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Complexity for one-dimensional discrete-time quantum walk circuits
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We compute the complexity for the mixed-state density operator derived from a one-dimensional discrete-
time quantum walk (DTQW). The complexity is computed using a two-qubit quantum circuit obtained from
canonically purifying the mixed state. We demonstrate that the Nielson complexity for the unitary evolution
oscillates around a mean circuit depth of k. Further, the complexity of the stepwise evolution operator grows
cumulatively and linearly with the steps. From a quantum circuit perspective, this implies a succession of circuits
of (near) constant depth to be applied to reach the final state.
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I. INTRODUCTION

Nielsen’s complexity (NC) [1–7], which is conjectured to
quantify the optimal number of quantum gates needed (with a
predecided set of elementary gateset) to construct a target state
starting from a reference state, has been of particular interest
to the high-energy physics community in recent years. It was
also suggested in [3] to be related to circuit depths since circuit
depth in an actual quantum circuit is also a measure (although
not necessarily optimal) of the number of gates needed to
implement a certain task. However, the exact connection of
the NC measure with the number of gates in quantum cir-
cuits is far from being fully understood. The reason is the
ambiguity of precisely mapping the complexity measure to the
quantum circuit picture. A better understanding of a possible
link between circuit depth and Nielsen’s complexity proposal
could provide an analytical handle on the practical circuit
building using quantum gates and ask whether the circuit in
question is optimal. From the reverse point of view, it is only
logical to bring the analytically well-defined notion of circuit
complexity proposal closer to actual circuits in quantum simu-
lations. Otherwise, relating the mathematically computed NC
to something physically meaningful becomes hard. This work
explores this question from the discrete-time quantum walk
(DTQW) perspective.

Quantum walks, a quantum mechanical analog to clas-
sical random walks [8,9], provide a powerful framework
in quantum computing for algorithms like quantum search
and optimization [10–13]. They are also proven successful
frameworks for modeling quantum systems, such as simulat-
ing Dirac equations [14–16] as well as modeling biological
processes [17,18]. In a discrete-time quantum walk, a quan-
tum particle or a qubit is allowed to move along a discrete
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graph or lattice in discrete-time steps. At each discrete-time
step, the particle state undergoes a unitary operation that
consists of two operators, namely, the coin and the shift
operators. The coin operator operates as a rotation within
the qubit space, while the shift operator serves to translate
the particle to another vertex within the lattice. DTQWs
have emerged as pivotal tools in the realm of quantum in-
formation processing, finding widespread applications in the
development of diverse quantum algorithms [19–21], model-
ing of quantum systems [22–28], and extensively investigated
across various settings [29–31]. DTQWs have been success-
fully implemented in experimental settings using lattice-based
quantum systems, wherein the position space is mapped onto
discrete lattice sites [32–40]. Additionally, these quantum
walks have been realized through circuit-based quantum pro-
cessors, which allow the computation of the complexity of the
circuit [15,41,42].

However, we are not concerned directly with the circuit
implementation of the DTQW for this work. Instead, we focus
on computing the complexity of the qubit state (or coin state)
associated with the quantum particle. To this end, we trace out
the position space and focus on the reduced density matrix
associated with the qubit [see Eqs. (6) and (9)]. The com-
plexity of the single-qubit mixed state is then computed by
canonically purifying the reduced density matrix, after which
it becomes a two-qubit pure state. This purification process
can be implemented by a corresponding two-qubit circuit and
that will be our main interest in this paper.

At this point, it is worth pointing out that NC measures
the length of the minimal geodesic in the space of “response
functions” [43] from the initial to the final state. However, a
DTQW is implemented stepwise, and the information about
the stepwise evolution is lost if we naively compute the
geodesic length (direct complexity) connecting the initial and
final steps. We refer the reader to the schematic diagram in
Fig. 1 for now. This difference between the direct and stepwise
complexities will be crucial in associating the complexity with
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FIG. 1. Comparing the direct and stepwise evolution from an
initial state |�I 〉 to |�F 〉.

the circuit depth of practically realizable quantum circuits. We
will get back to the details of these two definitions later in the
paper.

