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Strong quantum nonlocality with genuine entanglement in an N-qutrit system
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In this paper, we construct orthogonal genuinely multipartite entangled bases in (C3)⊗N for N � 3, where
every state is a one-uniform state. By modifying this construction, we successfully obtain strongly nonlocal
orthogonal genuinely entangled sets and strongly nonlocal orthogonal genuinely entangled bases, which provide
an answer to the problem raised by Halder et al. [Phys. Rev. Lett. 122, 040403 (2019)]. The strongly nonlocal
orthogonal genuinely entangled set we constructed in (C3)⊗N contains much fewer quantum states than all
known ones. Meanwhile, our results also answer the question given by Wang et al. [Phys. Rev. A 104, 012424
(2021)].
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I. INTRODUCTION

Quantum nonlocality is a fundamental property of quantum
mechanics, manifesting the nonclassical aspects of quantum
phenomena. The most well-known manifestation of quan-
tum nonlocality is Bell nonlocality [1], which arises from
entangled states [2,3]. Entangled states show nonlocality by
violating Bell-type inequalities [4–12]. It is well known that
entanglement is an important resource in areas such as quan-
tum teleportation [13–15], quantum key distribution [16–18],
and quantum networks [19]. On the other hand, the local indis-
tinguishability of quantum states exhibits nonlocal properties
in a way fundamentally different from Bell nonlocality. Local
indistinguishability means that a known set of orthogonal
quantum states distributed among spatially separated parties
is not possible to be exactly distinguished by local opera-
tions and classical communication (LOCC) [20]. In 1999,
Bennett et al. [21] presented a locally indistinguishable or-
thogonal product basis (OPB) in the Hilbert space C3 ⊗ C3,
which shows the phenomenon of nonlocality without entan-
glement. Then, locally indistinguishable orthogonal product
sets (OPSs) and orthogonal entangled sets (OESs) aroused
much research interest [22–33] and found useful applications
in data hiding [34,35] and quantum secret sharing [36,37].

In 2019, Halder et al. [38] introduced a stronger form
of nonlocality, i.e., strong nonlocality, by the notion of lo-
cal irreducibility of multipartite quantum states under every
bipartition. A set of multiparty orthogonal quantum states
is defined to be locally irreducible if it is not possible to
eliminate one or more states from the set by orthogonal-
preserving local measurements (OPLMs) [38]. Such a set,
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by definition, is locally indistinguishable, but the converse
does not hold in general. As an OPS in C2 ⊗ Cd , d � 2 is
locally distinguishable and it is also locally reducible; the
locally irreducible phenomenon of OPS does not exist in the
systems where one of the subsystems has a two-dimensional
complex space. So Halder et al. claimed that the multiparty
OPS with strong nonlocality can only exist, if at all, on
H = ⊗N

i=1Hi, N � 3, where dimHi � 3 for every i. Then, they
provided two strongly nonlocal OPBs [38] in C3 ⊗ C3 ⊗ C3

and C4 ⊗ C4 ⊗ C4, respectively. Zhang et al. [39] presented a
general definition of strong nonlocality for multipartite quan-
tum systems, and distinguished the nonlocality of two sets of
orthogonal quantum states. Later, strong quantum nonlocality
without entanglement was widely studied and many results
have been obtained [40–46].

For genuinely entangled orthogonal bases (in which
each element is entangled in every bipartition), intuition
suggests that they are easier to exhibit strong nonlocal-
ity. However, Halder et al. [38] found that the three-
qubit Greenberger-Horne-Zeilinger (GHZ) basis (unnormal-
ized) {|000〉 ± |111〉, |011〉 ± |100〉, |001〉 ± |110〉, |010〉 ±
|101〉}, which is genuinely entangled and locally irreducible
(when all parts are separated), is locally reducible in all bipar-
titions. Then they asked whether one can find entangled bases
that are locally irreducible in all bipartitions, that is, whether
one can find entangled bases that possess strong nonlocality.
References [47–50] answered this open question. In Ref. [47],
the authors showed strongly nonlocal OESs and strongly
nonlocal orthogonal entangled bases (OEBs) in Cd ⊗ Cd ⊗
Cd (d � 3). However, these states are not genuinely entan-
gled. Wang et al. [48] presented strongly nonlocal orthogonal
genuinely entangled sets (OGESs) in Cd ⊗ Cd ⊗ Cd by us-
ing graph connectivity. For a multipartite quantum system,
the authors of Ref. [49] provided strongly nonlocal OESs
in (Cd )⊗N for all N � 3 and d � 2, and strongly nonlocal
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OGESs when N = 3 and 4, but they did not present strongly
nonlocal OGESs for N � 5. Li et al. [50] constructed a
strongly nonlocal OGES of size

∏N
n=1 dn −∏N

n=1(dn − 1) + 1
in multipartite quantum systems H = ⊗N

n=1Hn with N � 3,
where dn is the dimension of the nth local subsystem Hn.

In this paper, we construct strongly nonlocal OGESs of size
2 × 3N−1 and a strongly nonlocal orthogonal genuinely entan-
gled basis (OGEB) in (C3)⊗N (N � 3). As a consequence, our
constructions once again answer the open question of whether
one can find entangled bases that are locally irreducible in all
bipartitions, given by Halder et al. [38], that is, OEBs that are
strongly nonlocal do exist. Not only that, we also show that
both strongly nonlocal OGESs and strongly nonlocal OGEBs
do indeed exist. Our constructions also partially answer an
open question given in [49], “How do we construct a strongly
nonlocal orthogonal genuinely entangled set in (Cd )⊗N for
any d � 2 and N � 5?”

In an N-qutrit system, the OGES in our construction has
3N−1 − 2N + 1 states fewer than that constructed in Ref. [50].
In ⊗N

i=1C
di (N, di � 3), the authors of Refs. [45,46] con-

structed strongly nonlocal OPSs with odd N and even N ,
respectively, and both of them have size 3N − 1 when di =
3. Reference [45] also provided unextendible product bases
(UPBs) in N-partite systems for all odd N � 3. An UPB is
a set of orthogonal product states which span a subspace
of a given Hilbert space, while the complementary subspace
contains no product state [51]. In the same system, compared
with these OPSs, the size 2 × 3N−1 of OGESs in our construc-
tion is much smaller. Thus, our results provide an answer to
the problem in Ref. [48], “Can we construct some smaller
set that has the property of the strongest nonlocality via the
OGES than the OPS.” Note that in a C3 ⊗ C3 ⊗ C3 system,
Shi et al. [49] showed a strongly nonlocal OGES with 18
elements, which is consistent with our size. Che et al. [43]
also constructed a strongly nonlocal UPB of size 12.

