d
√

2 are odd integers. In this case, the elements of the group

Cθ = 1√
2

(
1 −1
1 1

)
�θ

are of the searched type since the elements of this coset are of
the form (

(a−c)
√

2
2

(b−d )
√

2
2

(a+c)
√

2
2

(b+d )
√

2
2

)
.

If a
√

2, b
√

2, c
√

2, and d
√

2 are odd integers, it is clear that
the entries Ai j of these matrices are even integers which satisfy
2 | A11 + A12 + A21 + A22. The isomorphism (4.2) then maps
from integer solutions in N0 one into other. Conversely, a bit
of reasoning shows that any matrix with this property has the
form given above. Therefore, the isomorphism

F : � −→ SO+(1, 2) ∩ M3(Z)

holds, where

� = �θ ∪ Cθ with Cθ = 1√
2

(
1 −1
1 1

)
�θ . (4.3)
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In these terms, the following revival generating algorithm
takes place.

Revival algorithm for D = 1. Given an element of

N0 = {(y, z) : Dx2 − y2 − z2 = q2 with (x, y, z) ∈ Z3},
with D = 1, Eq. (4.1) implies that x = s, y = k0, and z = �0

are a valid solution of Dx2 − y2 − z2 = q2 and it follows that

F (γ )

⎛
⎜⎝ s

k0

�0

⎞
⎟⎠ with γ ∈ � (4.4)

gives a family of infinitely many solutions in N0. The group
� is described in (4.3). Generating elements of � is a simple
task because the extended Euclidean algorithm easily pro-
duces integer solutions of aX − bY = 1 (even under a parity
condition) to obtain matrices in �θ composed of a, b, c = Y ,
and d = X .

To give an example of the above procedure, consider
that the choice of q = √

6, k0 = 1, and �0 = 3 gives D =
1 and s = 4 in (4.1). By applying F (γ ) with γ each of
the 12 matrices in � with |a|, |b|, |c|, |d| � 2, the following
valid values (k j, � j ) satisfying (2.3) are obtained: ±(1, 3),
±(1,−3), ±(3,−1), ±(3, 7), ±(13, 9), and ±(15,−13).

The case D > 1 is more difficult, though it runs along sim-
ilar lines. Fortunately, there exists literature about the subject
that dates from more than a century ago [24]. The initial idea
is that the change of variables x �→ x√

D
passes the quadratic

form

Q2D = Dx2 − y2 − z2 −→ Q2 = x2 − y2 − z2.

This induces a change in the image of (4.2) and now the iso-
morphism between PSL2(R) = SL2(R)/{±I} and the proper
Lorentz group preserving Q2D = Dx2 − y2 − z2, except for a
global change of sign, becomes

(
a b
c d

)
�−→

⎛
⎜⎜⎜⎝

1
2 (a2 + b2 + c2 + d2) 1

2
√

D
(−a2 + b2 − c2 + d2) − 1√

D
(ab + cd )

√
D

2 (−a2 − b2 + c2 + d2) 1
2 (a2 − b2 − c2 + d2) ab − cd

−(ac + bd )
√

D ac − bd bc + ad

⎞
⎟⎟⎟⎠.

The crucial question is again how to characterize a, b, c, and d in the initial matrix having an integral matrix as the image. A
simplification is reached, reparametrizing the initial matrix as

M =
(

−a − c
√

D −b − d
√

D

b − d
√

D −a + c
√

D

)
, (4.5)

because it rules out the square roots in the image, namely, the previous isomorphism becomes

F : M �−→

⎛
⎜⎜⎝

a2 + b2 + D(c2 + d2) −2ac + 2bd −2bc − 2ad

−2D(ac + bd ) a2 − b2 + D(c2 − d2) 2ab + 2Dcd

2D(bc − ad ) −2ab + 2Dcd a2 − b2 − D(c2 − d2)

⎞
⎟⎟⎠. (4.6)

In these terms it is plain to see that for a, b, c, d ∈ Z an
integral matrix is obtained. In fact, as all the entries are
quadratic, one can expect that it is possible to introduce

√
2

denominators in M if the parity conditions cancel the 1/2 in
the diagonal entries of the image, as above. Elaborating this
idea, it can be proved [24] (cf. [25]) that the case 4 | D − 1
parallels the case D = 1, namely, the group is composed of
two parts that reduce to �θ and the companion coset Cθ for
D = 1. Specifically,

� = �′
θ ∪ C′

θ ,

where

�′
θ = {M ∈ PSL2(R) : a, b, c, d ∈ Z},

C′
θ =

{
1√
2

M ∈ PSL2(R) : a, b, c, d ∈ Z

}
.

