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We revisit the celebrated Hellmann-Feynman theorem (HFT) in the parity-time (PT ) invariant non-Hermitian
quantum physics framework. We derive a modified version of HFT by changing the definition of inner product
and explicitly show that it holds good for both PT broken and unbroken phases and even at the exceptional
point of the theory. The derivation is extremely general and works for even the PT noninvariant Hamiltonian.
We consider several examples of discrete and continuum variable systems to test our results. We find that, if
the eigenvalue goes through a real-to-complex transition as a function of the Hermiticity breaking parameter,
both sides of the modified HFT expression diverge at that point. If that point turns out to be an EP of the
PT -invariant quantum theory, then one also sees the divergence at EP. Moreover, we have also demonstrated
that using the modified HFT can give rise to a potential numerical advantage for computing the expectation value
of many-body operators for interacting many-body Hamiltonian. Finally, we also derive a generalized virial
theorem for non-Hermitian systems using the modified HFT, which potentially can be tested in experiments.
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I. INTRODUCTION

The so-called Hellmann-Feynman theorem (HFT) states
that the derivative of the system’s total energy with respect to
a parameter is equal to the expectation value of the derivative
of the Hamiltonian of the system with respect to the same
parameter [1,2], which is mathematically written as

∂Eλ

∂λ
=
〈
ψλ

∣∣∣∣∣∂Ĥλ

∂λ

∣∣∣∣∣ψλ

〉
, (1)

where λ is some arbitrary parameter in the Hamiltonian and
|ψλ〉 is an eigenstate of the system. The origin of this theorem
is not very clear. Neither Feynman nor Hellmann was the first
to use it. Paul Guttinger may have been the first to derive
Eq. (1) in 1932 [3]. Hellmann first proved the theorem in
1937 [4]. Later in 1939, Feynman, who apparently did not
know about the earlier works, derived the theorem in his un-
dergraduate thesis and used it to calculate forces in molecules
directly [1]. However, the usefulness of HFT in evaluating the
expectation values of dynamical quantities in some potential
problems have been well demonstrated by several groups [5].
Since its inception, this theorem is widely in use in various
branches of physics and chemistry, including high-energy
physics [6–20], condensed-matter physics [21–29], machine
learning [30], and quantum chemistry [31]. Various issues
and discussions regarding its validity for degenerate systems
can be found in Refs. [32–34]. Our work aims to explore
the hidden power of this theorem, particularly to study its
applicability beyond the usual quantum framework.
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During the past two and half decades, non-Hermitian
physics has become very exciting and secured its position in
frontier research in almost all branches of physics [35,36].
Non-Hermiticity can originate from exchanges of energy or
particles with an environment and leads to rich properties in
quantum dynamics [37–40], localization [41–43], and topol-
ogy [44–47]. On the other hand, non-Hermitian Hamiltonians
also play a very important role in understanding quantum
measurement problems [48,49].

While in general non-Hermitian Hamiltonians have com-
plex eigenvalues, by replacing the self-adjoint condition on
the Hamiltonian with a much more physical and rather
less constraining condition of space-time reflection symme-
try known as parity-time (PT ) symmetry [50–52], can have
real eigenvalues. Such systems described by PT -invariant
non-Hermitian Hamiltonians can typically be divided into
two categories, one in which the eigenvectors respect PT
symmetry and the entire spectrum is real, known as the PT -
unbroken phase, and the system is in the PT -broken phase
when it has at least one complex eigenvalue in its spectrum,
and the eigenvector(s) corresponding to those complex val-
ues do not respect the PT symmetry [43–45,53–57]. The
phase-transition point is known as the exceptional point (EP).
It has been demonstrated that a consistent quantum theory
with an entirely real spectrum, a complete set of orthonor-
mal eigenfunctions having positive-definite norms and unitary
time evolution in the unbroken phase, can be constructed in a
modified Hilbert space equipped with an appropriate positive-
definite inner product [58,59]. This field of PT -symmetric
non-Hermitian physics received a huge boost when the con-
sequence of PT transition was observed experimentally in
various analogous systems [35,60–64].

In this work, our main goal is to derive a Hellmann-
Feynman-type theorem for non-Hermitian systems. It is to

2469-9926/2024/109(2)/022227(13) 022227-1 ©2024 American Physical Society

https://orcid.org/0009-0003-2349-9684
https://orcid.org/0000-0002-8071-7989
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.022227&domain=pdf&date_stamp=2024-02-20
https://doi.org/10.1103/PhysRevA.109.022227


HAJONG, MODAK, AND MANDAL PHYSICAL REVIEW A 109, 022227 (2024)

be noted that HFT has been used for non-Hermitian sys-
tems earlier as well [65–67], however, we aim to obtain an
equation for the HFT in the non-Hermitian regime in a de-
tailed manner which was not provided in the earlier works.
Given that HFT for Hermitian systems has huge applications
in different branches of physics, a similar theorem for non-
Hermitian systems can also be extremely useful, especially in
the context of open quantum systems. HFT can be used to
derive a generalized virial theorem for quantum particles with
zero-range or finite-range interactions in an arbitrary external
potential [68]. In the case of unitary gas in a harmonic trap,
this theorem provides us with a relation between the energy
of the system and the trapping energy. Virial theorem for such
systems has been verified experimentally in cold atom exper-
iments [69,70]. We construct the generalized virial theorem
for non-Hermitian systems, which we believe can be tested in
experiments.

The paper is organized as follows. First, we derive the
modified HFT in Sec. II. Next, we show the validation of it
for discrete models and continuum models in Secs. III and IV,
respectively. In Sec. V, we prove the generalized virial theo-
rem for the non-Hermitian system, and, finally, we conclude
in Sec. VI.

II. HELLMANN FEYNMAN THEOREM
FOR NON-HERMITIAN SYSTEM

First, let us consider a general PT -invariant, non-
Hermitian Ĥ† �= Ĥ, [PT , Ĥ] = 0 system. Such systems are
characterized by right eigenvectors |Ri〉 and left eigenvectors
|Li〉 as defined by

Ĥ|Ri〉 = Ei|Ri〉 Ĥ†|Li〉 = E∗
i |Li〉.

Theses eigenvectors form a complete biorthogonal set [71,72]
satisfying 〈Li|Rj〉 = δi j and

∑
i |Ri〉〈Li| = I . Alternatively, we

can introduce a Hermitian metric operator G such that 〈Li| =
〈Ri|G and use it to define a more general inner product or G-
inner product [58,73]. The orthonormality and completeness
relations then are expressed in terms of the G-inner product as

〈Ri|Rj〉G = 〈Ri|G|Rj〉 = 〈Li|Rj〉 = δi j . (2)

The G operator can be calculated for the theory as

G =
∑

i

|Li〉〈Li| =
[∑

i

|Ri〉〈Ri|
]−1

. (3)

The expectation value of an observable O will now be
defined with respect to the G-inner product as

〈O〉G = 〈Ri|GO|Ri〉 = 〈Li|O|Ri〉. (4)

It has been demonstrated explicitly in Refs. [58,59,74,75]
that 〈O〉G is a real number for any state in the Hilbert space if
and only if O satisfies the following condition i.e.,

O†G = GO.

The observables which obey the above condition are called
“good observables.”