II. RESULTS

The main results of our work are comparing the two ap-
proaches for determining the complexity for the 1D DTQW
using stepwise and direct evolution. This comparison is done
for k = 1, 2, 3 local operators in Sec. V. Here the k-local
notion comes from the number of Majorana fermionic oper-
ators considered in constructing the generators. We construct
explicit solutions of geodesic trajectories in the space of the
unitaries as a function of the affine parameter by solving
the geodesic equation (27) for the k-local cases. These so-
lutions are useful in constructing the target unitary operator,
albeit their functional forms are irrelevant to the complexity
computation.

The complexity for the direct evolution follows an oscil-
latory pattern around a mean depth, which varies with the
locality of operators. This indicates that the walk is truly
random, and the complexity for different states at different
times compared to a single reference state does not show any
correlated growth. The stepwise evolution, on the other hand,
is linear in steps, where the slope is a function of the coin
angle. The step-wise complexity can also indeed be mapped
to a quantum circuit of constant circuit depth and composed
of universal quantum gates. This study, therefore, enables a
comparison between the Nielsen complexity and the quantum
circuit depth. Although they do not correspond to the same
quantity mathematically, the similarities in scaling suggest an
approximate relation between them.

The remainder of the work is organized as follows. In
Sec. III, we give an account of the 1d DTQW using the SU(2)
coin. In Sec. IV, we construct the unitary target operator
that takes a simple unentangled reference state to our desired
canonically purified target state. In Sec. V, we construct the
explicit form of the unitary operator by looking at the explicit
k-local solutions to the geodesic equation. Specifically, in
Sec. V D, we compare the two distinct methods to compute the
complexity using the direct evolution and stepwise evolution
of the walk. In Sec. VI, we give an elementary account of the
quantum circuit that represents the stepwise unitary operator

Ustep, using elementary one- and two-qubit gates U (θ, φ, λ)
and CNOT gates. We end the work with discussions in Sec. VII
on the questions we have left unanswered in the work and
wish to complete them in future followups.

III. 1D DISCRETE TIME QUANTUM WALK

The 1D discrete-time quantum walk (DTQW) we study is
given by the unitary evolution of a quantum state on a line.
The evolution is governed by the operator

U = S[C(θ ) ⊗ IN ], (1)

where S is the shift operator

S =
∑

x

(|↑, x + 1〉〈↑, x| + |↓, x − 1〉〈↓, x|), (2)

where |↑〉, |↓〉 are the directions of motion (to the left or right)
of a particular node x ∈ N where N is the number of nodes.
The coin operator C given by

C(θ ) =
∑

i, j∈↑,↓
ci j (θ )|i〉〈 j| (3)

controls the weights of motion in particular directions. For our
case, we consider a subset of the SU(2) coin operator

C(θ ) =
(

cos θ sin θ

− sin θ cos θ

)
, (4)

where we set the phases to zero without loss of generality.
The unitary operator lives in H2 ⊗ HN which is a (4N + 2) ×
(4N + 2)-dimensional space. The initial state is chosen to be
positioned at the origin with an equal superposition of the coin
states

|�(0)〉 = |↑〉 + i|↓〉√
2

⊗ |0〉. (5)

After t steps of evolution,

|�(t )〉 = Ut |�0〉, (6)

can be written as a general superposition of the |↑〉 and |↓〉
states

|�(t )〉 =
∑

x

(Ax(t )|↑, x〉 + Bx(t )|↓, x〉). (7)

The coefficients can be recursively solved from the relations

Ax(t ) = cos θAx−1(t − 1) + sin θBx−1(t − 1),

Bx(t ) = − sin θAx+1(t − 1) + cos θBx+1(t − 1). (8)

The probability distribution as a function of the time and posi-
tion index is given by px(t ) = |Ax(t )|2 + |Bx(t )|2. To proceed,
we consider the reduced density matrix

ρ(t ) = trx|�(t )〉〈�(t )| =
∑

i, j∈↑,↓
ρi j |i〉〈 j|,

ρ↑↑ =
∑

x

|Ax(t )|2, ρ↑↓ =
∑

x

Ax(t )Bx(t )�,

ρ↓↑ = ρ�
↑↓, ρ↓↓ = 1 − ρ↑↑. (9)

By construction, trρ(t ) = 1, and the resultant is a mixed-state
density matrix in the coin space (H2). We start by canonically
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FIG. 2. Entanglement of purification (EoP) with steps for canon-
ical purification.

purifying the reduced density matrix, which begins at comput-
ing the eigenvalues of the matrix ρ(t ), given by