Here M is like in (4.5).
If instead 4 � D − 1 then it is necessary to add a new set,

which is a kind of semi-integral version of �′
θ , namely,

� = �′
θ ∪ C′

θ ∪ C′′
θ ,

where �′
θ and C′

θ are as before and

C′′
θ = {

1
2 M ∈ PSL2(R) : a, b, c, d odd integers

}
.

In fact, the distinction between 4 | D − 1 and 4 � D − 1 is a
little artificial (only to emphasize the analogy of the former
case with D = 1) because C′′

θ is empty for 4 | D − 1. It is
also empty for D even because, by computing the determinant,
1
2 M ∈ PSL2(R) implies 1

2 (a2 + b2) = 2 + 1
2 D(c2 + d2). If a,

b, c, and d are odd then the left-hand side is odd and the
right-hand side is even.

In any case, Eq. (4.4) with F given by (4.6) produces
infinitely many solutions of Dx2 − y2 − z2 = q2 showing that
N0 is infinite. As in the one-dimensional case, the theory
ensures [26] that there is a finite number of infinite families
of solutions, that is to say, with a finite number of choices of
(s, k0, �0), all the solutions needed to construct N0 are reached
with (4.4).

Let us close this section with some comments about q2 ∈
Q − Z. Instead of delving deeper into the theory, we only
show a shortcut to deduce #N0 = ∞ from our previous
knowledge about q2 ∈ Z.
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If q2 ∈ Q − Z, Eq. (4.1) must be replaced by

k2
0 + �2

0 + q2= Ds2

D∗s2∗
with D and D∗ square-free and coprime.

Clearing the denominator and recalling (2.3), the following is
deduced:

D

(
a js

b j

)2

− D∗s2
∗k2

j − D∗s2
∗�

2
j = q2s2

∗.

Hence

N0 = {(y, z) : Dx2 − D∗s2
∗y2 − D∗s2

∗z2

= q2s2
∗ with (x, y, z) ∈ Z3}.

In principle, one could study the group, leaving invariant the
quadratic form

Q2DD∗ = Dx2 − D∗s2
∗y2 − D∗s2

∗z2,

and proceed as before [24], but some technical issues appear
because D∗s2

∗ is not square-free if s∗ > 1. A trick to overcome
this problem is to rewrite the equation as

DD∗x2 − (D∗s∗y)2 − (D∗s∗z)2 = q2s2
∗.

Then one has to look for integral solutions of DD∗x2 − Y 2 −
Z2 = q2s2

∗ and furthermore to restrict Y and Z to be multiples
of D∗s∗. Note that DD∗ is square-free and therefore the action
(4.4) with F obtained from (4.6) with the replacement D →
DD∗ and (s, k0, �0) → (s, D∗s∗k0, D∗s∗�0) produces infinitely
many solutions (x,Y, Z ). The main issue is to prove that
infinitely many of them verify that their two last coordinates
are multiples of D∗s∗. This can be done as follows. The 3 × 3
matrices of determinant 1 modulo D∗s∗ form a finite group,
which implies that there exists N ∈ Z+ such that

[F (γ )]N = F (γ N ) ≡ Id mod D∗s∗.

Hence

F (γ N )

⎛
⎜⎝

s

D∗s∗k0

D∗s∗�0

⎞
⎟⎠ ≡

⎛
⎜⎝

s

0

0

⎞
⎟⎠ mod D∗s∗.

As {γ N : γ ∈ �} is infinite, there are infinite solutions with
D∗s∗ | Y, Z and N0 is infinite too.

Although it is possible to obtain an explicit formula for N ,
for moderate values of D∗s∗ it may be more useful in practice
to compute the image of successive powers of γ until its image
by F fulfills the divisibility conditions.

V. NUMERICAL SIMULATIONS

The purpose of this section is to explain some numerical
examples in detail and to plot some quantum carpets.3 The
latter in the 1D case corresponds to density plots of |
(φ2, t )|,
the square root of the probability density for the state in (2.2)
with t on the horizontal axis and φ2 on the vertical axis.

3The MATLAB or OCTAVE code generating the figures and the full
size color images are available from [27] along with more related
material.