Now we are in a position to obtain HFT for PT -invariant
non-Hermitian quantum mechanics. We consider our Hamil-
tonian depends on a real parameter λ and Eλ is the energy

eigenvalue of an arbitrary right eigenstate |R〉 [note that we
drop the suffix i from Eq. (2) to simplify the notation].
Differentiating the equation 〈L|Ĥ|R〉 = Eλ with respect to λ,
we obtain

∂Eλ

∂λ
=
(

∂〈L|
∂λ

)
Ĥ
∣∣∣R〉+ 〈L

∣∣∣∣∣∂Ĥ∂λ

∣∣∣∣∣R
〉

+
〈
L
∣∣∣Ĥ(∂|R〉

∂λ

)

= Eλ

(
∂〈L|
∂λ

)∣∣∣R〉+ 〈L

∣∣∣∣∣∂Ĥ∂λ

∣∣∣∣∣R
〉

+
〈
Ĥ†GR

∣∣∣(∂|R〉
∂λ

)
.

(5)

On the other hand, H†|L〉 = E∗
λ |L〉 can be written as

〈H†GR| = Eλ〈R|G. Using this in the last term of the above
equation we obtain

∂Eλ

∂λ
= Eλ

∂〈L|R〉
∂λ

+
〈

L

∣∣∣∣∣∂Ĥ∂λ

∣∣∣∣∣R
〉
. (6)

∂Eλ

∂λ
=
〈

L

∣∣∣∣∣∂Ĥ∂λ

∣∣∣∣∣R
〉

=
〈

R

∣∣∣∣∣G∂Ĥ
∂λ

∣∣∣∣∣R
〉
. (7)

Remarkably, this proof is extremely general and should work
for any non-Hermitian Hamiltonian even if the Hamiltonian
is not PT invariant, i.e., [Ĥ,PT ] �= 0. We can explicitly
obtain this relation for the unbroken case of a PT -invariant
Hamiltonian using the good observable condition Ĥ†G = GĤ
as well.

Next, we consider explicit examples of non-Hermitian
Hamiltonian, discrete and continuum to verify our claim.

III. DISCRETE MODELS

First, we consider a PT -symmetric non-Hermitian two-
level system [53] described by the following Hamiltonian:

H2×2 =
(

iλ −1
−1 −iλ

)
.

This system undergoes a PT phase transition at λc = 1 The
eigenvalues are E± = ±(1 − λ2)1/2 and corresponding right
eigenvectors in the unbroken phase i.e., λ < 1 are given by,

|R+〉 = i√
2 cos α

(
e− iα

2

−e
iα
2

)
,

|R−〉 = 1√
2 cos α

(
e

iα
2

e− iα
2

)
,

where sin α = −λ. The G operator in the unbroken phase
reads

Gu = 1√
1 − λ2

[
1 iλ

−iλ 1

]
. (8)

Now it is straightforward to check that, for |R+〉 in the
unbroken phase,〈

R+

∣∣∣∣Gu ∂H2×2

∂λ

∣∣∣∣R+

〉
= − λ√

1 − λ2
= ∂E+

∂λ
. (9)
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Even in the broken phase, one obtains〈
R+

∣∣∣∣Gb ∂H2×2

∂λ

∣∣∣∣R+

〉
= i

λ√
λ2 − 1

= ∂E+
∂λ

, (10)

where Gb is the G matrix in the broken phase. |R−〉 also
satisfies Eq. (7) for both broken and unbroken phases. This
confirms the validity of the modified HFT for this model. We
have explicitly verified the validity of modified HFT even for
4 × 4 PT -symmetric non-Hermitian system (see Appendix A
for details).

Noninteracting discrete system. Next, we study an L ×
L version of the above 2 × 2; such a Hamiltonian can be
interpreted as a model of noninteracting fermions in a one-
dimensional (1d) lattice with an open boundary and described
by the following Hamiltonian:

H0 = −
L−1∑
j=1

(ĉ†
j ĉ j+1 + H.c.), (11)

where ĉ†
j (ĉ j) is the fermionic creation (annihilation) operator

at site j, which satisfies standard anticommutation relations.
L is the size of the system, which we set to be an even
number for all our calculations (we choose the lattice spacing
as unity).

To make the Hamiltonian PT symmetric and non-
Hermitian, we add a local term at site L/2 and L/2 + 1. The
PT -symmetric Hamiltonian reads

HL×L = H0 + iλ(n̂L/2 − n̂L/2+1), (12)

where, n̂ j = ĉ†
j ĉ j is the number operator and λ is identified as

the Hermiticity-breaking parameter. While under parity trans-
formation c j → cL− j+1, the time-reversal symmetry operation
changes i → −i. Hence, HL×L remains invariant under PT
transformation, which implies [HL×L,PT ] = 0. For nonzero
values of λ, HL×L is non-Hermitian. For L = 2, this model is
identical to the two-level system we have studied previously.
For any finite and even L, the Hamiltonian (12) shows a
PT transition at λ = 1 [53]. Like a two-level system, all
eigenvalues are completely complex for λ > 1. Note that it
is not necessary to have all eigenvalues be complex in the
PT -broken phase; in contrast, we only need two of them to
be complex. Figure 1 shows excellent agreement between left-
hand side (LHS) and right-hand side (RHS) of Eq. (7) [which
we refer to as f (λ)]. Interestingly, while Eq. (7) remains valid
even when we approach the EP, i.e., λ = 1, the numerical
value seems to diverge at the EP. This is already clear for
two-level systems from Eqs. (9) and (10), which diverge in
the λ → 1 limit. While this result tempts us to conclude that,
near the EP, the LHS and RHS of Eq. (7) always diverge, it
turns out to be not always true.

Next, we study another model that is described by the
Hamiltonian

H̃L×L = H0 + iλ
L/2+r∑

j=L/2−(r−1)

(−1) j n̂ j, (13)

where we chose r = 2. Hamiltonian (13) is interesting in
the sense that in the PT broken phase of this model, not
all eigenvalues are completely complex. A parameter regime
exists when some eigenvalues are completely real, even in

FIG. 1. Comparison between the absolute values of RHS and
LHS of the Eq. (7) for Hamiltonian Eq. (12) in solid lines and dashed
and dashed-dot lines, respectively, for different values of L.

the broken phase. We find that while all eigenvalues and
eigenstates of modified HFT are valid, the divergence of the
LHS and RHS of Eq. (7) near the EP occurs only for those
eigenstates that show a real-to-complex transition at the EP.
We refer to a point EP as soon as any two eigenvalues of
the entire spectrum become complex from real. Eigenstates
correspond to eigenvalues that remain real even after the EP,
for which no divergence has been observed at the EP (see
Fig. 2). We focus on three eigenstates of the Hamiltonian (13)
for L = 64 in Fig. 2 and also plot the imaginary part of those
eigenvalues as a function of λ. Note that while the EP of this
model corresponds to λc � 0.48 [53,59], some states show no
signature of divergence in f (λ) at the EP. However, it seems
that f (λ) tends to diverge when that eigenvalue also shows
a real-to-complex transition. Hence, we conjecture the diver-
gence of Eq. (7) is because of the real-to-complex transition
of eigenvalues, and it explicitly has nothing to do with the EP.
Also, we believe that a variant of our lattice models with gain
and loss is experimentally realizable in an ultracold fermionic

FIG. 2. Comparison between the absolute value of RHS and LHS
of the Eq. (7) for Hamiltonian Eq. (13) in solid lines and dashed and
dashed-dot lines, respectively, for L = 64 and different eigenstates.
Inset shows the imaginary part of those eigenvalues as a function of
λ. Note that the n = 32 plot is missing from the inset, that is because
imaginary part of that eigenvalue is zero for λ � 0.8.
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FIG. 3. Comparison between the absolute value of the RHS and
LHS of Eq. (7) for Hamiltonian (14) (g = 0.1) in solid lines and
dashed and dashed-dot lines, respectively, for L = 8 and different
eigenstates.

system, and the modified HFT can be verified within the weak
measurement framework [64,76].