The rest of this paper is organized as follows. In Sec. II, we
introduce some necessary notations and definitions used in the
sequel. In Sec. III, we construct an OGEB in (C3)⊗N (N � 3).
In Sec. IV, we exhibit strongly nonlocal OGESs and strongly
nonlocal OGEBs in space (C3)⊗N (N � 3). We end with con-
clusions in Sec. V.

II. PRELIMINARIES

Throughout this paper, we consider only a pure state
and do not normalize the states for simplicity. For a d-
dimensional Hilbert space Cd (d � 2), we assume that
B := {|0〉, |1〉, . . . , |d − 1〉} is the computational basis of
Cd , and Zd := {0, 1, . . . , d − 1}, ZN

d := (Zd )×N . Given
a d × d matrix E :=∑d−1

i=0

∑d−1
j=0 ai, j |i〉〈 j|, for S , T ⊆

{|0〉, |1〉, . . . , |d − 1〉}, we define

SET :=
∑
|s〉∈S

∑
|t〉∈T

as,t |s〉〈t |,

which is a submatrix of E with row coordinates S and column
coordinates T . In particular, SES is represented by ES . A
positive operator-valued measure (POVM) is a set of semidef-
inite operators {Em = M†

mMm} such that
∑

m Em = I, where
I is the identity operation. A measurement is trivial if all
the POVM elements are proportional to the identity operator;

otherwise, the measurement is nontrivial [52]. Clearly, the
trivial measurement means that no information about the state
can be yielded.

In a multipartite system HA1 ⊗ · · · ⊗ HAN with a local
dimension d each, we say that |�〉A1A2···AN is a one-uniform
state [53] if its reduced density matrices for each subsys-
tem are maximally mixed, i.e., ρAi = TrĀi

(|ψ〉〈ψ |) = I/d . A
well-known example is the N-qudit GHZ state |GHZd

N 〉 =∑d−1
i=0 |i〉⊗N .
Now we restate the definition of a locally irreducible set

and strong nonlocality [38].
Definition 1 (Locally irreducible set). A set {|ψ〉} of orthog-

onal quantum states in H = ⊗N
i=1C

di with N � 2 and di � 2,
i = 1, 2, . . . , N , is locally irreducible if it is not possible to
locally eliminate one or more states from the set while pre-
serving orthogonality of the postmeasurement states.

Definition 2 (Strong nonlocality). A set {|ψ〉} of orthogonal
quantum states in multipartite systems H = ⊗N

i=1C
di with

N � 3 and di � 2, i = 1, 2, . . . , N , has the property of strong
nonlocality if it is locally irreducible in every bipartition.

There is a sufficient condition for local irreducibility: if any
parties can only perform a trivial OPLM, then the set of states
must be locally irreducible. Therefore, one can show that a set
{|ψ〉} of orthogonal states is strongly nonlocal by proving that
each subsystem of any bipartition can only perform a trivial
OPLM.

Next, we state three lemmas of Shi et al. [42] as follows.
Lemma 1 (Block zeros lemma). Let an n × n matrix

E = (ai, j )i, j∈Zn be the matrix representation of the operator
E = M†M under the bases B := {|0〉, |1〉, . . . , |n − 1〉}. Given
two nonempty disjoint subsets S and T of B, assume that
{|ψi〉}s−1

i=0 , {|φ j〉}t−1
j=0 are two orthogonal sets spanned by S

and T , respectively, where s = |S|, t = |T |. For SET :=∑
|i〉∈S

∑
| j〉∈T ai, j |i〉〈 j|, if 〈ψi|E |φ j〉 = 0 for any i ∈ Zs, j ∈

Zt , then SET = 0 and T ES = 0.
Lemma 2 (Block trivial lemma). Let an n × n matrix E =

(ai, j )i, j∈Zn be the matrix representation of the operator E =
M†M under the basis B := {|0〉, |1〉, . . . , |n − 1〉}. Given a
nonempty subset S of B, assume that {|ψi〉}s−1

i=0 is an orthogo-
nal set spanned by S . Suppose that 〈ψi|E |ψ j〉 = 0 for any i �=
j ∈ Zs. If there exists a state |u0〉, such that {|u0〉}ES\{|u0〉} = 0
and 〈u0|ψ j〉 �= 0 for any j ∈ Zs, then ES ∝ IS .
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FIG. 1. The set Z3 × Z3 is depicted by a 3 × 3 grid, where the
blue, green, and yellow regions correspond to the set G2

0 , G2
1 , and G2

2

in Eq. (3), respectively.
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Lemma 3. Let {|ψ j〉} be a set of orthogonal states in
multipartite system ⊗N

i=1C
di . For each i = 1, 2, . . . , N , define

Āi = {A1A2 · · · AN }\{Ai} is the joint party of all but the ith
party. If any OPLM on Āi is trivial, then the set {|ψ j〉} is of
the strongest nonlocality.

III. THE CONSTRUCTION OF OGEBs in (C3)⊗N

In this section, we construct three sets GN
i (i ∈ Z3) of

strings on ZN
3 and give two propositions to characterize

them. Then we exhibit OGEBs in (C3)⊗N for N � 3 in
Theorem 1.

Given a set G of n-tuples, we construct (n + 1)-tuples by the following method:

{ j0} × G = { j0} × {( j1
1 , . . . , j1

n−1, j1
n

)
,
(

j2
1 , . . . , j2

n−1, j2
n

)
, . . . ,

(
jt
1, . . . , jt

n−1, jt
n

)}
= {( j0, j1

1 , . . . , j1
n−1, j1

n

)
,
(

j0, j2
1 , . . . , j2

n−1, j2
n

)
, . . . ,

(
j0, jt

1, . . . , jt
n−1, jt

n

)}
, (1)

where t = |G|.

A. THREE SETS on ZN
3

First, we consider Z3, and denote

G1
0 = {0}, G1

1 = {1}, G1
2 = {2}. (2)

For N = 2, we give three subsets of Z3 × Z3,

G2
0 = ({0} × G1

0

)⋃({2} × G1
1

)⋃({1} × G1
2

) = {(0, 0), (2, 1), (1, 2)},

G2
1 = ({1} × G1

0

)⋃({0} × G1
1

)⋃({2} × G1
2

) = {(1, 0), (0, 1), (2, 2)},

G2
2 = ({2} × G1

0

)⋃({1} × G1
1

)⋃({0} × G1
2

) = {(2, 0), (1, 1), (0, 2)}. (3)

Obviously, the sets G2
i are pairwise disjoint and the union of all sets is Z3 × Z3, as shown in Fig. 1.