λ±(t ) = 1 ± √
1 − 4 det ρ

2
, (10)

and corresponding eigenvectors |ψ±〉. The resultant canoni-
cally purified state

|	(t )〉 =
√

λ+(t )|ψ+, ψ+〉 +
√

λ−(t )|ψ−, ψ−〉, (11)

is a two-qubit state where |ψ,ψ〉 = |ψ〉 ⊗ |ψ〉. This is our
starting point for the complexity computation. It is motivated
by the following principle. Since complexity computation is
known for pure states, the corresponding evaluation for mixed
states entails an additional intermediate step of purifying the
mixed state to a pure state at the cost of dimensional oxidation
from H2n → H22n

space. The corresponding entanglement of
purification as a function of time is

EoP(t ) = −tr(ρpr ln ρpr ), (12)

where ρpr = tr2(|	(t )〉〈	(t )|). The density matrix ρpr is the
reduced density matrix from the purified state where tr2 im-
plies the partial trace of the second qubit. The functional
dependence of entanglement of purification on steps is given
in Fig. 2. It follows essentially the same behavior as the en-
tanglement for the quantum walk. To conclude the section, we
would like to comment on the continuum limit of the walk and
its implications on purification. As was established in [22,44],
the continuum limit of the one-dimensional walk is given by
the Dirac-Hamiltonian for a single free fermion

H (p) = −ip

(
cos θ sin θ

sin θ − cos θ

)
+

(
0 −i sin θ

i sin θ 0

)
.

(13)
This Hamiltonian characterizes a pure fermionic state. To put
this loosely, we can construct a two-particle state (also a pure
state) by

H (p1, p2) = H (p1) ⊗ I2 + I2 ⊗ H (p2). (14)

IV. TARGET UNITARY OPERATOR

Our starting point is the construction of a unitary operator
Utarget such that

|	(t )〉 = Utarget|�R〉, (15)

where |	(t )〉 is the target state given in Eq. (11) and |	R〉 is
a reference state chosen to be the most simple two-qubit state
|0〉 ⊗ |0〉. We call Utarget as the target unitary operator that
converts the reference state into the target state. Since |	(t )〉
is time dependent, we expect Utarget to be a time-dependent
matrix as well. However, the matrix is not fully constrained
by (15). We begin by constructing

Utarget = (u, u1, u2, u3), (16)

where ui are column vectors of dimension 4 × 1. From
Eq. (15), we get u = |	(t )〉, satisfying |u|2 = 1 from normal-
ization of |	(t )〉. The unitarity constraint UU † = I enforces

uiu
†
j = δi j, (17)

which is incidentally the condition for Gram-Schmidt or-
thonormalization. To start with

ui = vi −
i−1∑
j=1

〈u j, vi〉
‖u j‖2

u j, (18)

where ‖ . . . ‖ is the norm of the vector. We choose vi to be
random vector

vi = ai + ibi, (19)

where ai, bi ∈ rand(0,1). This approach is identical to con-
sidering the vectors ui ∈ SU(4) and then optimizing over
the parameters. This optimization is over 15 parameters
which coincide with the parametrization of Utarget ∈ SU(4).
We perform the optimization numerically by sampling over
n samples of choices of the initial random vectors vi. The
number of samples for this optimization depends on whether
the standard deviation of the complexity computed from each
sample reaches saturation. We will report on this saturation
of standard deviation in the next section after discussing the
notion of complexity.

V. COMPLEXITY

Once the unitary target operator Utarget is determined, we
proceed to compute the complexity of the operator C(Utarget ).
The idea is simple. To implement the purified state, one needs
to construct a quantum circuit. The complexity measure C
determines the cost of constructing such a quantum circuit.
One could argue that we can as well determine the complexity
of the quantum circuit implementing the walk. However, the
quantum walk gives rise to a mixed state density matrix in
the coin space. Hence a refined quantum circuit is needed,
which first implements the purification of the mixed state.
The refined quantum circuit is a two-qubit circuit, as opposed
to the one-qubit circuit for the quantum walk. We begin by
constructing a path ordered unitary operator for a two-qubit
circuit

U (s) = P exp

(
−i

∫ s

0
ds′Vi(s

′)Ti

)
, (20)

