
PHYSICAL REVIEW A 109, 022226 (2024)

Steady-state charging of quantum batteries via dissipative ancillas
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We investigate the steady-state charging process of a single-cell quantum battery embedded in an N-cell star
network of qubits, each interacting with a fermion reservoir, collectively and individually in equilibrium and
nonequilibrium scenarios, respectively. We find an optimal steady-state charging in both scenarios, which grows
monotonically with the reservoirs’ chemical potential and chemical potential difference, where the high base
temperature of the reservoirs has a destructive role in all parameter regimes. We indicate that regardless of the
strength of the nonequilibrium condition, the high base chemical potential of the battery’s corresponding reser-
voir can significantly enhance the charging process. On the other hand, a weak-coupling strength can strongly
suppress the charging. Consequently, our results could counteract the detrimental effects of self-discharging and
provide valuable guidelines for enhancing the stable charging of open quantum batteries in the absence of an
external charging field.
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I. INTRODUCTION

In recent years, there has been a significant increase in
research on the miniaturization of technological devices, lead-
ing to the emergence of promising technologies such as
quantum batteries i.e., quantum systems that supply energy
[1,2]. Quantum batteries represent a vital field of research
that concerns designing optimal energy storage protocols for
transferring to quantum devices [3,4]. They can be charged
with a higher power and at a faster rate compared to their
classical counterparts by using quantum resources such as co-
herence and entanglement [1,5–9]. Already, researchers have
proposed various protocols to improve the charging process
of quantum batteries [10–15]. Additionally, there has been
progress towards experimental implementation [16–22].

A variety of different scenarios have been envisioned for
quantum batteries as a set of two-level systems. In such set-
tings, the highest possible energy extraction via cyclic unitary
processes is a central factor. This involves the use of ergotropy
and finding the most effective unitary operation to bring the
system to its corresponding passive state [23,24], where the
battery is considered empty. To the best of our knowledge,
research on closed [12–14,25,26] and open quantum batteries
[15,27–36] has made significant progress. In the first scenario,
the battery and charger are not impacted by the environment,
including Dicke quantum batteries [12,14], random quantum
batteries [25], spin-chain quantum batteries [13], a quantum
battery made of noninteracting two-level atoms that can be
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fully charged using a harmonic charging field [26], and so
on. Implementing second-case quantum batteries in an open
quantum system framework is important to discuss and ensure
feasibility. Research on open quantum batteries has mainly fo-
cused on analyzing different environmental models. A crucial
aspect of this case is developing efficient strategies to miti-
gate environmental damage to quantum battery performance.
Recent studies suggest that strong couplings between a quan-
tum battery and its environment may cause non-Markovian
effects and improve quantum battery performance [27,28]. As
another open quantum battery protocol, the authors boost the
charging power and capacity by utilizing dark states, where
noninteracting spins are coupled to a reservoir [29]. Further-
more, among the myriad challenges of quantum batteries, one
of the most critical is the issue of self-discharging caused
by environmental factors [31–33]. This process leads to the
gradual loss of charge due to the intrinsic traits of the system
employed as the energy storage medium, and this occurs in-
dependently of whether the battery is linked to a consumption
hub. However, it is possible that the interaction with the envi-
ronment becomes beneficial for work storage resources under
some new approaches, where there is no requirement for an
extra charger or booster to counteract environmental damage.

Recently, there has been growing interest in the study of
steady states in both equilibrium and nonequilibrium envi-
ronments [37–40]. Research indicates that entanglement and
coherence are quantum phenomena that can persist in steady
states, even when the system interacts with the environment
through information, matter, and energy exchange. At equilib-
rium, the system collectively interacts with the environment at
a finite temperature and/or chemical potential, while nonequi-
librium conditions are retained by a constant temperature or
chemical potential difference to drive energy or matter flow
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through the quantum system and environments, resulting in
a steady deviation from equilibrium regime. Undoubtedly, the
remaining quantum properties in steady states open a new path
towards the production, protection, and control of ergotropy
through equilibrium and nonequilibrium regimes.

In this paper, aiming at using the environment-induced
capability for quantum battery charging, we focus on mostly
unexplored aspects of the steady-state charging process. To
this goal, we consider an N-qubit star network where a single-
cell quantum battery is embedded in the center of the network
and couples with an arbitrary number of ancillas. Then, we
numerically investigate the steady-state charging process of
the single-cell quantum battery when each cell interacts with a
fermion reservoir that can exchange particles with the system
in both equilibrium and nonequilibrium settings. Our investi-
gations suggest a substantial steady-state charging when the
network is coupled to fermion reservoirs, where the chemical
potential of reservoirs can cause diverse and intense effects,
regardless of the initial state or coupling regime. In light of
these results, we provide protocols for the realization of opti-
mal open quantum batteries without an external charging field.
Moreover, we propose a quantum battery capable of being
charged within an environment that induces self-discharging,
permanently storing this charge in a steady-state rather than
temporarily. This method of energy storage eliminates the
need for an external charger, rendering it highly energetically
efficient. Notably, the achieved steady state is independent
of the initial state, thus enabling the selection of the most
unconstrained state, such as one lacking any prior excitation
preparation.