Now, we construct three subsets of ZN
3 for N � 2,

GN
i = ({i} × GN−1

0

)⋃({i ⊕3 2} × GN−1
1

)⋃({i ⊕3 1} × GN−1
2

)
, (4)

where i ∈ Z3, i ⊕3 t = (i + t ) mod 3. For each i, one can also exhibit the exact description

GN
0 = ({0} × GN−1

0

)⋃({2} × GN−1
1

)⋃({1} × GN−1
2

)
,

GN
1 = ({1} × GN−1

0

)⋃({0} × GN−1
1

)⋃({2} × GN−1
2

)
,

GN
2 = ({2} × GN−1

0

)⋃({1} × GN−1
1

)⋃({0} × GN−1
2

)
. (5)

Then, we have two propositions.
Proposition 1. The sets given by Eq. (4) are pairwise disjoint and the union of all sets is ZN

3 , that is,

GN
0 ∪ GN

1 ∪ GN
2 = ZN

3 and GN
i ∩ GN

j = ∅, where i �= j ∈ Z3.

Proof. According to Eq. (3), it is clear that the claim is true for N = 2.
We proceed by induction. Assume that the result has been proved for N = k, i.e., Gk

0 ∪ Gk
1 ∪ Gk

2 = Zk
3 and Gk

i ∩ Gk
j = ∅,

i �= j ∈ Z3. Let l = k + 1, and one gets

G l
0 ∪ G l

1 ∪ G l
2 = [({0} × Gk

0

) ∪ ({2} × Gk
1

) ∪ ({1} × Gk
2

)]⋃[({1} × Gk
0

) ∪ ({0} × Gk
1

) ∪ ({2} × Gk
2

)]
⋃[({2} × Gk

0

) ∪ ({1} × Gk
1

) ∪ ({0} × Gk
2

)]
= ({0, 1, 2} × Gk

0

)⋃({0, 1, 2} × Gk
1

)⋃(
{0, 1, 2} × Gk

2

)
= {0, 1, 2} × (Gk

0 ∪ Gk
1 ∪ Gk

2

)
= {0, 1, 2} × Zk

3

= Zl
3.

By the induction hypothesis, Gk
i ∩ Gk

j = ∅ is true for k. Note that({0} × Gk
0

)⋂({1} × Gk
0

) = ∅,
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({0} × Gk
0

)⋂({0} × Gk
1

) = ∅,({0} × Gk
0

)⋂({2} × Gk
2

) = ∅,

and it follows from Eq. (5) that ({0} × Gk
0

)⋂
G l

1 = ∅. (6)

Similarly, there are ({2} × Gk
1

)⋂
G l

1 = ∅,({1} × Gk
2

)⋂
G l

1 = ∅. (7)

Combining Eqs. (6) and (7) with Eq. (5) (when N = l , i = 1), we get G l
0 ∩ G l

1 = ∅. Similarly, G l
0 ∩ G l

2 = ∅ and G l
1 ∩ G l

2 = ∅ can
be deduced. �

Proposition 2. The set GN
i given by Eq. (4) is invariant under arbitrary permutation of the positions of the N components.

Proof. First, we rewrite Eq. (5) as the following form:⎡
⎣GN

0
GN

1
GN

2

⎤
⎦ =

⎡
⎣{0} {2} {1}

{1} {0} {2}
{2} {1} {0}

⎤
⎦×

⎡
⎣GN−1

0
GN−1

1
GN−1

2

⎤
⎦ =

⎡
⎣({0} × GN−1

0 )
⋃

({2} × GN−1
1 )

⋃
({1} × GN−1

2 )
({1} × GN−1

0 )
⋃

({0} × GN−1
1 )

⋃
({2} × GN−1

2 )
({2} × GN−1

0 )
⋃

({1} × GN−1
1 )

⋃
({0} × GN−1

2 )

⎤
⎦. (8)

Similar to matrix multiplication, we get⎡
⎣GN

0 GN
2 GN

1
GN

1 GN
0 GN

2
GN

2 GN
1 GN

0

⎤
⎦ =

⎡
⎣{0} {2} {1}

{1} {0} {2}
{2} {1} {0}

⎤
⎦×

⎡
⎣GN−1

0 GN−1
2 GN−1

1
GN−1

1 GN−1
0 GN−1

2
GN−1

2 GN−1
1 GN−1

0

⎤
⎦, (9)

where the result of the right-hand side of Eq. (9) is⎡
⎣({0} × GN−1

0 )
⋃

({2} × GN−1
1 )

⋃
({1} × GN−1

2 ) ({0} × GN−1
2 )

⋃
({2} × GN−1

0 )
⋃

({1} × GN−1
1 ) ({0} × GN−1

1 )
⋃

({2} × GN−1
2 )

⋃
({1} × GN−1

0 )
({1} × GN−1

0 )
⋃

({0} × GN−1
1 )

⋃
({2} × GN−1

2 ) ({1} × GN−1
2 )

⋃
({0} × GN−1

0 )
⋃

({2} × GN−1
1 ) ({1} × GN−1

1 )
⋃

({0} × GN−1
2 )

⋃
({2} × GN−1

0 )
({2} × GN−1

0 )
⋃

({1} × GN−1
1 )

⋃
({0} × GN−1

2 ) ({2} × GN−1
2 )

⋃
({1} × GN−1

0 )
⋃

({0} × GN−1
1 ) ({2} × GN−1

1 )
⋃

({1} × GN−1
2 )

⋃
({0} × GN−1

0 )

⎤
⎦.