022223-3



BHATTACHARYA, SAHU, ZAHED, AND SEN PHYSICAL REVIEW A 109, 022223 (2024)

where Vi(s) measures the response function for the generators
Ti ∈ SU(4) group. It is unclear, as of yet, how these response
functions are connected to the strengths (or, more specifically,
numbers) of quantum gates needed to construct an actual
quantum circuit. However, at this point, we will refrain from
addressing this issue and will come back to this at the end
of the work. P denotes path ordering, which denotes the
noncommutativity of quantum gates. The generators Ti are
built from Majorana fermionic operators γa, satisfying

{γa, γb} = 2δab. (21)

The generators Ti are given by

Ti = i(
q
2)γ b1

1 γ
b2
2 γ

b3
3 γ

b4
4 , (22)

where bi are the bitwise representation of the integers repre-
senting the generators

1 � i = 23b4 + 22b3 + 21b2 + 20b1 � 15, (23)

and q = b1 + b2 + b3 + b4. The fermionic generators γa [45]
and explicit forms of the generators Ti are given in the Ap-
pendix. We also define the structure constant and the Cartan
killing forms (h = 32 is the Coxeter number)

f k
i j = − i

4
trTk[Ti, Tj], Ki j = −1

h
f m
il f l

jm. (24)

Associated with quantum gates is a notion of locality. We
import the concept of k locality of operators by associating
a cost function ci such that ci = 1 whenever Ti is built from
k or fewer γa otherwise ci = 1 + μ with μ � 1. The cost
(or penalty) functions denote the cost of constructing the
equivalent quantum gates (so-called “easy” or “hard” gates).
With the above definitions, we construct the bilinear invariant
metric on the space of SU(4) operators

Gi j = ci + c j

2
Ki j . (25)

With the choice of normalization Ki j = δi j and hence Gi j =
ciδi j . The quadratic cost function that defines the complexity
is given by

C(U ) = min
∫ 1

0
ds

√
Gi jV i(s)V j (s), (26)

where the functions V i(s) satisfy the Euler-Arnold geodesic
equations

Gi j
dV j (s)

ds
= f p

ikGplV
k (s)V l (s). (27)

The minimization is over all geodesics leading the affine path
from s = 0 to s = 1. The minimization takes the geodesic so-
lution to the Euler-Arnold equation (27). Note that the explicit
solutions are relevant for the construction of the unitary ma-
trix, but in so far as the complexity is concerned, only the sums
of squares of the functions are important. However, depending
on the solutions, the sum of squares of the functions form
simple subsets which are constants and independent of s. In
this sense,

C(U ) =
√

AT A + BT B + · · ·, (28)

where A, B, and so on are the subsets. These solutions can be
obtained by matching

U (s = 1) = Utarget ⇒ Vi(s = 1)Ti = i ln[Utarget]. (29)

In the next few sections, we will solve Eq. (27) explicitly for
k = 1, 2, 3 local cases and construct the complexity explicitly.

A. k = 1

For this case, we have the constants of motion [Vi(s) = vi]
in the subset

B = (v5, v6, v7, v8, v9, v10). (30)

The remaining equations are of the form

dA1(s)

ds
+ 2μM1A1(s) = 0,

dA2(s)

ds
+ 2μ

1 + μ
M2(s)A2(s) = 0, (31)

where A1(s) = [V1(s),V2(s),V3(s),V4(s)], A2(s) =
[V11(s),V12(s),V13(s),V14(s),V15(s)] and

M1(s) =

⎛
⎜⎜⎜⎜⎝

0 v5 v6 v8

−v5 0 v7 v9

−v6 −v7 0 v10

−v8 −v9 −v10 0

⎞
⎟⎟⎟⎟⎠, M2(s) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −V4(s)

0 0 0 0 V3(s)

0 0 0 0 −V2(s)

0 0 0 0 V1(s)

V4(s) −V3(s) V2(s) −V1(s) 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (32)

The matrices satisfy MT
1 = −M1 and MT

2 = −M2. The
corresponding solutions are

A1(s) = exp [2μM1(1 − s)]A1(s = 1),

A2(s) = exp

(
α

∫ 1

s
ds′M2(s′)

)
A2(s = 1), (33)

where α = 2μ/(1 + μ). Due to the properties of the matrices
M1,2, we can write

A1,2(s)TA1,2(s) = A1,2(s = 1)TA1,2(s = 1), (34)

as constants evaluated at s = 1. The metric of measure is
independent of the affine parameter s and it follows that the
complexity is