Many-body interacting discrete system. So far, we have fo-
cused on noninteracting systems. Next, we turn our attention
to interacting many-body systems. We consider a system that
is governed by the following Hamiltonian:

HI = −
L−1∑
j=1

(ĉ†
j ĉ j+1 + H.c.) + ig(n̂L/2 − n̂L/2+1)

+ λ

L−1∑
j=1

n̂ j n̂ j+1, (14)

where λ is the nearest-neighbor interaction strength. Figure 3
clearly shows that the modified HFT gets satisfied for the in-
teracting Hamiltonian as well. These results also suggest that,
in order to calculate the expectation value of 〈∑L−1

j=1 n̂ j n̂ j+1〉
with respect to eigenstates of the Hamiltonian HI , one does
not necessarily need to compute the eigenstates of HI (λ),
but instead simply calculating the energy eigenvalues En is
sufficient, given 〈Ln|dHI/dλ|Rn〉 = 〈Ln|

∑L−1
j=1 n̂ j n̂ j+1|Rn〉 =

dEn/dλ. Computation-wise, calculating eigenvalues is much
less costly compared with calculating eigenstates of N × N
matrices; while computation costs in both cases are O(N3),
the prefactor is much smaller for eigenvalue computation.
Given the Hilbert-space dimension N scales exponentially
with system size for many-body systems, computation using
the modified HFT could be a significant advantage in evaluat-
ing the expectation value of certain many-body operators for
such systems.

IV. MODELS OF CONTINUUM VARIABLES

Now we consider models of continuum variables as an
example; we take a two-dimensional (2d) anharmonic oscil-
lator with a non-Hermitian interaction term [57], which is
described by

H2d = p2
x

2m
+ p2

y

2m
+ 1

2
mω2

x x2 + 1

2
mω2

y y2 + iλxy, (15)

where λ is real and ωx �= ωy. This system can be solved
exactly. The energy eigenvalues and the right eigenvectors are
given by

Rn1,n2 = Ne− m
2h̄ [(C1X 2+C2Y 2 )]Hn1 (α1X )Hn2 (α2Y ),

En1,n2 =
(

n1 + 1

2

)
h̄C1 +

(
n2 + 1

2

)
h̄C2, (16)

where

X =
√

k + 1

2
x − i

√
k − 1

2
y, Y = i

√
k − 1

2
x +

√
k + 1

2
y,

C1 =
√

1

2

(
ω2+ − ω2−

k

)
, C2 =

√
1

2

(
ω2+ + ω2−

k

)
,

and

α1 =
√

mC1/h̄, α2 =
√

mC2/h̄,

where

ω2
+ = ω2

y + ω2
x , ω2

− = ω2
y − ω2

x ,

1

k
=
√

1 − λ2

λ2
c

, λc = mω2
−

2
.

The left eigenvectors are given by

Ln1,n2 = Ne− m
2h̄ [(C∗

1 X ∗2+C∗
2 Y ∗2 )]Hn1 (α∗

1X ∗)Hn2 (α∗
2Y ∗), (17)

where α∗
1 = ( mC∗

1
h̄ )1/2 and α∗

2 = ( mC∗
2

h̄ )1/2.
The modified HFT in the case of continuum models is

written in the integral form as∫ (
L∗

n1,n2

)
∂H2d
∂λ

(
Rn1,n2

)
dxdy∫ (

L∗
n1,n2

)(
Rn1,n2

)
dxdy

= ∂En1,n2

∂λ
. (18)

It is straightforward to show that, when n1 = n2, the energy
eigenvalues are real, and the eigenvectors are PT symmetric
over all values of λ. We have explicitly shown that the LHS
and RHS of Eq. (19) are the same for ground state (n1 = n2 =
0) (see Appendix B for details).

Next we consider some of the low-lying excited states. The
energy eigenvalues can be real or complex depending on the
value of λ. We have plotted the absolute value of LHS and
RHS of the modified HFT for all these states in Fig. 4 to check
the validity of the theorem. Note that we have also checked
explicitly for (1,0), (2, 0), the real and imaginary parts of the
LHS and RHS of the Eq. (19) separately (see Appendix B).
We also find that f (λ) for the first excited state diverges
near λ = 4 and at the same value of λ the eigenvalue of
the first excited state also shows a real-to-complex transition.
This result strengthens our previous claim, i.e., the divergence
of f (λ) corresponds to the real-to-complex transition of the
eigenvalues.

V. VIRIAL THEOREM FOR NON-HERMITIAN SYSTEM

A generalized virial theorem has been derived for N
particles quantum system [68], with arbitrary statistics and
dispersion relations. One can consider a general Hamiltonian,

Ĥ = Ĥ′ + U (r1, . . . , rN ), (19)
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FIG. 4. Comparison between the absolute value of 〈∂Ĥ/∂λ〉G

and ∂En1,n2/∂λ for both broken and unbroken regions for the states
(n1, n2) = (0, 0), (1, 0), (1, 1), and (2,0). The dotted, dashed lines
indicate the LHS and solid black lines indicate the RHS of Eq. (19).

where Ĥ′ and its domain depend on p parameters l1, . . . , lp

which have the dimension of a length, and U (r1, . . . , rN ) is an
arbitrary function, where ri is the position of particle i. Using
HFT for the Hermitian system, it has been shown in Ref. [68]
that, for any stationary state energy E , the following relation
holds:

E =
〈

U + 1

2

N∑
i=1

ri · ∇U (ri )

〉
− 1

2

p∑
q=1

lq
∂E

∂lq
. (20)

If Ĥ is non-Hermitian, it is straightforward to derive a gener-
alized version of the virial theorem using the modified HFT.
It just reads

E =
〈

U + 1

2

N∑
i=1

ri · ∇U (ri )

〉
G

− 1

2

p∑
q=1

lq
∂E

∂lq
. (21)

Next, we take a concrete example of 1d non-Hermitian
harmonic oscillator with complex angular frequency; the
Hamiltonian reads

H1d = p2

2
+ 1

2
�2x2, (22)

where � = ω1 + iω2 and ω1 �= 0. Note that this Hamiltonian
is not PT invariant. However, given that our modified HFT
holds even for the Hamiltonian, which is not PT invariant,
one can still use the modified HFT to derive the generalized
virial theorem (22).

In ultracold experiments, if one only has the lattice without
trapping potential, the atoms can wander around and will
not stay together. If one is interested in understanding the
role of many-body interaction or even increasing the time of
experiments by reducing the kinetic energy, the atoms need to
be kept together using some trapping potential. The trapping
energy for such a non-Hermitian system is given by

Ẽtr = 1
2

〈
U (x) + 1

2 x · ∇xU (x)
〉
G
. (23)

We have

U = 1
2�2x2. (24)

Therefore, Eq. (24) implies

Ẽtr = 1
2

〈
1
2�2x2 + 1

2 x · ∇( 1
2�2x2

)〉
G

= 1
2 〈�2x2〉G. (25)

Using the definition of the G-inner product given in Eq. (4),
we now deduce Eq. (26) for the ground state and all the excited
states.