Repeating this argument reveals⎡
⎣GN

0 GN
2 GN

1
GN

1 GN
0 GN

2
GN

2 GN
1 GN

0

⎤
⎦

[N,...,2,1]

=
⎡
⎣{0} {2} {1}

{1} {0} {2}
{2} {1} {0}

⎤
⎦

N

× · · · ×
⎡
⎣{0} {2} {1}

{1} {0} {2}
{2} {1} {0}

⎤
⎦

2

×
⎡
⎣G1

0 G1
2 G1

1
G1

1 G1
0 G1

2
G1

2 G1
1 G1

0

⎤
⎦

1

. (10)

Suppose that the elements in GN
i that we constructed are ordered strings. For example, consider any string

(cN , . . . , bx, . . . , a1)[N,...,x,...,1] belongs to GN
i , where [N, . . . , x, . . . , 1] indicates the position order of each element in this string,

and the index x means that the element bx comes from the xth square matrix on the right-hand side.
To prove GN

i is invariant under arbitrary permutation, we only need to show that GN
i will not change when we perform arbitrary

permutation on the N component positions in the N-tuples. Substituting Eq. (2) into Eq. (10), we get⎡
⎣GN

0 GN
2 GN

1
GN

1 GN
0 GN

2
GN

2 GN
1 GN

0

⎤
⎦

[N,...,2,1]

=
⎡
⎣{0} {2} {1}

{1} {0} {2}
{2} {1} {0}

⎤
⎦

N

× · · · ×
⎡
⎣{0} {2} {1}

{1} {0} {2}
{2} {1} {0}

⎤
⎦

2

×
⎡
⎣{0} {2} {1}

{1} {0} {2}
{2} {1} {0}

⎤
⎦

1

. (11)

Because the right square matrices are the same, let [iN , . . . , i2, i1] be an arbitrary permutation of [N, . . . , 2, 1]; then we have⎡
⎣GN

0 GN
2 GN

1
GN

1 GN
0 GN

2
GN

2 GN
1 GN

0

⎤
⎦

[iN ,...,i2,i1]

=
⎡
⎣{0} {2} {1}

{1} {0} {2}
{2} {1} {0}

⎤
⎦

iN

× · · · ×
⎡
⎣{0} {2} {1}

{1} {0} {2}
{2} {1} {0}

⎤
⎦

i2

×
⎡
⎣{0} {2} {1}

{1} {0} {2}
{2} {1} {0}

⎤
⎦

i1

. (12)

Therefore, the proof is now complete. �

B. OGEBs IN (C3)⊗N

Let H := (C3)⊗N , si be the cardinality of the set GN
i given

by Eq. (4), i ∈ Z3. Define

Si := {|�i,k〉 ∈ H
∣∣ k ∈ Zsi , |�i,k〉 :=

∑
j∈GN

i

ωk fi ( j)
si

| j〉}. (13)

Here, fi : GN
i −→ Zsi is any fixed bijection and ωsi := e

2π
√−1
si ,

si = |GN
i |. For example, consider the set of states S0 :=

{|�0,k〉 =∑ j∈GN
0

ω
k f0 ( j)
s0 | j〉|k ∈ Zs0} when N = 3. Here, f0 is

a bijection from G3
0 to Z9, which is shown in Table I. Then we
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TABLE I. f0 : G3
0 −→ Z9.

j (000) (021) (012) (210) (201) (222) (120) (111) (102)

f0( j) 0 1 2 3 4 5 6 7 8

obtain that

|�0,k〉 := {|000〉 + ωk
9|021〉 + ω2k

9 |012〉
+ ω3k

9 |210〉 + ω4k
9 |201〉 + ω5k

9 |222〉 + ω6k
9 |120〉

+ ω7k
9 |111〉 + ω8k

9 |102〉}k∈Z9 . (14)

Evidently, the set {Si} of states is an orthogonal basis in
(C3)⊗N . Furthermore, it forms a genuinely entangled orthog-
onal basis.

Theorem 1. The set
⋃2

i=0 Si of states given by Eq. (13) is
an OGEB in (C3)⊗N .

Proof. We only need to show that |�i,k〉 is entangled
for each bipartition of the system {A1, A2, . . . , AN }. Let
{Ax1 Ax2 · · · Axs}|{Axs+1 Axs+2 · · · AxN } (1 � s � N − 1) be a bi-
partition of the subsystem, where {x1, x2, . . . , xN } is an
arbitrary permutation of {1, 2, . . . , N}. We denote A and B
as the computational bases of the systems {Ax1 Ax2 · · · Axs} and
{Axs+1 Axs+2 · · · AxN }, respectively, and express state |�i,k〉 as

|�i,k〉 = �|a〉∈A�|b〉∈Bψa,b|a〉|b〉.

Then, |�i,k〉 is entangled if the rank of the matrix (ψa,b) is
greater than one.

Now, we state a fact obtained by Eq. (5): for arbitrary
(i1, i2, . . . , iN−1) ∈ ZN−1

3 , the strings (0, i1, i2, . . . , iN−1),
(1, i1, i2, . . . , iN−1), and (2, i1, i2, . . . , iN−1) are distributed in
different sets. As a consequence, given ( j1, j2, . . . , jN−2) ∈

GN−2
0 , we get

(0, j1, j2, . . . , jN−2) ∈ GN−1
0 ,

(1, j1, j2, . . . , jN−2) ∈ GN−1
1 ,

(2, j1, j2, . . . , jN−2) ∈ GN−1
2 . (15)

By Proposition 2, we have

( j1, j2, . . . , jN−2, 0) ∈ GN−1
0 ,

( j1, j2, . . . , jN−2, 1) ∈ GN−1
1 ,

( j1, j2, . . . , jN−2, 2) ∈ GN−1
2 .

Then, it follows immediately from Eq. (4) that for any i ∈ Z3,

(i, j1, j2, . . . , jN−2, 0) ∈ GN
i ,

(i ⊕3 2, j1, j2, . . . , jN−2, 1) ∈ GN
i ,

(i ⊕3 1, j1, j2, . . . , jN−2, 2) ∈ GN
i ,

and

(i, j1, j2, . . . , jN−2, 1) /∈ GN
i ,

(i, j1, j2, . . . , jN−2, 2) /∈ GN
i ,

(i ⊕3 2, j1, j2, . . . , jN−2, 0) /∈ GN
i ,

(i ⊕3 2, j1, j2, . . . , jN−2, 2) /∈ GN
i ,

(i ⊕3 1, j1, j2, . . . , jN−2, 0) /∈ GN
i ,

(i ⊕3 1, j1, j2, . . . , jN−2, 1) /∈ GN
i . (16)

If the statement about Eq. (16) is not true, then at
least one of the above strings belongs to GN

i . Assume
that (i, j1, j2, . . . , jN−2, 1) ∈ GN

i . Proposition 2 ensures that
(1, i, j1, j2, . . . , jN−2) and (0, i, j1, j2, . . . , jN−2) belong to
the same set GN

i . Evidently, this contradicts the fact we orig-
inally stated, and thus (i, j1, . . . , jN−2, 1) /∈ GN

i . The other
cases of Eq. (16) can be proved similarly.