C(U ) =
√
AT

1 A1 + (1 + μ)
(
BTB + AT

2 A2
)
. (35)
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B. k = 2

For this case, the constants of motion form the subset

B = (v1, v2, v3, v4, v5, v6, v7, v8, v9, v10). (36)

The remaining variables form the vector

A(s) = [V11(s),V12(s),V13(s),V14(s),V15(s)], (37)

satisfying

dA(s)

ds
+ 2μ

1 + μ
MA(s) = 0, (38)

with the matrix

M =

⎛
⎜⎜⎜⎜⎝

0 −v10 v9 −v8 −v4

v10 0 −v7 v6 v3

−v9 v7 0 −v5 −v2

v8 −v6 v5 0 v1

v4 −v3 v2 −v1 0

⎞
⎟⎟⎟⎟⎠, (39)

satisfying MT = −M. The solution is given by

A(s) = exp [αM(1 − s)]A(s = 1), (40)

with α = 2μ/(1 + μ). Again, the norm of the vector A(s) is
independent of the affine parameter s, and the complexity

C(U ) =
√
BTB + (1 + μ)ATA. (41)

C. k = 3

Finally, for the three local cases, the only constant of mo-
tion is

B = (v15), (42)

while the remaining variables form the vector

A(s) = [V1(s),V2(s), . . . ,V14(s)], (43)

which satisfies

A(s) = exp [2μM(1 − s)]A(s = 1), (44)

where

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 −v15

0 0 0 0 0 0 v15 0

0 0 0 0 0 −v15 0 0

0 0 0 0 v15 0 0 0

0 0 0 −v15 0 0 0 0

0 0 v15 0 0 0 0 0

0 −v15 0 0 0 0 0 0

v15 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(45)
Fortunately, for the one-local case, the exponentiation can be
done exactly. yielding the (8×8) dimensional “magic matrix.”
In this case, the complexity takes the simple form

C(U ) =
√
ATA + (1 + μ)v2

15. (46)

For the four-local case, Vi(s) = vi for all i = 1 . . . 15.

FIG. 3. “Direct” complexity as function of unitary operator
Utarget(t ) for θ = π/4 for k = 1, 2, 3 local operators. The scattered
colored points are the actual values derived, whereas the dotted
colored lines denote the stepwise averaged values.

D. Two definitions of complexity

The notion of Nielsen complexity that we study here is
understood as a measure of the number of gates needed to
construct the target state starting from a reference state. How-
ever, as it is defined, it cares about only the reference and the
target state. For these two states, we have two boundary con-
ditions, namely, U (s = 0) = I and U (s = 1) = Utarget, where
Utarget takes the reference state to the target one. Below, we
describe two separate ways to apply the machinery of Nielsen
complexity. The two methods vary in the choices of the initial
states at different steps.

1. Direct complexity

In our quantum walk, at some timestep n, our target state
can be arbitrarily close to the reference state. What we mean
is that the target unitary corresponding to a purified state at
timestep t = n can be very close to identity if identity is
associated with the two-qubit state |0〉 ⊗ |0〉. Then, there is no
way in this setup to guarantee that the circuit corresponding to
this complexity also has other steps corresponding to the states
associated with the walk for m < n steps. In fact, Nielsen’s
complexity ensures that we find the complexity or circuit
corresponding to the smallest possible circuit (geodesic in the
space of the unitaries) connecting identity to the target unitary.
Hence, if we always associate the identity to one particular
reference state |0〉 ⊗ |0〉, this complexity never takes into con-
sideration the previous states of the walk while finding the
optimized circuit between the reference state and the state at
some timestep t = n. This is what we call direct complexity.
Here we only change the target state at each timestep, keeping
the reference state unchanged. The complexities computed at
each timestep, therefore, show a relative complexity in com-
parison to the chosen reference state. However, as explained
above, it does not really care whether each of the optimized
circuits at a certain timestep t = n contains all the previous
states along the walk.

The corresponding plots for the k = 1, 2, 3 local cases are
shown in Fig. 3. We observe that the complexities for different
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timesteps with respect to the reference state behave in an
uncorrelated, fluctuating way. However, it is worth noting that
the fluctuating values decrease as we increase the notion of
locality in the picture. In an explicit way, this basically means
assigning fewer penalty factors to more and more generators
of the SU(4) group. From a gate perspective, this can be
understood as more and more quantum gates becoming easily
available as we increase the locality.