For ground state, the left eigenvector of H1d is given by

L0 =
(

ω1 − iω2

π

) 1
4

e− ω1x2

2 e
iω2x2

2 , (26)

and right eigenvector of H1d is given by

R0 =
(

ω1 + iω2

π

) 1
4

e− ω1x2

2 e− iω2x2

2 . (27)

Therefore, Eq. (26) implies

Ẽtr0 =
∫

(L∗
0 ) 1

2�2x2(R0)dx∫
(L∗

0 )(R0)dx

=
∫

e−ω1x2
e−iω2x2 1

2�2x2dx∫
e−ω1x2 e−iω2x2 dx

= 1

4
� = 1

2
E0, (28)

where E0 is the ground-state energy of the Hamiltonian (23).
One can also compute trapping energy for the nth eigen-

state. We have

x = 1√
2�

(a† + a) (29)

and

p = i

√
�

2
(a† − a), (30)

such that

a|n〉 = √
n|n − 1〉 and a†|n〉 = √

n + 1|n + 1〉, (31)

where |n〉 is the nth state of H1d , also, the right eigenvector
|Rn〉 of H1d (i.e., |Rn〉 = |n〉).

Similarly,

H†
1d = p2

2
+ 1

2
�∗2x2, (32)

and we have

x = 1√
2�∗ (b† + b) (33)

and

p = i

√
�∗

2
(b† − b), (34)

such that

b|n̄〉 = √
n̄|n̄ − 1〉 and b†|n̄〉 = √

n̄ + 1|n̄ + 1〉, (35)

where |n̄〉 is the n̄th state of H†
1d , also, the left eigenvector |Ln〉

of H1d (i.e., |Ln〉 = |n̄〉).
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Therefore, by using Eq. (4), we can derive the trapping
energy for nth-eigenstate as

Ẽtrn = 〈Ln|1

2
�2x2|Rn〉 = 〈n̄|1

2
�2x2|n〉

= 1

2
�2

(
1

2�

)
〈n̄|a†2 + a2 + a†a + aa†|n〉

= �

4
〈n̄|2n + 1|n〉

= 1

2

(
n + 1

2

)
� = 1

2
En, (36)

where En corresponds to eigenenergy of the nth state. The re-
lation between the energy eigenvalue and the trapping energy
is the same even for the Hermitian harmonic oscillator.

VI. CONCLUSIONS

In this work, we derive the modified HFT for the
non-Hermitian system. Our modified HFT works for both
PT -invariant and noninvariant systems. The derivation is
extremely general. However, given that the Hamiltonian is
a good observable in the PT -symmetric phase of the PT -
invariant system, only in that phase is the LHS and RHS of
the modified HFT in Eq. (7) guaranteed to be completely real.
Moreover, if the eigenvalue goes through a real-to-complex
transition as a function of the Hermiticity-breaking parameter,
the LHS and RHS of the modified HFT diverge at that point.
If that point is an EP of the PT -invariant quantum theory,
then one sees the divergence at EP as well; otherwise, both
sides of Eq. (7) can be finite at EP as well. We test our
results for different discrete and continuum models; some of
those models have already been experimentally realized and
have a huge technological application as a quantum sensor
[64]. We also have demonstrated the validity of the modified

HFT for many-body interacting systems and moreover, show
that the modified HFT allows one to compute the expectation
of a many-body operator only from the eigenvalue spectrum
(eigenvectors are not required). This gives rise to a signifi-
cant numerical advantage in solving many-body interacting
problems, given that eigenvector computation is much more
numerically costly than calculating the eigenvalues for a non-
Hermitian matrix.

Finally, we also derive a generalized virial theorem for
non-Hermitian systems and show that, for a harmonic oscilla-
tor with complex frequency, the system’s energy is twice the
trapping energy, precisely what one observes for a Hermitian
harmonic oscillator. For the Hermitian system, the trapping
potential energy Etr has been computed from the density
profile [77,78] and the released energy E − Etr from a time-
of-flight experiment [79]. Note that, recently, there has been
an experimental proposal to compute the G-inner product for
a non-Hermitian system using weak measurement [76]. We
believe the same strategy can be used to compute both en-
ergy and trapping energy of the non-Hermitian system, hence
the experimental verification of the virial theorem for the
non-Hermitian system should be possible. Moreover, given
that DNA-unzipping transition can be effectively described
by a non-Hermitian Hatano-Nelson model [43,80], it will be
interesting in the future to compute the critical force for the
DNA-unzipping transition using the modified HFT.
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APPENDIX A: FOUR-LEVEL SYSTEM

We consider a particular 4 × 4 non-Hermitian Hamiltonian [53]:

H4×4 =

⎛⎜⎜⎝
iλ −1 0 0
−1 −iλ −1 0
0 −1 iλ −1
0 0 −1 −iλ

⎞⎟⎟⎠.

The eigenvalues and right eigenfunctions for this system are calculated as

E1 = −
√

3 − √
5 − 2λ2

2
, E2 =

√
3 − √

5 − 2λ2

2
, E3 = −

√
3 + √

5 − 2λ2

2
, E4 =

√
3 + √

5 − 2λ2

2
,

and

|R1〉 =

⎛⎜⎜⎝
u1−
v1

w1+
1

⎞⎟⎟⎠, |R2〉 =

⎛⎜⎜⎝
u1+
v1

w1−
1

⎞⎟⎟⎠, |R3〉 =

⎛⎜⎜⎝
u2−
v2

w2+
1

⎞⎟⎟⎠, |R4〉 =

⎛⎜⎜⎝
u2+
v2

w2−
1

⎞⎟⎟⎠,

022227-6
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where

u1± = 1

4
[2iλ(1 +

√
5) ± (

√
2 +

√
10)

√
3 −

√
5 − 2λ2],

u2± = 1

4
[2iλ(1 −

√
5) ± (

√
2 −

√
10)

√
3 +

√
5 − 2λ2], v1 = (1 − √

5)

2
, v2 = (1 + √

5)

2
,

w1± = −iλ ±
√

3 − √
5 − 2λ2

2
, w2± = −iλ ±

√
3 + √

5 − 2λ2

2
. (A1)

We observe that if λ < λC1 = [(3 − √
5)/2]1/2, then all eigenvalues are real and if λC1 < λ < λC2 = [(3 + √

5)/2]1/2, then
two of the eigenvalues are real and two are a complex-conjugate pair. For λ > λC2 , all four eigenvalues are complex. It can be
shown that the system is in the unbroken phase for λ < λC1 .

We calculate the G metric in the unbroken phase using Eq. (3) as

Gu = 1

10(1 − 3λ2 + λ4)

⎡⎢⎢⎣
3 − 2λ2 iλ(3 − 2λ2) −(λ2 + 1) iλ(λ2 − 4)

iλ(2λ2 − 3) 2 − 3λ2 i(λ3 + λ) −(λ2 + 1)
−(λ2 + 1) −i(λ3 + λ) 2 − 3λ2 iλ(3 − 2λ2)

−iλ(λ2 − 4) −(λ2 + 1) iλ(2λ2 − 3) 3 − 2λ2

⎤⎥⎥⎦.