The only reason to prefer |
| instead of the more natural
|
|2 is to avoid the saturation giving less appealing images.
These plots involve a choice of the coefficients c�n indicated in
each case. The angle is considered in the range [−π, π ], as
mentioned in the Introduction. On the other hand, the natural
timescale is Trev, the revival time. Hence [0,1] in the plot must
be interpreted as [0, Trev] in usual units. In the 2D case a
density plot of |
(φ1, φ2, t )| is not possible because it would
require three dimensions. It will replaced below by plots for
close fixed values of t to exemplify the evolution of the state.

The first example corresponds to a 1D case having a finite
N0, corresponding to the values �0 = 3 and q = 3

2

√
21. Then

�2
0 + q2 = 152

22 , which corresponds in (3.10) to D = D∗ = 1
and s∗ = 3. Using the explicit formula for N0 in terms of the
divisors of q2s2

∗ = 189 results in

N0 = {(0,±3), (0,±5), (0,±15), (0,±47)}.
Here all the divisors of 189 satisfy the extra condition of 189

d −
d being a multiple of 4. By computing

a j

b j
=

√
�2

j + q2√
�2

0 + q2
,

where the last identity follows according to (3.1), the follow-
ing is obtained:

a1

b1
= 1,

a2

b2
= 17

15
,

a3

b3
= 11

5
,

a4

b4
= 19

3
.

Hence L = 15 and the revival time is Trev = 30π
ω�n0

. This time

remains invariant when (0,±47) is omitted. Figure 1 plots
the corresponding quantum carpets in these situations with
coefficients 1.

As a second example, the values �0 = 5 and q = √
2 will

be considered in order to show how to obtain the result
claimed in (3.9). Recall that in this situation s = D = 3. It was
already shown in previous sections that there is only a fam-
ily of solutions, so N0 = {(0, xn) : n ∈ Z} where, according
to (3.8),

xn + yn

√
3 = ±(5 + 3

√
3)(2 +

√
3)n.

Taking apart the ±, this recurrence produces xn+1 +
yn+1

√
3 = (2 + √

3)(xn + yn

√
3), a procedure leading to the

first-order recurrence

(xn+1, yn+1) = (2xn + 3yn, xn + 2yn). (5.1)

By making a further recurrence step and eliminating yn and
yn+1, the second-order recurrence is obtained:

xn+2 = 4xn+1 − xn with x0 = 5, x1 = 19 for n ∈ Z.

It is clear that x−3−n = −x−n for n = 0, 1, and this identity
generalizes for n. Hence, by defining cn = xn−1 for n � 0, the
formula (3.9) follows. In the same way, c′

n = yn−1 satisfies
c′

n+2 = 4c′
n+1 − c′

n with starting values c′
0 = 1 and c′

1 = 2. An
easy inductive argument using the recurrence shows that c′

n
and c′

n+1 are coprime (in particular, at least one is not divisible
by 3). Therefore, for any N containing (0, cn) and (0, cn+1)
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FIG. 1. Density plot of the state (2.2) for q = 3
2

√
21 with unit coefficients c�n = 1. (a) For N the full N0 is

{(0,±3), (0, ±5), (0,±15), (0,±47)}. (b) Same plot as in (a) but omitting (0, ±47) from N . In both cases the revival time is Trev = 30π/ω�n0 .

for some n we have L = 3 and the revival time is

Trev = 2πR

c
√

3
= 6π

ω�n0

.

Due to the exponential growth of cn, even for fairly small
cardinalities of N , the state (2.2) shows large variations for
tiny changes of φ2 and t and the density plot is close to being
a cloud of random points. In this context it is natural to let
c�n decay with |�n|. Figures 2(a) and 2(b) show examples of � j

chosen with the smallest possible values and c�n = |�n|−1/4 =
|� j |−1/4. As a matter of fact, for each t fixed, when #N → ∞
a lacunary series is obtained and according to known facts
in fractal geometry [28] the graphs of the real and imaginary
parts give rise to a fractal, a curve with fractional box dimen-
sion.

In this and other examples, an underlying structure is ap-
parent based on interwoven straight lines with two different

slopes. The explanation is that in (2.2), due to the exponential

growth,
√

�n2+q2

n2
is initially close to the sign of n2 and the pairs

of lines correspond to the light cones. In fact, if all the � j are
chosen to be positive, commonly the density plot looks like a
dull collection of oblique parallel bands.

In order to mask the light cones, a possibility is to take q2

large in order to avoid √
�2

j + q2

|� j | ∼ 1,

at least for the first few values of � j . With this idea in mind and
to illustrate the appearance of several families of solutions,
consider the example

�n0 = (0, 3) with q =
√

791.