2. Stepwise complexity

From an explicit circuit construction perspective, it is more
practical to consider complexities in a “stepwise” manner. In
what follows, we explain what we mean by the term “step-
wise.”

Let us say that we first compute the complexity for the
circuit, transforming the reference state to the purified state
corresponding to the mixed state from the quantum walk at
timestep t = 1. Let us assume that the corresponding unitary
is U1, and the complexity computed turns out to be C1. Now
what we want to make sure of while considering the com-
plexity of the purified state corresponding to the quantum
walk at timestep t = 2 is that we reach this state through
the state at timestep t = 1. This is more pragmatic from a
circuit construction point of view in the sense that we want
to simulate the full quantum walk through our circuit. To do
this, we actually compute the complexity C2 for the state at
t = 2 as (C1 + C′

2), where C′
2 is the complexity for the unitary

U ′
2 connecting the states at t = 1 and t = 2. This unitary will

not be the unitary U2 connecting our actual reference state to
the state at t = 2. However, once we find U2, it is easy to find
out U ′

2 since

U2 = U ′
2U1 ⇒ U ′

2 = U2U
†
1 . (47)

Now, once we use the target unitary for the second step to be
U ′

2 instead of U2, we find the complexity C′
2 corresponding to

the optimized circuit between the timesteps t = 1 and t = 2.
This step can be used for arbitrary steps in the same way.

Once we have the unitaries Un connecting any nth timestep of
the walk to our initial reference state, we can always find the
unitary U ′

nconnecting the unitary connecting the random-walk
states at t = (n − 1) and t = n,

U ′
n = UnU

†
n−1. (48)

The corresponding complexity for U ′
n is then C′

n and we define
the combined stepwise complexity for the nth step, ensuring
that the circuit includes all previous random-walk states, as

Cn = C1 + C′
2 + C′

3 + · · ·C′
n. (49)

The plot corresponding to this is shown in Fig. 4. We find
a linear growth of complexity with steps in this case. The
growth persists forever, which is meaningful from a circuit
construction point of view. This circuit successfully sim-
ulates all the states along the quantum walk at different
steps. Here also we find that the slope of the curves de-
creases as we increase the locality. It, therefore, seems to be

FIG. 4. Complexity for “stepwise” evolution for θ = π/4 for
k = 1, 2, 3 local operators.

universally true that as we make more and more generators
(or equivalently quantum gates from a circuit perspective),
it takes fewer number of gates to construct the optimized
circuit.

In Fig. 5, we plot the standard deviation of the complexity
data with respect to the sample size we chose. This sample
size refers to the number of random vector choices made for
each timestep to generate the last three columns of the target
unitary. Given a particular timestep (for example, t = 10 in
Fig. 5), we vary the number of samples chosen to check the
stability of our complexity. We find that, around a sample size
of 200, the standard deviation stabilizes. Therefore, it is mean-
ingful to choose a sample size of the order of 500. Among all
the 500 samples for a given timestep t = n, and therefore 500
unitaries, we choose the one for which the complexity is least.
This is to make sure that we are making the most optimized
choice out of the whole sample space of unitaries for each
given timestep.

FIG. 5. Standard deviation of the circuit complexity with an in-
creasing sample size of target unitary operators calculated for the
tenth step of DTQW.
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FIG. 6. Slope of linear complexity with varying coin angle θ with (left) one-local operators, (middle) two-local operators, and (right)
three-local operators.

In Fig. 6, we plot the slope of the stepwise complexity
plots for different locality notions with varying coin angles.
Whereas the slope values increase with decreasing locality,
which is expected from plots in Fig. 4 already, we notice that
there is a dip in the slope for each of the cases around coin
angle value 2π/3. These plots, therefore, indicate that among
different coin angles, the complexity is least for the coin with
angle θ ≈ 2π/3.