We explicitly check that |R1〉 satisfies the modified HFT relation in Eq. (7):

∂E1

∂λ
= ∂

∂λ

⎛⎝−
√

3 − √
5 − 2λ2

2

⎞⎠ =
√

2λ√
3 − √

5 − 2λ2
. (A2)

We further calculate 〈
R1

∣∣∣∣Gu ∂H4×4

∂λ

∣∣∣∣R1

〉
=

√
2λ√

3 − √
5 − 2λ2

, (A3)

to establish the modified HFT for the state |R1〉, 〈
R1

∣∣∣∣Gu ∂H4×4

∂λ

∣∣∣∣R1

〉
= ∂E1

∂λ
.

In the similar way, it can be shown that other states also satisfy the modified HFT.
Now we consider the system in the broken phase, when λC1 < λ < λC2 . The eigenvalues in this region are

E ′
1 = −i

√
−3 + √

5 + 2λ2

2
, E ′

2 = i

√
−3 + √

5 + 2λ2

2
,

E ′
3 = −

√
3 + √

5 − 2λ2

2
, E ′

4 =
√

3 + √
5 − 2λ2

2
.

The G metric in this region of coupling λ is calculated as

Gb
1 = 1

10(1 − 3λ2 + λ4)

⎡⎢⎢⎢⎣
−√

5 −iλ
√

5 −√
5(λ2 − 1) −iλ

√
5(λ2 − 2)

iλ
√

5 2 − (6 + √
5)λ2 + 2λ4 iλ(λ2 − 1) g2,4

−√
5(λ2 − 1) −iλ(λ2 − 1) −√

5λ2 −iλ
√

5
iλ

√
5(λ2 − 2) g4,2 iλ

√
5 g4,4

⎤⎥⎥⎥⎦,

where g4,2 = g2,4 = −1 + (3 + 2
√

5)λ2 − (1 + √
5)λ4 and g4,4 = 3 + (3 + √

5)λ2(−3 + λ2).
We find that the states in this broken region also satisfy the modified HFT relation [Eq. (7)]:

∂E ′
1

∂λ
= ∂

∂λ

⎛⎝−i

√
−3 + √

5 + 2λ2

2

⎞⎠ = − i
√

2λ√
−3 + √

5 + 2λ2
, (A4)

and 〈
R1

∣∣∣∣Gb
1
∂H4×4

∂λ

∣∣∣∣R1

〉
= − i

√
2λ√

−3 + √
5 + 2λ2

= ∂E ′
1

∂λ
, (A5)
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implying that 〈
R1

∣∣∣∣Gb
1
∂H4×4

∂λ

∣∣∣∣R1

〉
= ∂E ′

1

∂λ
.

In the similar straightforward manner other states can be shown to satisfy the modified HFT in this broken region.
Finally, we consider the region λ > λC2 , where all eigenvalues are complex. The eigenvalues in this region are calculated as

E ′′
1 = −i

√
−3 + √

5 + 2λ2

2
, E ′′

2 = i

√
−3 + √

5 + 2λ2

2
,

E ′′
3 = −i

√
−3 − √

5 + 2λ2

2
, E ′′

4 = i

√
−3 − √

5 + 2λ2

2
.

The G metric is constructed as

Gb
2 = 1

10(1 − 3λ2 + λ4)

⎡⎢⎢⎣
−3 + 2λ2 iλ(−3 + 2λ2) (λ2 + 1) −iλ(λ2 − 4)

iλ(−2λ2 + 3) 2 − 9λ2 + 4λ4 −i(λ3 + λ) −1 + 7λ2 − 2λ4

(λ2 + 1) i(λ3 + λ) −2 + 3λ2 iλ(−3 + 2λ2)
iλ(λ2 − 4) −1 + 7λ2 − 2λ4 iλ(−2λ2 + 3) 3 − 16λ2 + 6λ4

⎤⎥⎥⎦.

We now check below that |R1〉 still satisfies the modified HFT relation as given in Eq. (7). The LHS of the modified HFT is

∂E ′′
1

∂λ
= ∂

∂λ

⎛⎝−i

√
−3 + √

5 + 2λ2

2

⎞⎠ = − i
√

2λ√
−3 + √

5 + 2λ2
, (A6)

which is exactly equal to the RHS of the modified HFT,〈
R1

∣∣∣∣Gb
2
∂H4×4

∂λ

∣∣∣∣R1

〉
= − i

√
2λ√

−3 + √
5 + 2λ2

= ∂E ′′
1

∂λ
. (A7)

The same is true for all other states. This establishes the verification of the modified HFT for 4 × 4 system in broken and
unbroken phases.

APPENDIX B: HELLMANN-FEYNMAN THEOREM
FOR 2D ANHARMONIC OSCILLATOR

WITH NON-HERMITIAN INTERACTION

We consider the 2d anharmonic oscillator as described
in Eq. (15). We choose the following numerical values for
different parameters, ωx = 1, ωy = 3, h̄ = 1, m = 1 for the
numerical computations. The critical coupling λc = mω2

−/2
becomes four.

FIG. 5. Comparison between 〈∂H2d/∂λ〉G,(0,0) and ∂E0,0/∂λ, rep-
resented by the solid and the dashed lines, respectively.

(1) For the unbroken region (λ < λc),

k∗ = k, C∗
1 = C1, C∗

2 = C2; α∗
1 = α1, α∗

2 = α2, (B1)

X ∗ =
√

k + 1

2
x + i

√
k − 1

2
y, (B2)

Y ∗ = −i

√
k − 1

2
x +

√
k + 1

2
y. (B3)

(2) For the broken region (λ > λc),

k∗ = −k, C∗
1 = C2 = A + iB; α∗

1 = α2, α∗
2 = α1,

(B4)

X ∗ = i

√
k − 1

2
x −

√
k + 1

2
y, (B5)

Y ∗ =
√

k + 1

2
x + i

√
k − 1

2
y, (B6)

with

A = 1

2

√√√√√ω4−
k2

1

+ ω4+ + ω2+,

B = 1

2

√√√√√ω4−
k2

1

+ ω4+ − ω2+, and k1 = ik. (B7)
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(1) Now for the ground state n1 = 0, n2 = 0, the energy eigenvalues E0,0 are always real for all values of λ, suggesting
that there is no broken phase. We have calculated LHS and RHS of modified HFT analytically to show the equivalence. Using
Eqs. (B1) to (B3), Eqs. (16) and (18) are rewritten as

R0,0 = N exp

(
−1

4

{
(C1 + C2)(x2 + y2) + (C2 − C1)

[
2iλkxy

λc
− k(x2 − y2)

]})
, (B8)

L0,0 = N exp

(
−1

4

{
(C1 + C2)(x2 + y2) + (C1 − C2)

[
2iλkxy

λc
+ k(x2 − y2)

]})
. (B9)

Now, we proceed to verify the modified HFT. Using Eqs. (B8) and (B9), the LHS of Eq. (19) implies〈
∂H2d

∂λ

〉
G,(0,0)