Based on the above argument, we can conclude that matrix
(ψa,b) has one of the following two 2 × 2 submatrices:

| js · · · j(N−2)0〉 | js · · · j(N−2)1〉 | js · · · j(N−2)0〉 | js · · · j(N−2)1〉
|i j1 j2 · · · js−1〉 α1 0 |(i ⊕3 2) j1 j2 · · · js−1〉 0 β2

|(i ⊕3 2) j1 j2 · · · js−1〉 0 β1 |i j1 j2 · · · js−1〉 α2 0,

where αmβm �= 0 (m = 1, 2). So the Schmidt rank of |�i,k〉
under each bipartition is greater than one. Hence, |�i,k〉 is a
genuinely entangled state.

Similarly, if one chooses the string ( j1, j2, . . . , jN−2) from
GN−2

1 or GN−2
2 , the same conclusion can be obtained. �

Furthermore, each state in
⋃2

i=0 Si is one-uniform, which
means that all their reductions to one qutrit are I/3. Now,
we give the reduced density matrix of subsystem A1. By
the construction of Eq. (5), for any string ( j1, . . . , jN−1) ∈
ZN−1

3 , the N-tuples (0, j1, . . . , jN−1), (1, j1, . . . , jN−1), and
(2, j1, . . . , jN−1) must not belong to the same set GN

i . Cor-
respondingly, the vectors |0, j1, . . . , jN−1〉, |1, j1, . . . , jN−1〉,
and |2, j1, . . . , jN−1〉 are not in the same state |�i,k〉. Thus, we

derive

ρA1 = TrĀ1
(|� ′

i,k〉〈� ′
i,k|)

= 1

3N−1
TrĀ1

⎛
⎝∑

j∈GN
i

ωk fi ( j)
si

| j〉
∑
g∈GN

i

ω̄k fi (g)
si

〈g|
⎞
⎠

= 1

3N−1

∑
j∈GN

i

∑
g∈GN

i

ωk fi ( j)
si

ω̄k fi (g)
si

TrĀ1
(| j〉〈g|)

= 1

3N−1

⎛
⎜⎝ ∑

j∈{i}×GN−1
0

ωk fi ( j)
si

ω̄k fi ( j)
si

|i〉〈i|

022220-5
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TABLE II. The distribution of (0)×N , (1)×N , and (2)×N , where n � 1.

System N (0)×N (1)×N (2)×N

N = 2 (0, 0) ∈ G2
0 (1, 1) ∈ G2

2 (2, 2) ∈ G2
1

N = 3 (0, 0, 0) ∈ ({0} × G2
0 ) ⊂ G3

0 (1, 1, 1) ∈ ({1} × G2
2 ) ⊂ G3

0 (2, 2, 2) ∈ ({2} × G2
1 ) ⊂ G3

0

N = 4 (0)×4 ∈ ({0} × G3
0 ) ⊂ G4

0 (1)×4 ∈ ({1} × G3
0 ) ⊂ G4

1 (2)×4 ∈ ({2} × G3
0 ) ⊂ G4

2

N = 5 (0)×5 ∈ ({0} × G4
0 ) ⊂ G5

0 (1)×5 ∈ ({1} × G4
1 ) ⊂ G5

2 (2)×5 ∈ ({2} × G4
2 ) ⊂ G5

1

N = 6 (0)×6 ∈ ({0} × G5
0 ) ⊂ G6

0 (1)×6 ∈ ({1} × G5
2 ) ⊂ G6

0 (2)×6 ∈ ({2} × G5
1 ) ⊂ G6

0

N = 7 (0)×7 ∈ ({0} × G6
0 ) ⊂ G7

0 (1)×7 ∈ ({1} × G6
0 ) ⊂ G7

1 (2)×7 ∈ ({2} × G6
0 ) ⊂ G7

2

N = 8 (0)×8 ∈ ({0} × G7
0 ) ⊂ G8

0 (1)×8 ∈ ({1} × G7
1 ) ⊂ G8

2 (2)×8 ∈ ({2} × G7
2 ) ⊂ G8

1

N = 9 (0)×9 ∈ ({0} × G8
0 ) ⊂ G9

0 (1)×9 ∈ ({1} × G8
2 ) ⊂ G9

0 (2)×9 ∈ ({2} × G8
1 ) ⊂ G9

0
...

...
...

...

N = 3n (0)×3n ∈ ({0} × G (3n−1)
0 ) ⊂ GN

0 (1)×3n ∈ ({1} × G (3n−1)
2 ) ⊂ GN

0 (2)×3n ∈ ({2} × G (3n−1)
1 ) ⊂ GN

0

N = 3n + 1 (0)×(3n+1) ∈ ({0} × G3n
0 ) ⊂ GN

0 (1)×(3n+1) ∈ ({1} × G3n
0 ) ⊂ GN

1 (2)×(3n+1) ∈ ({2} × G3n
0 ) ⊂ GN

2

N = 3n + 2 (0)×(3n+2) ∈ ({0} × G (3n+1)
0 ) ⊂ GN

0 (1)×(3n+2) ∈ ({1} × G (3n+1)
1 ) ⊂ GN

2 (2)×(3n+2) ∈ ({2} × G (3n+1)
2 ) ⊂ GN

1

+
∑

j∈{i⊕32}×GN−1
1

ωk fi ( j)
si

ω̄k fi ( j)
si

|i ⊕3 2〉〈i ⊕3 2|

+
∑

j∈{i⊕31}×GN−1
2

ωk fi ( j)
si

ω̄k fi ( j)
si

|i ⊕3 1〉〈i ⊕3 1|

⎞
⎟⎠

= 1

3N−1
[3N−2(|0〉〈0| + |1〉〈1| + |2〉〈2|)]

= I/3, (17)

where |� ′
i,k〉 = 1√

3N−1
|�i,k〉 is the normalized form of |�i,k〉

and ω̄
k fi (g)
si is the complex conjugate of ω

k fi (g)
si . Similarly, there

are ρA2 = ρA3 = · · · = ρAN = I/3. That is, all of the one-qutrit
reductions are maximally mixed.

The basis in an N-qudit system is called a “maximum
entangled basis” (MEB) [54] if each element is a one-uniform
state. MEB has been found to be useful in applications in
quantum information masking. For example, the authors of
Ref. [54] used MEB and showed that it is possible to mask
arbitrary unknown quantum states into multipartite lower-
dimensional systems.