E. Fermionic Hamiltonian in continuum limit

Before concluding the section, we would like to point out
that diagonalization of the two-particle fermionic Hamiltonian
in Eq. (14), leads to the following construction:

V (s) = v5T5 + v10T10 + v15T15 = −iH2(p1, p2)t, (50)

which solves for v5 = 0 and

v10 = − t

2

(√
m2 + p2

1 + p2
2 −

√(
m2 + 2p2

1

)(
m2 + 2p2

2

) +
√

m2 + p2
1 + p2

2 +
√(

m2 + 2p2
1

)(
m2 + 2p2

2

))
,

v15 = t

2

(√
m2 + p2

1 + p2
2 −

√(
m2 + 2p2

1

)(
m2 + 2p2

2

) −
√

m2 + p2
1 + p2

2 +
√(

m2 + 2p2
1

)(
m2 + 2p2

2

))
(51)

for m = sin θ . Consequently,

C =
∫ �1

∫ �2

d p1d p2

√
v2

10 + v2
15 � 5

24
t �3 ln �. (52)

This complexity grows linearly with time. However, this com-
plexity does not indicate the quantum walk completely but
only an approximation in the continuum limit. Hence the
complexity does not demonstrate the nuances of the walk
completely.

VI. QUANTUM CIRCUIT

In this section, we connect the linear growth of cumu-
lative stepwise complexity found in Sec. V D 2 to constant
circuit depth of explicit quantum circuit associated with target
unitary. The target unitary operator can be associated with a
two-qubit circuit, as shown in Fig. 7. To find the circuit depth
of a quantum circuit, one is required to decompose the unitary
into a universal set of gates. For our purpose, we will consider
a one-qubit gate U3(θ, φ, λ) and two-qubit CNOT gate with the
explicit forms as following:

U3(θ, φ, λ) =
(

cos θ eiφ sin θ

−e−iφ sin θ e−i(φ+λ) cos θ

)
, (53)

and

CNOT =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞
⎟⎟⎟⎠. (54)

In Fig. 8, we show the explicit circuit associated with the
target unitary for a particular walk step constructed using
QISKIT [46]. The circuit associated with the target unitary
for different walk steps has a contact depth of seven layers
with parameters θ, φ, and λ changing values. Therefore, sim-
ilar to the direct complexity study using Nielsen’s proposal,
the cost of constructing the unitary seems almost a constant

FIG. 7. A general two-qubit quantum circuit for the stepwise
unitary operator.
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FIG. 8. Representing a two-qubit quantum circuit for the step wise unitary operator using QISKIT.

function. Therefore, if we again construct the circuit stepwise
and cumulatively sum the depth of the individual circuits,
the depth grows linearly again with the steps (see Fig. 9),
in agreement with the complexity computed from Nielsen’s
proposal.

It’s important to emphasize that relation between k-local
case in the context of Nielsen’s complexity (NC) and k-qubit
gate in the context of the quantum circuit is not very well
understood. If we consider that both are equivalent to each
other, then k = 1 should correspond to single-qubit quantum
circuits for target unitary. However, since the universal set of
quantum gates atleast requires a two-qubit gate [47] as known
from the Solovay-Kitaev theorem, one cannot construct a
general n-qubit quantum circuit (n > 1) with just single-qubit
gates (unless the target unitary is separable into n independent
single-qubit gates, which is not true generally or in our case).
The case k = 3, on the other hand, can be realised for n-qubit
quantum circuits with n � 3. However, in our case, we have
a two-qubit target unitary, which cannot be written in terms
of three-qubit quantum gates. These facts as mentioned above
suggest that k-local operators should not, in general, be under-
stood as k-qubit gates, and their exact relation needs further
investigation. However, for the two-qubit circuit, our result in-
deed shows a qualitative similarity between the two concepts.
It will be interesting to extend these studies to higher-qubit cir-
cuits, where one can explicitly check if such similarities exist
for k � 3.

FIG. 9. Quantum circuit depth corresponding to target unitary
operator corresponding to two-local case (estimated with explicit
construction of quantum circuit using QISKIT) with varying timesteps
of DTQW.

VII. DISCUSSIONS

We conclude the work with a brief account of what has
been answered and what more remains to be done.

(1) We computed the complexity for the one-dimensional
quantum walk using a SU(2) coin. The walk entangles the po-
sition and internal degrees of freedom and produces a mixed
state on partial tracing over the position degrees of freedom.
Consequently, to measure the complexity of the mixed state,
we first canonically purify the mixed state and then evalu-
ate the complexity using an approximate two-qubit quantum
circuit.

(2) We compute and compare the complexities of the
purified state using both the direct evolution operator and
the stepwise evolution in the quantum walk. The complex-
ity function oscillates with the steps around a mean value
which can be associated with the depth of an average quan-
tum circuit. The stepwise evolution, however, connects more
with the actual quantum circuit and the quantum walk picture
since the direct evolution ignores the steps in connecting the
geodesic from the initial to the final step. As such, the stepwise
evolution is a direct implementation of time ordering and a
successful simulation of the DTQW using a quantum circuit.
The complexity of the stepwise evolution cumulatively grows
with the steps and is indicative of the growing size of an
associated quantum circuit and its complexity.