=
∫

(L∗
0,0) ∂H2d

∂λ
(R0,0)dxdy∫

(L∗
0,0)(R0,0)dxdy

= |N |2 ∫ ixye− m
2h̄ [(C1+C2 )(x2+y2 )+(C2−C1 ){ 2iλkxy

λc
−k(x2−y2 )}]dxdy

|N |2 ∫ e− m
2h̄ [(C1+C2 )(x2+y2 )+(C2−C1 ){ 2iλkxy

λc
−k(x2−y2 )}]dxdy

= − λ(λ2 − 4
√

λ2 + 9 + 4)
√

5 − √
16 − λ2

(16 − λ2)(λ2 + 8)
√

λ2 + 9

− λ(λ2 − 4
√

λ2 + 9 + 4)
√

5 − √
16 − λ2

4
√

16 − λ2(λ2 + 8)
√

λ2 + 9

+ λ(λ2 − 4
√

λ2 + 9 + 4)
√√

16 − λ2 + 5

4
√

16 − λ2(λ2 + 8)
√

λ2 + 9

− λ(λ2 − 4
√

λ2 + 9 + 4)
√√

16 − λ2 + 5

(16 − λ2)(λ2 + 8)
√

λ2 + 9
. (B10)

The RHS of Eq. (19) for the (0,0) state is

∂E0,0

∂λ
= ∂

∂λ

(
1

2
C1 + 1

2
C2

)
= λ

√√
λ2 + 9 − 5

2
√

2
√

λ2 − 16
√

λ2 + 9
. (B11)

The RHS of Eqs. (B10) and (B11) are same for all values of λ, as shown in Fig. 5, indicating that the modified HFT is valid for
the ground state n1 = n2 = 0 for all values of λ.

(2) First-excited state: n1 = 1, n2 = 0.
(a) Unbroken phase: λ < λc

Using the relations in Eqs. (B1) to (B3), the right and the left eigenvectors are derived as

R1,0 = Ne− 1
4 [(C1+C2 )(x2+y2 )+(C2−C1 ){ 2iλkxy

λc
−k(x2−y2 )}]2α1

(√
k + 1

2
x − i

√
k − 1

2
y

)
, (B12)

L1,0 = Ne− 1
4 [(C1+C2 )(x2+y2 )+(C1−C2 ){ 2iλkxy

λc
+k(x2−y2 )}]2α1

(√
k + 1

2
x + i

√
k − 1

2
y

)
, (B13)

with the common eigenvalue E∗
1,0 = E1,0 = ( 3

2 )C1 + ( 1
2 )C2. Hence, the LHS of the modified HFT is

〈
∂H2d

∂λ

〉
G,(1,0)

=
∫

(L∗
1,0) ∂H2d

∂λ
(R1,0)dxdy∫

(L∗
1,0)(R1,0)dxdy

=
|N |2 ∫ ixyc1

(√
k+1

2 x − i
√

k−1
2 y
)2

e− 1
2 [(C1+C2 )(x2+y2 )+(C2−C1 ){ 2iλkxy

λc
−k(x2−y2 )}]dxdy

|N |2 ∫ c1

(√
k+1

2 x − i
√

k−1
2 y
)2

e− 1
2 [(C1+C2 )(x2+y2 )+(C2−C1 ){ 2iλkxy

λc
−k(x2−y2 )}]dxdy

.

(B14)

The RHS of the modified HFT is

∂E1,0

∂λ
= ∂

∂λ

(
3

2
C1 + 1

2
C2

)
= 3λ

8

√
2
(
1 − λ2

16

)(
10 − 8

√
1 − λ2

16

) − λ

8

√
2
(
1 − λ2

16

)(
10 + 8

√
1 − λ2

16

) . (B15)

The expressions on the RHSs of Eqs. (B14) and (B15) in the domain λ < λc (=4) are equal, as shown in Fig. 4, indicating
that the modified HFT is valid for the state (n1 = 1, n2 = 0) in the unbroken case.
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FIG. 6. Comparison between real and imaginary parts of 〈∂H2d/∂λ〉G,(1,0) and 〈∂H2d/∂λ〉G,(2,0) with that of ∂E1,0/∂λ and ∂E2,0/∂λ in the
broken region. The dotted and dashed lines represent the LHS and solid lines represent the RHS of the modified HFT, respectively.

(b) Broken phase: λ > λc

Using the relations in Eqs. (B4) to (B6), the right and left eigenvectors are calculated along with their eigenvalues as

R1,0 = Ne− 1
4 [2A(x2+y2 )+2iB{ 2iλkxy

λc
−k(x2−y2 )}]2α1

(√
k + 1

2
x − i

√
k − 1

2
y

)
, (B16)

E1,0 = 3
2C1 + 1

2C2 = 3
2 (A − iB) + 1

2 (A + iB) = 2A − iB, (B17)

L1,0 = Ne− 1
4 [2A(x2+y2 )−2iB{ 2iλkxy

λc
+k(x2−y2 )}]2α∗

1

(
i

√
k − 1

2
x −

√
k + 1

2
y

)
, (B18)

with eigenvalue E∗
1,0. The LHS of the modified HFT is calculated as

〈
∂H2d

∂λ

〉
G,(1,0)

=
∫

(L∗
1,0) ∂H2d

∂λ
(R1,0)dxdy∫

(L∗
1,0)(R1,0)dxdy

=
|N |2 ∫ ixyc1

(√
k+1

2 x − i
√

k−1
2 y
)2

e− 1
2 [2A(x2+y2 )+i2B{ 2iλkxy

λc
−k(x2−y2 )}]dxdy

|N |2 ∫ c1
(√

k+1
2 x − i

√
k−1

2 y
)2

e− 1
2 [2A(x2+y2 )+i2B{ 2iλkxy

λc
−k(x2−y2 )}]dxdy

. (B19)

The RHS of the modified HFT is
∂E1,0

∂λ
= ∂

∂λ
(2A − iB)= 2λ√

64
(

λ2

16 − 1
)+ 100

√√
64
(

λ2

16 − 1
)+ 100 + 10

− iλ√
64
(

λ2

16 − 1
)+ 100

√√
64
(

λ2

16 − 1
)+ 100 − 10

.

(B20)

The imaginary and the real parts of the relations given by Eqs. (B19) and (B20) over the broken region are shown in Fig. 6.
We have also shown the real and imaginary parts of Eq. (19) for (2,0) state in the same figure in order to compare it with the
(1,0) state. We find that the curves representing the LHS and RHS of Eq. (19) completely overlap each other for both (1,0)
and (2,0) states, indicating the validity of the modified HFT for these states as well.