IV. STRONGLY NONLOCAL OGEs AND STRONGLY
NONLOCAL OGEBs IN (C3)⊗N

In this section, by modifying the previous construction, we
successfully show strongly nonlocal OGESs of size 2 × 3N−1

and strongly nonlocal OGEBs in Hilbert space H = (C3)⊗N .
Our OGESs are strictly fewer, 3N−1 − 2N + 1 fewer to be pre-
cise, than the size 3N − 2N + 1 of the strongly nonlocal OGES
in Ref. [50]. We prove that only 2 × 3N−1 entangled states can
also exhibit strong nonlocality in an N-qutrit system.

Let (0)×N := (0, 0, . . . , 0︸ ︷︷ ︸
N

), (1)×N := (1, 1, . . . , 1︸ ︷︷ ︸
N

),

(2)×N := (2, 2, . . . , 2︸ ︷︷ ︸
N

) and denote 0 = (0)×(N−1), 1 =

(1)×(N−1), 2 = (2)×(N−1). Based on the distribution of
(0)×N , (1)×N , and (2)×N in sets GN

i (i ∈ Z3), our construction
includes three cases. For details of the distribution, please see
Table II.

Case I. When N = 3n (n � 1), we redefine

G̃N
0 = [{0} × (GN−1

0 \{0})]⋃[{2} × (GN−1
1 \{2})]⋃[{1} × (GN−1

2 \{1})],
G̃N

1 = ({1} × GN−1
0

)⋃({0} × GN−1
1

)⋃({2} × GN−1
2

)
,

G̃N
2 = ({2} × GN−1

0

)⋃({1} × GN−1
1

)⋃({0} × GN−1
2

)
,

G̃N
3 =

⎧⎨
⎩(0, 0, . . . , 0︸ ︷︷ ︸

N−1

), (1, 1, . . . , 1︸ ︷︷ ︸
N−1

), (2, 2, . . . , 2︸ ︷︷ ︸
N−1

)

⎫⎬
⎭. (18)

Here, GN−1
i (i = 0, 1, 2) is given by Eq. (4). Clearly, we just

rename the sets GN
1 and GN

2 that are given by Eq. (5) as G̃N
1 and

G̃N
2 without changing their structure.

Let s̃i be the cardinality of the set G̃N
i , i ∈ Z4, and we define

S̃i :=

⎧⎪⎨
⎪⎩|�̃i,k〉 ∈ H

∣∣ k ∈ Zs̃i , |�̃i,k〉 :=
∑
j∈G̃N

i

ω
k fi ( j)
s̃i

| j〉

⎫⎪⎬
⎪⎭.

(19)

Here, fi : G̃N
i −→ Zs̃i is any fixed bijection and ωs̃i := e

2π
√−1
s̃i .

Comparing Eq. (18) with Eq. (5), we only change the
position of (0)×N , (2)×N , and (1)×N . Then, according to the
proof of Proposition 2 and Theorem 1, the change of these
elements does not change the permutation invariance of sets
G̃i in Eq. (18), nor does it change the genuine entanglement of
sets S̃i in Eq. (19).

Theorem 2. In (C3)⊗N (N = 3n, n � 1), the set S̃ :=
∪3

i=0S̃i given by Eq. (19) is a strongly nonlocal OGEB. The
set S̃\S̃2 = S̃0 ∪ S̃1 ∪ S̃3 is a strongly nonlocal OGES of size
2 × 3N−1.

Proof. Evidently, S̃ is an OGEB in (C3)⊗N . Thus, we only
need to prove that S̃\S̃2 has the property of strong nonlo-
cality. First, we show that A2A3 · · · AN can only perform a
trivial OPLM {�α}, α = 1, 2, . . . . Let �α = M†

αMα; since
the measurement is orthogonality preserving, for every α, the

022220-6
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TABLE III. Some off-diagonal elements of �α for N = 3n. Here we apply the block zeros lemma to the sets S̃i, S̃ j (i �= j ∈ {0, 1, 3})
given by Eq. (19).

Sets Elements

S̃0, S̃1 GN−1
0 \{0}(�α )GN−1

1
= 0, GN−1

0
(�α )GN−1

2 \{1} = 0, GN−1
1 \{2}(�α )GN−1

2
= 0

S̃1, S̃3 {0}(�α )GN−1
1

= 0, GN−1
0

(�α ){1} = 0, {2}(�α )GN−1
2

= 0

S̃0, S̃3 {0}(�α )GN−1
0 \{0} = 0, {1}(�α )GN−1

2 \{1} = 0, {2}(�α )GN−1
1 \{2} = 0

postmeasurement states must be pairwise orthogonal,

〈�|IA1 ⊗ M†
αMα|�〉 = 〈�|IA1 ⊗ �α|�〉 = 0,

for any two different states |�〉, |�〉 ∈ S̃\S̃2. According to
Proposition 1, the sets of basis vectors corresponding to G̃N

0 ,

G̃N
1 , and G̃N

3 are disjoint subsets of the computational basis
B = {⊗N

k=1|ηk〉|ηk = 0, 1, 2} of (C3)
⊗

N .
Applying the block zeros lemma to any two different sets

S̃i and S̃ j (i �= j ∈ {0, 1, 3}), we obtain

〈i1, i2, . . . , iN |IA1 ⊗ �α| j1, j2, . . . , jN 〉 = 〈i|E | j〉 = 0,

for any i = (i1, i2, . . . , iN ) ∈ G̃N
i and j = ( j1, j2, . . . , jN ) ∈

G̃N
j . Here, E := IA1 ⊗ �α .

When i1 = j1, one gets

〈i2, . . . , iN |�α| j2, . . . , jN 〉 = 0.

Based on the above argument, we deduce that some off-
diagonal elements of �α , shown in Table III, are zero.

From Table II, we know that 0 ∈ GN−1
0 , which means i0 =

(1, 0, 0, . . . , 0) ∈ G̃N
1 .

For any j = ( j1, j2, . . . , jN ) ∈ G̃N
1 and j �= i0, j1 �= 1,

there is

〈i0|E | j〉 = 〈i0|IA1 ⊗ �α| j〉 = 0.

If j1 = 1, then we get j ∈ {1} × GN−1
0 , and therefore

( j2, . . . , jN ) ∈ GN−1
0 and ( j2, . . . , jN ) �= 0. Noticing that

{0}�GN−1
0 \{0} = 0 in Table III, one obtains

〈i0|E | j〉 = 〈1, 0, . . . , 0|IA1 ⊗ �α|1, j2 . . . , jN 〉
= 〈0, . . . , 0|�α| j2 . . . , jN 〉 = 0.