From (3.2), D = 2 and s = 20. Consequently, the generalized
Pell equation is x2 − 2y2 = −791 and by (3.8) it is seen that

FIG. 2. Density plot of the state (2.2) for q = √
2 with (a) �n ∈ {(0,±1), (0, ±5), (0, ±19)} and c�n = |�n|−1/4 and (b) �n ∈

{(0,±1), (0, ±5), (0,±19), (0,±71)} and c�n = |�n|−1/4. The revival time is Trev = 6π/ω�n0 .
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FIG. 3. Density plot of the state (2.2) for q = √
791 (a) with �n ∈ {(0,±3), (0,±19), (0,±39)} and c�n = |�n|−1/4 and (b) �n ∈

{(0,±3), (0, ±19), (0,±39), (0, ±71)} and c�n = |�n|−1/4. In both cases the revival time is Trev = 20π/ω�n0 .

it admits a family of solutions described by

x + y
√

2 = ±(3 + 20
√

2)(3 + 2
√

2)n with n ∈ Z

because (3,2) is a minimal positive solution of x2 − 2y2 = 1.
However, solutions (x, y) in other families may exist. The
condition 0 < 2a < 791(1 + 2

√
2 × 3) for a positive solution

(a, b) to be the seed of a new family, by direct calculations,
only gives (19,24). So the second family is obtained as

x + y
√

2 = ±(19 + 24
√

2)(3 + 2
√

2)n with n ∈ Z

and any solution of x2 − 2y2 = −791 belongs to one of them.
Taking n � 0, the first positive values for x in the first fam-

ily are 3, 89, 531, 3097, 18 051, 105 209, 613 203, . . . , which
satisfy the recurrence ck+1 = 6ck − ck−1. For n < 0 the values
are 71, 429, 2503, 14 589, 85 031, 495 597, 2 888 551, . . . ,
which naturally satisfy the same recurrence with
different starting values. In the same way, for the
second family it is obtained for n � 019, 153, 899, 5241,

30 547, 178 041, 1 037 699, . . . and for n < 039, 253, 1479,

8621, 50 247, 292 861, 1 706 919, . . . still satisfying the same
recurrence. Then

N0 = {(
0,±c( j)

k

)
: 1 � j � 4, k ∈ Z�0

}
,

where c( j)
k+1 = 6c( j)

k − c( j)
k−1 with the following starting values:

j = 1 j = 2 j = 3 j = 4(
c(0)

k , c(1)
k

)
(3,89) (71,429) (19,153) (39,253)

Figure 3(a) considers the subset

N = {(0,±3), (0,±19), (0,±39)}
with the coefficients c�n = |�n|−1/4, as before, and similarly in
Fig. 3(b) but with the addition of (0,±71). In both cases the
revival time is Trev = 20π

ω�n0
because the a j

b j
are 1, 6

5 , and 17
10 and

(0,±71) adds 27
10 , which does not change the value of L, which

is 10.

Note that, as expected, the clear line structure in the pre-
vious example coming from the light cones has been blurred,
especially in Fig. 1.

The examples given above correspond to a 1D case. It is a
good point to exemplify the two-dimensional situation. Recall
that in the 2D setting a way to escape from the condition
q2 ∈ Q keeping N0 nontrivial was to consider numbers with
many representations as a sum of two squares. According to
the standard theory (see Sec. 16.9 in [13]), if n is a product
of k distinct primes of the form 4m + 1 then the number
of representations of n as a sum of two squares is 2k+2.
By choosing k2

0 + �2
0 = n it follows that #N0 = 2k+2 for any

q2 
∈ Q while its energy set reduces to the single element

E = ch̄
√

n+q2

R . Many representations are obtained by applying
the eight obvious symmetries

(n1, n2) �→ (±n1,±n2), (n1, n2) �→ (±n2,±n1).

For instance, for n = 1105 = 5 × 13 × 17, the 23+2 = 32 rep-
resentations come from applying the symmetries to the four
pairs (4,33), (9,32), (12,31), and (23,24). The value of q2 does
not affect N0 and letting it grow, only the first coordinate in
(2.1) is relevant, giving the limit∑

�2
(±n1,±n2 ) +

∑
�2

(±n2,±n1 )

= 4e−iEt/h̄[cos(n1φ1) cos(n2φ2) + cos(n2φ1) cos(n1φ2)],

where the sum is over all sign combinations. Although this
may seem very simple, the chaotic distribution of n1 and n2 for
n large leads to some hard questions in mathematical physics,
namely, even in this toral situation, some general conjectures
[17] about the geometry of the nodal lines (the zero level
sets) of the states corresponding to the given energy remain
unsolved.