APPENDIX C: HELLMANN-FEYNMAN THEOREM FOR
NON-PT -INVARIANT NON-HERMITIAN SYSTEM

We consider here a simple 1d Hamiltonian [Eq. (23)] rep-
resenting a non-PT -symmetric non-Hermitian system,

H1d = p2

2
+ 1

2
�2x2, (C1)

where � = ω1 + iω2 and ω1,2 are real and ω1,2 �= 0.
We intend to verify the modified HFT,〈

∂H1d

∂λ

〉
G,(n)

= ∂En

∂λ
, (C2)

for the above system for an arbitrary nth state with three
different choices of λ:

(1) First choice, λ = ω1: Considering the relations in
equations from Eqs. (30) to (32), we can write〈

∂H1d

∂ω1

〉
G,(n)

= 〈n̄|�x2|n〉 = 1

2
〈n̄|a+2 + a2 + a+a + aa+|n〉

= 1

2
〈n̄|2n + 1|n〉 =

(
n + 1

2

)
. (C3)

And it is straightforward to check that

∂En

∂ω1
=
(

n + 1

2

)
=
〈
∂H1d

∂ω1

〉
G,(n)

. (C4)
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(2) Second choice, λ = ω2: Here too it is straightforward
to check:〈

∂H1d

∂ω2

〉
G,(n)

= 〈n̄|i�x2|n〉

= i

2
〈n̄|a+2 + a2 + a+a + aa+|n〉

= i

2
〈n̄|2n + 1|n〉 = i

(
n + 1

2

)
. (C5)

Again,

∂En

∂ω2
= i

(
n + 1

2

)
=
〈∂H1d

∂ω2

〉
G,(n)

. (C6)

(3) Third choice, λ = �: Similarly for this choice,〈
∂H1d

∂�

〉
G,(n)

= 〈n̄|�x2|n〉

= 1

2
〈n̄|a+2 + a2 + a+a + aa+|n〉

= 1

2
〈n̄|2n + 1|n〉 =

(
n + 1

2

)
. (C7)

Again,

∂En

∂�
=
(

n + 1

2

)
=
〈∂H1d

∂�

〉
G,(n)

. (C8)

From Eqs. (C4), (C6), and (C8), we see that the modified
HFT is valid in case of a non-PT -invariant, non-Hermitian
system as well.
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[29] K. Karaca and İ. Temizer, Variationally consistent Hellmann–
Feynman forces in the finite element formulation of Kohn–
Sham density functional theory, Comput. Methods Appl. Mech.
Eng. 403, 115674 (2023).

[30] O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger, I.
Poltavsky, K. T. Schütt, A. Tkatchenko, and K.-R. Müller, Ma-
chine learning force fields, Chem. Rev. 121, 10142 (2021).

[31] Q.-L. Liu, Pseudo-mass parameterized alchemical equation:
A generalisation of the molecular Schrödinger equation,
arXiv:2012.00843.

[32] G. P. Zhang and T. F. George, Breakdown of the Hellmann-
Feynman theorem: Degeneracy is the key, Phys. Rev. B 66,
033110 (2002).

[33] N. Roy and A. Sharma, Study of counterintuitive transport
properties in the Aubry-André-Harper model via entanglement
entropy and persistent current, Phys. Rev. B 100, 195143
(2019).

[34] F. M. Fernández, On the Hellmann-Feynman theorem for de-
generate states, arXiv:1912.04876.

[35] V. V. Konotop, J. Yang, and D. A. Zezyulin, Nonlinear waves in
PT -symmetric systems, Rev. Mod. Phys. 88, 035002 (2016).

[36] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional
topology of non-Hermitian systems, Rev. Mod. Phys. 93,
015005 (2021).

[37] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H.
Musslimani, Beam dynamics in PT symmetric optical lattices,
Phys. Rev. Lett. 100, 103904 (2008).

[38] S. Klaiman, U. Günther, and N. Moiseyev, Visualization of
branch points in PT -symmetric waveguides, Phys. Rev. Lett.
101, 080402 (2008).

[39] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao,
and D. N. Christodoulides, Unidirectional invisibility induced
by PT -symmetric periodic structures, Phys. Rev. Lett. 106,
213901 (2011).

[40] J. Wiersig, Enhancing the sensitivity of frequency and energy
splitting detection by using exceptional points: Application to
microcavity sensors for single-particle detection, Phys. Rev.
Lett. 112, 203901 (2014).

[41] R. Hamazaki, K. Kawabata, and M. Ueda, Non-Hermitian
many-body localization, Phys. Rev. Lett. 123, 090603
(2019).

[42] K. Kawabata and S. Ryu, Nonunitary scaling theory of
non-Hermitian localization, Phys. Rev. Lett. 126, 166801
(2021).

[43] T. Pal, R. Modak, and B. P. Mandal, DNA unzipping as PT-
symmetry breaking transition, arXiv:2212.14394.

[44] M. S. Rudner and L. S. Levitov, Topological transition in a non-
Hermitian quantum walk, Phys. Rev. Lett. 102, 065703 (2009).

[45] J. M. Zeuner, M. C. Rechtsman, Y. Plotnik, Y. Lumer, S. Nolte,
M. S. Rudner, M. Segev, and A. Szameit, Observation of a
topological transition in the bulk of a non-Hermitian system,
Phys. Rev. Lett. 115, 040402 (2015).

[46] T. E. Lee, Anomalous edge state in a non-Hermitian lattice,
Phys. Rev. Lett. 116, 133903 (2016).

[47] Y. Xu, S.-T. Wang, and L.-M. Duan, Weyl exceptional rings in a
three-dimensional dissipative cold atomic gas, Phys. Rev. Lett.
118, 045701 (2017).

[48] S. Dhar, S. Dasgupta, A. Dhar, and D. Sen, Detection of a
quantum particle on a lattice under repeated projective measure-
ments, Phys. Rev. A 91, 062115 (2015).

[49] R. Modak and S. Aravinda, Non-Hermitian description of sharp
quantum resetting, arXiv:2303.03790.

[50] C. M. Bender, D. C. Brody, and H. F. Jones, Complex extension
of quantum mechanics, Phys. Rev. Lett. 89, 270401 (2002).

[51] C. M. Bender, Introduction to PT -symmetric quantum theory,
Contemp. Phys. 46, 277 (2005).

[52] A. Khare and B. P. Mandal, A PT-invariant potential with com-
plex QES eigenvalues, Phys. Lett. A 272, 53 (2000).

[53] R. Modak and B. P. Mandal, Eigenstate entanglement entropy
in a PT -invariant non-Hermitian system, Phys. Rev. A 103,
062416 (2021).

[54] H. Raval and B. P. Mandal, Deconfinement to confinement as
PT phase transition, Nucl. Phys. B 946, 114699 (2019).

[55] B. P. Mandal, Pseudo-Hermitian interaction between an oscilla-
tor and a spin-1/2 particle in the external magnetic field, Mod.
Phys. Lett. A 20, 655 (2005).

[56] B. P. Mandal, B. K. Mourya, K. Ali, and A. Ghatak, PT phase
transition in a (2 + 1)-d relativistic system, Ann. Phys. (NY)
363, 185 (2015).

[57] B. P. Mandal, B. K. Mourya, and R. K. Yadav, PT phase
transition in higher-dimensional quantum systems, Phys. Lett.
A 377, 1043 (2013).

[58] C.-Y. Ju, A. Miranowicz, G.-Y. Chen, and F. Nori, Non-
Hermitian Hamiltonians and no-go theorems in quantum
information, Phys. Rev. A 100, 062118 (2019).

[59] N. Shukla, R. Modak, and B. P. Mandal, Uncertainty rela-
tion for non-Hermitian systems, Phys. Rev. A 107, 042201
(2023).

[60] M. Chitsazi, H. Li, F. M. Ellis, and T. Kottos, Experimental
realization of floquet PT -symmetric systems, Phys. Rev. Lett.
119, 093901 (2017).

[61] T. Biesenthal, M. Kremer, M. Heinrich, and A. Szameit, Ex-
perimental realization of PT -symmetric flat bands, Phys. Rev.
Lett. 123, 183601 (2019).