Applying the block trivial lemma to the set of basis vectors
corresponding to G̃N

1 , the set S̃1 of states, and the vector
|1, 0, . . . , 0〉, for any different strings i′ = (i′1, i′2, . . . , i′N ) and

j′ = ( j′1, j′2, . . . , j′N ) belonging to G̃N
1 , we have

〈i′|E | j′〉 = 〈 j′|E |i′〉 = 0, 〈i′|E |i′〉 = 〈 j′|E | j′〉.
This implies that

〈i′2, . . . , i′N |�α|i′2, . . . , i′N 〉 = 〈 j′2, . . . , j′N |�α| j′2, . . . , j′N 〉.
If i′1 = j′1, one has

〈i′1, i′2, . . . , i′N |E | j′1, j′2, . . . , j′N 〉
= 〈i′2, . . . , i′N |�α| j′2, . . . , j′N 〉 = 0.

The diagonal elements and some off-diagonal elements of �α

for N = 3n are illustrated in Table IV.
Observe the first and second rows of Table III, where

the results GN−1
0 \{0}(�α )GN−1

1
= 0 and {0}(�α )GN−1

1
= 0 in the

first column yield GN−1
0

(�α )GN−1
1

= 0. Similarly, we can ob-
tain GN−1

0
(�α )GN−1

2
= 0 and GN−1

1
(�α )GN−1

2
= 0 by the second

and third columns. Combining the results 〈i|�α| j〉 = 0 for
i �= j ∈ GN−1

i (i ∈ {0, 1, 2}) in Table IV ensures that the off-
diagonal elements of �α are all zeros. By the results in last
row of Table IV, we obtain that the diagonal elements of
�α are all equal. Thus, �α is proportional to the identity for
α = 1, 2, . . . . Because of the symmetrical structure, we can
also show that any (N − 1) parties could only perform a trivial
OPLM. �

It is worth noting that the set S̃\S̃1 = S̃0 ∪ S̃2 ∪ S̃3 has
the same effect with S̃\S̃2 = S̃0 ∪ S̃1 ∪ S̃3, that is, S̃\S̃1 also
exhibits strong quantum nonlocality. The detailed analysis is
shown in Tables V and VI.

For the case of N = 3n + 1 and N = 3n + 2, we give two
theorems similar to Theorem 2. What we need to do is to prove
that the set S̃\S̃2 has the property of strong nonlocality, which
means that any (N − 1) parties could only perform a trivial
OPLM. We omit the detailed proof, but give four tables for
the complete analysis, because it is similar to that of Theorem
2.

Case II. N = 3n + 1 (n � 1).
We redefine

G̃N
0 = [{0} × (GN−1

0 \{0})]⋃({2} ×GN−1
1

)⋃({1} ×GN−1
2

)
,

G̃N
1 = [{1} × (GN−1

0 \{1})]⋃({0} ×GN−1
1

)⋃({2} ×GN−1
2

)
,

G̃N
2 = ({2} × GN−1

0

)⋃({1} × GN−1
1

)⋃({0} × GN−1
2

)
,

G̃N
3 =

⎧⎨
⎩(0, 0, . . . , 0︸ ︷︷ ︸

N−1

), (1, 1, . . . , 1︸ ︷︷ ︸
N−1

)

⎫⎬
⎭. (20)

Here, GN−1
i (i = 0, 1, 2) is given by Eq. (4). The set GN

2 given

by Eq. (5) is renamed G̃N
2 . Let s̃i be the cardinality of the set

TABLE IV. Diagonal elements and some off-diagonal elements
of �α when N = 3n. Here we apply the block trivial lemma to the
set S̃1, the set of basis vectors corresponding to G̃N

1 , and the vector
|1, 0, . . . , 0〉.

Subsets of G̃N
1 Elements

{1} × GN−1
0 〈i|�α| j〉 = 0 for i �= j ∈ GN−1

0

{0} × GN−1
1 〈i|�α| j〉 = 0 for i �= j ∈ GN−1

1

{2} × GN−1
2 〈i|�α| j〉 = 0 for i �= j ∈ GN−1

2

G̃N
1 〈i|�α|i〉 = 〈 j|�α| j〉 for i �= j ∈ ZN−1

3
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TABLE V. Some off-diagonal elements of �α for N = 3n. Here we apply the block zeros lemma to the sets S̃i, S̃ j (i �= j ∈ {0, 2, 3}) given
by Eq. (19).

Sets Elements

S̃0, S̃2 GN−1
0 \{0}(�α )GN−1

2
= 0, GN−1

1 \{2}(�α )GN−1
0

= 0, GN−1
2 \{1}(�α )GN−1

1
= 0

S̃2, S̃3 {2}(�α )GN−1
0

= 0, {1}(�α )GN−1
1

= 0, {0}(�α )GN−1
2

= 0

S̃0, S̃3 {0}(�α )GN−1
0 \{0} = 0, {1}(�α )GN−1

2 \{1} = 0, {2}(�α )GN−1
1 \{2} = 0

TABLE VI. Diagonal elements and some off-diagonal elements of �α when N = 3n. Here we apply the block trivial lemma to the set S̃2,
the set of basis vectors corresponding to G̃N

2 , and the vector |2, 0, . . . , 0〉.

Subsets of G̃N
2 Elements

{2} × GN−1
0 〈i|�α| j〉 = 0 for i �= j ∈ GN−1

0

{1} × GN−1
1 〈i|�α| j〉 = 0 for i �= j ∈ GN−1

1

{0} × GN−1
2 〈i|�α| j〉 = 0 for i �= j ∈ GN−1

2

G̃N
2 〈i|�α|i〉 = 〈 j|�α| j〉 for i �= j ∈ ZN−1

3

TABLE VII. Some off-diagonal elements of �α when N = 3n + 1. Here we apply the block zeros lemma to any two different sets S̃i (i =
0, 1, 3) given by Eq. (21).

Sets Elements

S̃0, S̃1 GN−1
0 \{0}(�α )GN−1

1
= 0, GN−1

0 \{1}(�α )GN−1
2

= 0, GN−1
1

(�α )GN−1
2

= 0

S̃1, S̃3 {0}(�α )GN−1
1

= 0, {1}(�α )GN−1
0 \{1} = 0

S̃0, S̃3 {0}(�α )GN−1
0 \{0} = 0, {1}(�α )GN−1

2
= 0

TABLE VIII. When N = 3n + 1, diagonal elements and some off-diagonal elements of �α are shown. Here we apply the block trivial
lemma to the sets S̃1 and S̃3 given by Eq. (21), the set of base vectors corresponding to G̃N

1 and G̃N
3 , and the vector |1, 0, . . . , 0〉.