The remainder of the paper is arranged as follows. Sec-
tion II introduces the our model and provides the relevant
physical quantities to characterize the behavior of the quan-
tum battery. Then we discuss the charging process of the
quantum battery for both equilibrium and nonequilibrium
regimes in Sec. III by presenting numerical results. We finally
conclude in Sec. IV with a short summary.

II. MODEL AND METHODS

The model under consideration is illustrated in Fig. 1. As
can be seen, each qubit (or two-level systems) is coupled by a
dipole-dipole interaction to another qubit in an N-qubit star
network, and a quantum battery is embedded in the center
of it. The system cells are assumed to be identical as a two-
level system with excitation state |e〉 and ground state |g〉 and
the same transition frequency ωi = ω0 (i = 1, . . . , N). The
Hamiltonian of the coupled qubit system during the charging
process reads (h̄ = kB = 1 in the following)

HS =
N∑

i=1

ω0σ
i
z +

N−1∑
i=1

J (σ 1
+σ i+1

− + σ 1
−σ i+1

+ ), (1)

where σ j ( j = x, y, z) are the usual Pauli matrices and J being
the interqubit coupling strength. Here, σ i

+ and σ i
− are the Pauli

raising and lowering operators for ith qubits, respectively.
In this paper, the charging process of quantum battery

is nonunitary, while the maximum extractable work can be
calculated by an unitary cyclic evolution when we couple the

FIG. 1. A schematic diagram for the N-qubit star configura-
tion via coupled two-level systems with transition frequencies ω0

connected by dipole-dipole interactions, where J is the coupling
strength. The qubit labeled with (1) is a central single-cell quantum
battery, which interacts with all other (N − 1) cells surrounding it.

battery to some consumption hub in the following form [23],

E(ρQB) = tr(ρQBHQB) − min
U

tr(UρQBU †HQB), (2)

where the optimization is performed for unitary operators U
in the particular unitary group SU(d ). Therefore, the maxi-
mum amount of work that can be extracted from a system is
determined by

E(ρQB) = tr(ρQBHQB) − tr(σQBHQB). (3)

Such an amount of energy is well known as ergotropy [23].
Here, σQB is the passive state (the empty battery state),
since no work can be extracted from it or tr(σQBHQB) �
tr(UσQBU †HQB). A density matrix ρ is passive if and only if it
is diagonal in the basis of the Hamiltonian, and its eigenvalues
are nonincreasing with the energy [24]. We define Emax as the
maximum achievable work of the quantum battery. Thus, the
ergotropy can be normalized with respect to the maximum
amount of work and denoted asW = E/Emax. Subsequently,
for the sake of brevity throughout this paper, the term er-
gotropy refers to the normalized ergotropy.

III. RESULTS

In this paper, we focus on situations where the ergotropy
storage resources can survive in the steady-state solutions of
dynamics in the presence of an arbitrary number of dissipative
ancillas by different scenarios. In the following, we investigate
the steady-state charging process of a single-cell quantum
battery first for the equilibrium setup and then move on to the
nonequilibrium scenario.
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A. Equilibrium case

First, we will assume that N two-level systems are located
in a reservoir that follows fermionic statistics with the chem-
ical potential μ and the temperature T , where the system
particles collectively coupled to the environment and the sys-
tem can exchange particles with the fermion reservoir. Note
that in boson reservoirs (such as photon baths), the particle
number is not conserved and the chemical potential practically
vanishes. Therefore, it is apparent that Bose-Einstein statistics
are not applicable for examining the role of chemical potential
in the charging process of open quantum batteries. The total
system’s Hamiltonian is expressed as H = HS + HR + Hint,
with

HR =
∑

k

ωk c†
kck, (4)

and

Hint =
N∑

i=1

∑
k

fik (σ (i)
− c†

k + σ
(i)
+ ck ). (5)

In this context, HR represents the free Hamiltonian of the
reservoir, where ck and c†

k denote the annihilation and creation
operators, respectively, for the kth mode with frequencies ωk

within the reservoir. Hint signifies the qubit-reservoir inter-
action Hamiltonian while operating under the rotating-wave
approximation, and fik denotes the real-valued qubit-reservoir
coupling strengths for the ith qubits.