[62] M. Kremer, T. Biesenthal, L. J. Maczewsky, M. Heinrich, R.
Thomale, and A. Szameit, Demonstration of a two-dimensional
PT -symmetric crystal, Nat. Commun. 10, 435 (2019).

[63] L. Ding, K. Shi, Q. Zhang, D. Shen, X. Zhang, and W.
Zhang, Experimental determination of PT -symmetric excep-
tional points in a single trapped ion, Phys. Rev. Lett. 126,
083604 (2021).

022227-12

https://doi.org/10.1103/PhysRevB.107.195150
https://doi.org/10.1088/1367-2630/acc6e6
https://doi.org/10.1103/PhysRevB.106.085108
https://doi.org/10.1103/PhysRevB.107.165157
https://doi.org/10.1103/PhysRevB.104.L100506
https://arxiv.org/abs/2305.02798
https://doi.org/10.1016/j.cma.2022.115674
https://doi.org/10.1021/acs.chemrev.0c01111
https://arxiv.org/abs/2012.00843
https://doi.org/10.1103/PhysRevB.66.033110
https://doi.org/10.1103/PhysRevB.100.195143
https://arxiv.org/abs/1912.04876
https://doi.org/10.1103/RevModPhys.88.035002
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1103/PhysRevLett.100.103904
https://doi.org/10.1103/PhysRevLett.101.080402
https://doi.org/10.1103/PhysRevLett.106.213901
https://doi.org/10.1103/PhysRevLett.112.203901
https://doi.org/10.1103/PhysRevLett.123.090603
https://doi.org/10.1103/PhysRevLett.126.166801
https://arxiv.org/abs/2212.14394
https://doi.org/10.1103/PhysRevLett.102.065703
https://doi.org/10.1103/PhysRevLett.115.040402
https://doi.org/10.1103/PhysRevLett.116.133903
https://doi.org/10.1103/PhysRevLett.118.045701
https://doi.org/10.1103/PhysRevA.91.062115
https://arxiv.org/abs/2303.03790
https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1080/00107500072632
https://doi.org/10.1016/S0375-9601(00)00409-6
https://doi.org/10.1103/PhysRevA.103.062416
https://doi.org/10.1016/j.nuclphysb.2019.114699
https://doi.org/10.1142/S0217732305016488
https://doi.org/10.1016/j.aop.2015.09.022
https://doi.org/10.1016/j.physleta.2013.02.023
https://doi.org/10.1103/PhysRevA.100.062118
https://doi.org/10.1103/PhysRevA.107.042201
https://doi.org/10.1103/PhysRevLett.119.093901
https://doi.org/10.1103/PhysRevLett.123.183601
https://doi.org/10.1038/s41467-018-08104-x
https://doi.org/10.1103/PhysRevLett.126.083604


HELLMANN-FEYNMAN THEOREM IN NON-HERMITIAN … PHYSICAL REVIEW A 109, 022227 (2024)

[64] S. Yu, Y. Meng, J.-S. Tang, X.-Y. Xu, Y.-T. Wang, P. Yin, Z.-
J. Ke, W. Liu, Z.-P. Li, Y.-Z. Yang, G. Chen, Y.-J. Han, C.-F.
Li, and G.-C. Guo, Experimental investigation of quantum PT -
enhanced sensor, Phys. Rev. Lett. 125, 240506 (2020).

[65] R. Uzdin and R. Lefebvre, Finding and pinpointing exceptional
points of an open quantum system, J. Phys. B: At. Mol. Opt.
Phys. 43, 235004 (2010).

[66] P. Stránský and P. Cejnar, Superradiance in finite quantum sys-
tems randomly coupled to continuum, Phys. Rev. E 100, 042119
(2019).

[67] S. Kvaal, Three Lagrangians for the complete-active space
coupled-cluster method, J. Chem. Phys. 158, 244113
(2023).

[68] F. Werner, Virial theorems for trapped cold atoms, Phys. Rev.
A 78, 025601 (2008).

[69] J. E. Thomas, J. Kinast, and A. Turlapov, Virial theorem and
universality in a unitary Fermi gas, Phys. Rev. Lett. 95, 120402
(2005).

[70] F. Werner and Y. Castin, Unitary gas in an isotropic harmonic
trap: Symmetry properties and applications, Phys. Rev. A 74,
053604 (2006).

[71] T. Shi and C. P. Sun, Recovering unitarity of Lee model in
biorthogonal basis, arXiv:0905.1771.

[72] F. Kleefeld, The construction of a general inner product in
non-Hermitian quantum theory and some explanation for the
nonuniqueness of the C operator in PT quantum mechanics,
arXiv:0906.1011.

[73] Y.-C. Tzeng, C.-Y. Ju, G.-Y. Chen, and W.-M. Huang, Hunting
for the non-Hermitian exceptional points with fidelity suscepti-
bility, Phys. Rev. Res. 3, 013015 (2021).

[74] F. G. Scholtz, H. B. Geyer, and F. J. W. Hahne, Quasi-Hermitian
operators in quantum mechanics and the variational principle,
Ann. Phys. (NY) 213, 74 (1992).

[75] A. Mostafazadeh, Pseudo-Hermitian representation of quan-
tum mechanics, Int. J. Geom. Methods Mod. Phys. 07, 1191
(2010).

[76] M. Huang, R.-K. Lee, L. Zhang, S.-M. Fei, and J. Wu, Sim-
ulating broken PT -symmetric Hamiltonian systems by weak
measurement, Phys. Rev. Lett. 123, 080404 (2019).

[77] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H.
Denschlag, and R. Grimm, Crossover from a molecular Bose-
Einstein condensate to a degenerate Fermi gas, Phys. Rev. Lett.
92, 120401 (2004).

[78] J. T. Stewart, J. P. Gaebler, C. A. Regal, and D. S. Jin, Potential
energy of a 40K Fermi gas in the BCS-BEC crossover, Phys.
Rev. Lett. 97, 220406 (2006).

[79] T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy,
M. Teichmann, L. Tarruell, S. J. J. M. F. Kokkelmans,
and C. Salomon, Experimental study of the BEC-BCS
crossover region in lithium 6, Phys. Rev. Lett. 93, 050401
(2004).

[80] N. Hatano and D. R. Nelson, Localization transitions in
non-Hermitian quantum mechanics, Phys. Rev. Lett. 77, 570
(1996).

022227-13

https://doi.org/10.1103/PhysRevLett.125.240506
https://doi.org/10.1088/0953-4075/43/23/235004
https://doi.org/10.1103/PhysRevE.100.042119
https://doi.org/10.1063/5.0148988
https://doi.org/10.1103/PhysRevA.78.025601
https://doi.org/10.1103/PhysRevLett.95.120402
https://doi.org/10.1103/PhysRevA.74.053604
https://arxiv.org/abs/0905.1771
https://arxiv.org/abs/0906.1011
https://doi.org/10.1103/PhysRevResearch.3.013015
https://doi.org/10.1016/0003-4916(92)90284-S
https://doi.org/10.1142/S0219887810004816
https://doi.org/10.1103/PhysRevLett.123.080404
https://doi.org/10.1103/PhysRevLett.92.120401
https://doi.org/10.1103/PhysRevLett.97.220406
https://doi.org/10.1103/PhysRevLett.93.050401
https://doi.org/10.1103/PhysRevLett.77.570