To illustrate the richness of the situation, Fig. 4(a) plots
the nodal lines of the first coordinate of the state (2.2) for N0

as in the previous example with k2
0 + �2

0 = 1105 and c�n = 1
in the range φ1, φ2 ∈ [−π

2 , π
2 ]. The image in Fig. 4(b) is the

corresponding density plot of |
|0.5. As e−iEt/h̄ is constant,
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FIG. 4. (a) Nodal lines of
∑

�n[cos(n1φ1) cos(n2φ2) + cos(n2φ1) cos(n1φ2)] when �n runs over the couples (4,33), (9,32), (12,31), and
(23,24). This expression appears as a limit of (2.2) with c�n = 1 when q → ∞ for N composed of these couples changing the signs and
the order of their coordinates in all possible ways. (b) Density plot of |
|0.5. It is more informative than that of |
| due to the large central
peak.

|
| does not depend on t . The exponent 0.5 is only for visual-
ization purposes. It has been introduced to mitigate the effect
of the peak at φ1 = φ2 = 0.

Consider now the example (k0, �0) = (1, 2) with q2 = 3.
The decomposition (4.1) gives D = s = 2 and N0 is com-
posed of the (y, z) pairs obtained from the solutions of 2x2 −
y2 − z2 = 3. If one only wants to compute a small subset of
N0 then one can proceed by direct inspection instead of using
the parametrization by the Fuchsian groups. Let us take

N = {(±1,±2), (±2,±1), (±2,±5), (±5,±2),

(±2,±11), (±11,±2), (±5,±10), (±10,±5)},
which comes from {(1, 2), (2, 5), (2, 11), (5, 10)} applying

the symmetries. The resulting sequence a j

b j
=

√
(k2

j +�2
j +3)

8 is
1, 2, 4, 4. All the denominators are 1 and then the revival time
is Trev = 2π

ω�n0
.

As mentioned before, the density plot of the associated
state 
 is not feasible because there are three variables
(φ1, φ2, t ). To illustrate the situation, Fig. 5 is composed

of four images showing the density plots in (φ1, φ2) for
t = 0, Trev

10 , Trev
5 , and Trev

10 . Playing with different values, it
seems that the sensitivity in t is not uniform. For instance,
the density plots for t = 0 and t = Trev

20 are quite similar
whereas there are noticeable differences between t = Trev

2 and
t = Trev

2 − Trev
20 . Probably part of the explanation is the large

peak corresponding to φ1 = φ2 = t = 0 which masks relative
differences.

VI. DISCUSSION OF THE RESULTS

In the present paper, the possible revivals for a relativistic
free fermion ruled by the Dirac equation in a one-dimensional
and a two-dimensional torus were characterized. This was
achieved by using arithmetic tools such as Pell’s equations or
Fuchsian groups. The revivals shown here are exact, that is,
there is no need to take a relativistic limit in order to detect
them. These results generalize those found in [12], indicat-
ing revivals related to Pythagorean triples. In the present

FIG. 5. Density plot of |
(φ1, φ2, t )| for φ1, φ2 ∈ [−π, π ] at different times (a) t = 0, (b) t = Trev/10, (c) t = Trev/5, and (d) t = 3Trev/10,
where 
 is like in (2.2) with q = √

3, c�n = 1, and �n running over the couples (1,2), (2,5), (2,11), and (5,10) changing the signs and the order
of their coordinates in all possible ways. The revival time is Trev = 2π/ω�n0 .
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paper, all the possible states exhibiting revivals were charac-
terized. The interesting feature of these revivals is that they
are known to hold for massless wave equations or for the
standard Schrödinger equation. However, in the present con-
text the dispersion relation is modified to E =

√
m2 + p2 and

still the revivals are exact. Although the torus topology may
seem unrealistic at first sight, it should be remarked that the
Dirac equation in several topologies may have applications
in solid-state physics. The study of revivals in this context is
encouraging and perhaps may lead to interesting experimental
results such as the ones reported in [9]. Finally, it may be
possible and interesting to generalize the results presented
herein to three dimensions, when the spatial coordinates are
periodic. However it is likely that the analysis will be more

involved. This could be an interesting task to be studied
further.
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