The quantum master equation for the reduced density oper-
ator of such a system under Born-Markov approximations in
a weak-coupling regime is given by [41,42]

dρ

dt
= D[ρ] = −i [HS, ρ] +D−(ρ) +D+(ρ), (6)

where

D−(ρ) =
N∑

i, j=1

γ [1 − n(ω)]

(
σ−

j ρ σ+
i − 1

2
{σ+

i σ−
j , ρ}

)
(7)

and

D+(ρ) =
N∑

i, j=1

γ n(ω)

(
σ+

j ρ σ−
i − 1

2
{σ−

i σ+
j , ρ}

)
(8)

describe the spontaneous and thermally induced emission
(dissipation) and thermally induced absorption (incoherent
driving) processes, respectively, where {A, B} = AB + BA.
In the above, γ is the frequency-independent spectral den-
sity of the reservoir in contact with the subsystems. n(ω) =
[exp (ω − μ)/T + 1]−1 is the average particle number on
frequency ω in the fermion reservoir, which follows the
Fermi-Dirac statistics. Note that the system can exchange par-
ticles with the fermion reservoirs in processes conserving the
particle number (e.g., in quantum dot systems). In the long-
time limit, the system relaxes to the steady state regardless of
the initial conditions. One way to achieve a dynamic steady
state is to set the derivative of ρ with respect to time to zero in
Eq. (6), denoted as ρ̇ = 0. Finding the solution to the algebraic
equation D[ρ] = 0 is equivalent to identifying the eigenvector
of the linear map D[·] corresponding to a zero eigenvalue. The
matrix representation of terms MρN in the Liouvillian D[·]

FIG. 2. The ergotropy for the equilibrium case as a function of
μγ for different values of the temperature T . The parameters are set
as N = 3, ω0 = 10γ , and ω = J = γ .

is represented by the Kronecker product M⊗N† · �ρ, where
�ρ is the column vector formed by appending the rows of the
density matrix ρ and then transposing the result. We utilize the
QUTIP library, which offers various built-in tools for solving
master equations in Lindblad form [43,44].

In the following, we investigate the ergotropy W in re-
lation to particle exchange (chemical potential) for different
values of temperature by Fig. 2. It can be seen the ergotropy is
a monotonically increasing function of the reservoir chemical
potential, with a value of zero when μ � ω. In the other
words, the chemical potential dependence reaches its mini-
mum value at μ = ω and exhibits a monotonic change as μ

crosses ω. Excitingly, the increase in reservoir temperature
leads to a reduction in ergotropy due to the thermal effects.
Therefore, in this equilibrium fermion reservoir setting, the
full-charged quantum battery can be approached as T → 0
at μ � ω and fixed J . Ultimately, it is worth noting that the
steady-state ergotropy behavior suggests reliable and stable
charging of a quantum battery without any loss or deteri-
oration due to the decay effects of the environment in a
equilibrium setting.

B. Nonequilibrium case

The nonequilibrium system under consideration composed
of the N coupled identical qubits that are immersed in their
own fermion reservoirs with different chemical potentials and
temperatures, where we are assuming individual decay for
each qubit. The Hamiltonian for the total system reads H =
HS + HR + Hint, with

HR =
N∑

j=1

∑
k

ω jk b†
jkb jk (9)

and

Hint =
N∑

i= j

∑
k

g jk (σ ( j)
− b†

jk + σ
( j)
+ b jk ). (10)

HR is the free Hamiltonian of the reservoirs, where b jk and
b†

jk are the annihilation and creation operators, respectively,
for the kth mode with frequencies ω jk in the jth reservoir.
Hint is the qubit-reservoir interaction Hamiltonian under the
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FIG. 3. The ergotropy for the nonequilibrium case as a function
of �(μγ ) for different values of μ1 = μ at T = γ . Other parameters
are the same as in Fig. 2.

rotating-wave approximation, and g jk is the qubit-reservoir
coupling strengths assumed to be real.

The dissipative dynamics of the system is described by a
master equation of the form (6) with [37,42]

D−(ρ) =
N∑

i=1

γ [1 − ni(ω)]

(
σ−

i ρ σ+
i − 1

2
{σ+

i σ−
i , ρ}

)
,

(11)

and

D+(ρ) =
N∑

i=1

γ ni(ω)

(
σ+

i ρ σ−
i − 1

2
{σ−

i σ+
i , ρ}

)
, (12)

where ni(ω) = [exp (ω − μi )/Ti + 1]−1 is the average particle
number on frequency ω, with μi and Ti being the chemical
potential and the temperature of the ith reservoir, respectively.