Subsets of G̃N
1 Elements Set Elements

{1} × GN−1
0 \{1} 〈i|�α| j〉 = 0 for i �= j ∈ GN−1

0 \{1} G̃N
1 〈i|�α|i〉 = 〈 j|�α| j〉 for i �= j ∈ ZN−1

3 \{1}
{0} × GN−1

1 〈i|�α| j〉 = 0 for i �= j ∈ GN−1
1 G̃N

3 〈0|�α|0〉 = 〈1|�α|1〉
{2} × GN−1

2 〈i|�α| j〉 = 0 for i �= j ∈ GN−1
2

TABLE IX. Some off-diagonal elements of �α when N = 3n + 2. Here we apply the block zeros lemma to the sets S̃i (i = 0, 1, 3) given
by Eq. (23).

Sets Elements

S̃0, S̃1 GN−1
0 \{0}(�α )GN−1

1
= 0, GN−1

0
(�α )GN−1

2
= 0, GN−1

1
(�α )GN−1

2 \{2} = 0

S̃1, S̃3 {0}(�α )GN−1
1

= 0, {2}(�α )GN−1
2 \{2} = 0

S̃0, S̃3 {0}(�α )GN−1
0 \{0} = 0, GN−1

1
(�α ){2} = 0

TABLE X. Diagonal elements and some off-diagonal elements of �α when N = 3n + 2. Here, one applies the block trivial lemma to the
sets S̃1 and S̃3 given by Eq. (23), the sets of base vectors corresponding to G̃N

1 and G̃N
3 , and the vector |1, 0, . . . , 0〉.

Subsets of G̃N
1 Elements Set Elements

{1} × GN−1
0 〈i|�α| j〉 = 0 for i �= j ∈ GN−1

0 G̃N
1 〈i|�α|i〉 = 〈 j|�α| j〉 for i �= j ∈ ZN−1

3 \{2}
{0} × GN−1

1 〈i|�α| j〉 = 0 for i �= j ∈ GN−1
1 G̃N

3 〈0|�α|0〉 = 〈2|�α|2〉
{2} × GN−1

2 \{2} 〈i|�α| j〉 = 0 for i �= j ∈ GN−1
2 \{2}

022220-8
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G̃N
i , i ∈ Z4, and we define

S̃i :=

⎧⎪⎨
⎪⎩|�̃i,k〉 ∈ H

∣∣ k ∈ Zs̃i , |�̃i,k〉 :=
∑
j∈G̃N

i

ω
k fi ( j)
s̃i

| j〉

⎫⎪⎬
⎪⎭.

(21)

Here, fi : G̃N
i −→ Zs̃i is any fixed bijection and ωs̃i := e

2π
√−1
s̃i .

Theorem 3. In (C3)⊗N (N = 3n + 1, n � 1), the set S̃ :=
∪3

i=0S̃i given by Eq. (21) is a strongly nonlocal OGEB. The
set S̃\S̃2 = S̃0 ∪ S̃1 ∪ S̃3 is a strongly nonlocal OGES of size
2 × 3N−1.

Proof. See Table VII and Table VIII for the complete anal-
ysis. Thus we obtain �α ∝ I. �

Case III. N = 3n + 2 (n � 1).
We redefine

G̃N
0 = [{0}×(GN−1

0 \{0})]⋃({2}×GN−1
1

)⋃({1}×GN−1
2

)
,

G̃N
1 = ({1}×GN−1

0

)⋃({0}×GN−1
1

)⋃[{2}×(GN−1
2 \{2})],

G̃N
2 = ({2}×GN−1

0

)⋃({1}×GN−1
1

)⋃({0}×GN−1
2

)
,

G̃N
3 =

⎧⎨
⎩(0, 0, . . . , 0︸ ︷︷ ︸

N−1

), (2, 2, . . . , 2︸ ︷︷ ︸
N−1

)

⎫⎬
⎭. (22)

Here, GN−1
i (i = 0, 1, 2) is given by Eq. (4). The set GN

2 given

by Eq. (5) is renamed G̃N
2 . Let s̃i be the cardinality of the set

G̃N
i , i ∈ Z4, and we define

S̃i :=

⎧⎪⎨
⎪⎩|�̃i,k〉 ∈ H

∣∣ k ∈ Zs̃i , |�̃i,k〉 :=
∑
j∈G̃N

i

ω
k fi ( j)
s̃i

| j〉

⎫⎪⎬
⎪⎭. (23)

Here, fi : G̃N
i −→ Zs̃i is any fixed bijection and ωs̃i := e

2π
√−1
s̃i .

Theorem 4. In (C3)⊗N (N = 3n + 2, n � 1), the set S̃ :=
∪3

i=0S̃i given by Eq. (23) is a strongly nonlocal OGEB. The
set S̃\S̃2 = S̃0 ∪ S̃1 ∪ S̃3 is a strongly nonlocal OGES of size
2 × 3N−1.

Proof. The complete analysis is given in Table IX and
Table X. Thereby, we obtain �α ∝ I. �

We construct strongly nonlocal OGESs containing 2 ×
3N−1 states in (C3)⊗N , which is 3N−1 − 2N + 1 fewer than
the OGESs presented in Ref. [50] and 3N−1 − 1 fewer than
the OPSs in Refs. [45,46]. It should be pointed out that our
OGES is also of the strongest nonlocality. A set of orthogonal
states is said to have the property of the strongest nonlocality
[48] if only a trivial orthogonality-preserving POVM can be
performed for each bipartition of the subsystems. As a conse-
quence, we successfully show that there does exist a smaller
size of the strongest nonlocal OGESs in an N-qutrit system.

V. CONCLUSION

In this work, we constructed OGESs and OGEBs with
strong nonlocality in (C3)⊗N (N � 3), which positively an-
swer the question in Ref. [38] of “whether one can find
orthogonal entangled bases that are locally irreducible in all
bipartitions” and partially answer an open question given in
[49], “How do we construct a strongly nonlocal orthogonal
genuinely entangled set in (Cd )⊗N for any d � 2 and N � 5?”
Furthermore, in an N-qutrit system, the strongly nonlocal
OGESs in our construction have a much smaller size than
that of the strongly nonlocal OGESs in Ref. [50] and strongly
nonlocal OPSs in Refs. [45,46]. Thus, this work is also an
answer to the question in Ref. [48], “can we construct some
smaller set that has the property of the strongest nonlocality
via the OGES than the OPS?” Our result could also be helpful
in better understanding the structure of ”local irreducibility in
all bipartitions ” of entangled states.
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