(3) To give some context, we also implement a schematic
quantum circuit using one- and two-qubit quantum gates to
implement the stepwise unitary evolution. The circuit has
constant depth and relates to the average complexity in Fig. 3.

(4) Another upshot of doing the stepwise evolution is that
although we have stepwise geodesics instead of a full one, it
can produce for us the stepwise response functions which are
valid for individual timesteps. Let us say if we want to write
the Hamiltonian acting between steps (n − 1) and n, we can
simply pick the corresponding stepwise unitary U ′

n and obtain
an estimate of the Hamiltonian as

H (n) = −1

i
ln[U ′

n], (55)

since each timestep is of length 1. Now we can write this
Hamiltonian as

H (n) =
∑

i

Vi(n)Ti (56)

to figure out which generator was effective and how much
during a particular timestep. Finally, we can sum all those
stepwise Hamiltonians with the corresponding step functions
and write down a complete Hamiltonian that is time-
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independent stepwise, but gives rise to all the purified states
corresponding to the mixed one of the actual DTQW. This
is somewhat analogous to finding out the response functions
for different quantum gates in the Nielsen picture of com-
plexity. This is a trivial task, and the states being individually
randomly distributed, these functions do not show up any par-
ticular nature of growth or decay. However, it might produce
further interesting results in the case of an explicitly chaotic
quantum walk [31] or for a time-dependent coin operator [29].

However, more questions were uncovered by the explo-
ration. Some of the pressing questions, which we could not
answer in this work due to lack of resources, but intend to
complete them in immediate future followup works are the
following.

(1) First of all, the precise connection between the circuit
picture and the continuum formulation is still largely opaque.
We have just implemented an example circuit that can connect
with the stepwise evolution. However, the exact nature of
how the geodesic length is connected with the actual quantum
circuit still remains to be explored further.

(2) The distinction between the stepwise evolution and
the unitary evolution is based on the logic that one can view
the stepwise evolution with some quantum circuits and hence
the size of the circuit grows along with its complexity which
exhibits itself in the linear growth. However, for real quantum
systems, the complexity grows linearly with time for early
time and smooths out to a constant. One reason for the dis-
crepancy might be the fact that the dimension of the Hilbert
space of the state in the quantum walk linearly grows with
time. To gain insights into this apparent conflict, one way
to move forward would be to connect the quantum walk to
the Hamiltonian of some physical system, to obtain a more
realizable connection with real-time systems. Consequently,
designing quantum circuits for the quantum walk will act as a
bridge to gain more insights into the mapping of field theory
complexity with the actual circuit compiling complexity.

ACKNOWLEDGMENTS

The work of A.B. is supported by the Polish National
Science Centre (NCN) Grant No. 2021/42/E/ST2/00234.

K.S. is partially supported by FAPESP Grant No.
2021/02304-3.

APPENDIX: DETAILS OF GENERATORS

We provide the explicit form of the fermionic generators
γa here. There are

γ1 = σ1 ⊗ I2 =

⎛
⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎠,

γ2 = σ2 ⊗ I2 =

⎛
⎜⎜⎜⎜⎝

0 0 −i 0

0 0 0 −i

i 0 0 0

0 i 0 0

⎞
⎟⎟⎟⎟⎠,

γ3 = σ3 ⊗ σ1 =

⎛
⎜⎜⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

⎞
⎟⎟⎟⎟⎠,

γ4 = σ3 ⊗ σ2 =

⎛
⎜⎜⎜⎜⎝

0 −i 0 0

i 0 0 0

0 0 0 i

0 0 −i 0

⎞
⎟⎟⎟⎟⎠. (A1)

The γa satisfy

{γa, γb} = 2ηab. (A2)

The explicit forms of the generators Ti for the SU(4) group are
then given by

Ti = {γ1, γ2, γ3, γ4, iγ1γ2, iγ1γ3, iγ1γ4, iγ2γ3, iγ2γ4, iγ3γ4,

− iγ1γ2γ3,−iγ1γ2γ4,−iγ1γ3γ4,−iγ2γ3γ4,−γ1γ2γ3γ4}.
(A3)
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