As a special case, we consider the N coupled qubits in
contact with their individual fermion reservoirs with the same
temperature Ti = T but different chemical potentials μ1 = μ

and μi = μ + �μ (i = 2, . . . , N). The nonequilibrium condi-
tion is characterized by the chemical potential difference �μ.
The ergotropy W as functions of �μ for different values of
μ1 = μ is plotted in Fig. 3. The parameters of ω, J , and γ

are the same as those for the equilibrium bath case. As can

FIG. 4. The ergotropy for the nonequilibrium case as a function
of Jγ at μ = γ , �μ = 2γ , and T = γ . Other parameters are the
same as in Fig. 2.

FIG. 5. The ergotropy for the nonequilibrium case as a function
of the temperature T γ at J = γ . Other parameters are the same as in
Fig. 4.

be seen, ergotropy has a manifest behavior with respect to
�μ, depending on the value of the base chemical potential
μ1. For μ1 � ω the ergotropy monotonically increases from
its equilibrium value as increases �μ. As μ1 becomes large
enough (e.g., μ1 = 8), the ergotropy is significantly maxi-
mized regardless of how large is �μ. Also, the ergotropy
also approaches some fixed values as �μ grows large enough.
The graph of W as a function of the coupling strength J is
shown in Fig. 4, with the temperature fixed at a relatively
low value T = 1. As can be expected, the ergotropy increases
with the interqubit coupling strength in general. Although,
when J is minor, the ergotropy is greatly reduced, however, for
larger couplings (e.g., J � ω), regardless of their values, the
ergotropy displays similar trends with respect to J . Our results
also indicate that the thermal effect caused by the temperature
of the reservoirs has a destructive effect on the maximum
charge of the battery, so that at the high-temperature limit the
battery remains almost empty (see Fig. 5). Surprisingly, the
difference between the role of the thermodynamic variables
(T and μ) in Fermi-Dirac statistics has primarily contributed
to this result. Additionally, in Fig. 6, we observe a significant
advantage in the number of auxiliary cells used for quantum
battery charging. It is evident that for small values of N , even
an increment of one cell will significantly shift the maximum

FIG. 6. The ergotropy for the nonequilibrium case as a function
of �(μγ ) for different values of the number of cells N at T = γ , and
μ = 0. Other parameters are the same as in Fig. 2.
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ergotropy, making it impossible to charge the battery without
the assistance of an ancilla. As the value of N decreases, a
stronger bias is required to charge the battery. However, this
sensitivity diminishes for larger values of the cell number.

Finally, judging from the maximum ergotropy that can be
asymptotically achieved or approached, the equilibrium and
nonequilibrium fermion reservoirs with particle exchange en-
hance quantum battery charging without requiring an external
charging field. We note that the steady-state ergotropy demon-
strates a straightforward pattern in the present scenarios,
allowing the battery to be charged consistently and sustainably
without initial restrictions, while also safeguarding it against
environmental influences, such as self-discharging.

IV. CONCLUSION

In this paper, using the Born-Markov master equation,
we studied the steady-state charging process of a single-cell
quantum battery embedded in the center of a star network
comprising N qubits, under two different equilibrium and
nonequilibrium scenarios. We derived numerical solutions for
the dynamic steady state, enabling us to analyze ergotropy be-
haviors when taking the partial trace over surrounding qubits.
In the equilibrium case, we found that the ergotropy with the
chemical potential grows monotonically and for some param-
eter regimes it is independent of the coupling strength or the
number of qubits. In the nonequilibrium case, ergotropy be-
haves as a monotonic function with nonequilibrium conditions
(chemical potential difference) and the high base chemi-
cal potential of the reservoir corresponding to the quantum
battery strongly boosts the steady-state charging regardless of

the chemical potential difference, whereas if the base tem-
perature is high enough or the coupling strength between
qubits is weak, ergotropy is strongly suppressed regardless
of the strength of the nonequilibrium condition. Furthermore,
our research shows that when qubits are coupled to fermion
reservoirs that exchange particles with the system, there is a
significant improvement in quantum battery charging.

Our results suggest some efficient strategies that may
be useful for optimizing the steady-state charging of open
quantum batteries and mitigating the detrimental impact of
self-discharging without requiring auxiliary charging fields.
Among these, one can address the use of fermion reser-
voirs with a low base temperature, a strong enough coupling
strength between qubits, establishing nonequilibrium condi-
tions by a chemical potential difference, connecting qubits
with a higher transition frequency to reservoirs with a lower
frequency, and connecting the battery to reservoirs with a
relatively high base chemical potential in nonequilibrium
situations. Therefore, the present findings may catalyze the
future exploration of an innovative approach to environment-
mediated charging, eliminating the need for an external
charging field—a topic that has received limited research
attention until now. In the other words, the general guide-
lines outlined here have the potential to facilitate additional
research on steady-state ergotropy in the field of quantum
batteries, enabling evaluation across diverse scenarios.
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