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The Demkov-Kunike (DK) model, characterized by a time-dependent Rabi coupling J sech(t/T ) and on-site
detuning �0 + �1 tanh(t/T ), has one of the most general forms of an exactly solvable two-state quantum system
and therefore it provides a paradigm for coherent manipulations of a qubit’s quantum state. Despite its extensive
application in noise-free cases, the exploration of the noisy DK model remains limited. Here we extend the
coherent DK model to take into account a noisy coupling term J → Jnoisy(t ). We consider colored Markovian
noise sources represented by telegraph noise and Gaussian noise. We present exact solutions for the survival
probability Qnoisy

DK of the noisy DK model, namely, the probability of the system to remain in its initial state. For
slow telegraph noise, we identify parameter regimes where the survival probability Qnoisy

DK is suppressed rather
than enhanced by noise. In contrast, for slow Gaussian noise, the noise always enhances the survival probability
Qnoisy

DK , due to the absorption of noise quanta across the energy gap. This study not only complements the existing
research on the noisy Landau-Zener model but also provides valuable insights into the control of two-level
quantum systems.

DOI: 10.1103/PhysRevA.109.022219

I. INTRODUCTION

The two-state quantum system not only serves as a building
block for quantum information and quantum computation,
but also underpins our understanding of various phenom-
ena, such as atomic collisions [1], molecular magnets [2],
and chemical reactions [3]. In the study of two-state quan-
tum systems, those models that can be solved analytically
are particularly important as they provide benchmarks. No-
table examples include the Landau-Zener (LZ) model [4–8],
the Rosen-Zener (RZ) model [9], the Allen-Eberly (AE)
model [10,11], and the Bambini-Berman (BB) [12] model.
In this context, the Demkov-Kunike (DK) model, originally
proposed in Ref. [13], represents a rather universal model
[14–16]: It can reduce to the RZ, AE, BB, and LZ models
under appropriate parameter choices while avoiding some of
their intrinsic drawbacks [17,18]. Indeed, the DK model, in
which the Rabi coupling and the on-site detuning depend
on time as J sech(t/T ) and �0 + �1 tanh(t/T ), respectively,
provides one of the most general forms of a two-state quantum
model that can be analytically solved.

In recent years, the exploration of two-state systems cou-
pled to an environment has attracted considerable attention.
Apart from the fundamental interest in open systems, un-
derstanding and controlling noise is also crucial in practical
applications [19,20] such as in noisy intermediate-scale quan-
tum computers [21] and cloud service of quantum computers
[22]. However, the investigation of the impact of noisy envi-
ronments remains a significant challenge. In general, the noise
mainly affects a qubit in two ways [23], namely, by destroying
the superpositions through the randomization of the phase
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coherence between the two eigenstates and by generating
excitations and altering the state occupations. Therefore, the
aforementioned analytically solvable models need to be revis-
ited to account for the presence of noise. Similarly, the noisy
LZ problems have been intensively studied both theoretically
[24–32] and experimentally [33–36]. However, the study of
the noisy DK model still remains elusive. In comparison with
the noisy LZ model, the noisy DK model has the distinctive
advantage that it may provide a general form of an exactly
solvable two-state quantum model coupled to an environment.
Hence, a timely and fundamental question is how the noise
influences the quantum transitions in the DK model.

In this work we investigate the DK tunneling rate in the
presence of colored Markovian noises, as exemplified by
telegraph noise and colored Gaussian noise. Specifically, we
focus on the slow noise case as in Ref. [31], i.e., when the
noise correlation time is long compared to typical transition
time, where we can derive exact analytical solutions for the
survival probability of the system remaining in the initial
state. While coupling to classical noise typically results in
an enhanced survival probability, we observe the suppres-
sion in certain parameter regimes for slow telegraph noise.
In contrast, for slow Gaussian noise, we always observe an
enhancement of the survival probability, due to the absorption
of the noise quanta across the gap. This observation provides
valuable insights into the intricate interplay between the noise
and the transition dynamics. Our findings not only contribute
to the understanding of the noisy DK model but also offer a
complementary perspective to the existing studies on the noisy
Landau-Zener model. Furthermore, our work introduces new
possibilities for the control of two-level quantum systems.

This paper is organized as follows. In Sec. II we describe
the noisy DK model. In Secs. III and IV we systematically
investigate how telegraph noise and Gaussian noise affect
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FIG. 1. (a) Telegraph noisy Demkov-Kunike model. In two-state
telegraph noise, the stochastic parameter Jnoisy(t ) in the Hamiltonian
(1) switches from J and −J at time t0. (b) Gaussian noisy DK model
with Jnoisy(t ) = J[tanh(t/T ) − tanh(t0/T )]. The time t = t0 where
Jnoisy(t ) = 0 is close to the time when the level crossing (blue dotted
curves) of the diabatic levels closes.

the tunneling rate of the noisy DK model, respectively. In
Sec. V we discuss the experimental conditions for observing
the described phenomena. We briefly summarize our work in
Sec. VI.

II. NOISY DEMKOV-KUNIKE MODEL

The standard DK model, as described in Refs. [14–16], is
characterized by the quasilinear level crossing of a bell-shaped
pulse with finite detuning. When noise is considered (see
Fig. 1), the Hamiltonian takes the form

H = [�0 + �1 tanh(t/T )]σz + Jnoisy(t )sech(t/T )σx, (1)

where σi (i = x, z) are the Pauli matrices. Here the �0 and
�1 are referred to as the static and chirp detuning parameters,
respectively, and T is the scanning period of the external
pulse field. The second term in the Hamiltonian (1) represents
the intrinsic interactions between the two diabatic states |↑〉
and |↓〉, which induces the transitions. The external noise
appears as the stochastic parameter [37,38] Jnoisy(t ), which
fluctuates over time according to the colored Markovian noise
sources [37,38], as exemplified by the telegraph noise and
Gaussian noise. For both types of noise, we have the mean
value 〈Jnoisy(t )〉 = 0 and the first-order correlation 〈Jnoisy(t +
τ ), Jnoisy(t )〉 = σ 2 exp(−|τ |/τc), where τc is the correlation
time, σ 2 is the variance, angular brackets denote the stochastic
average, and 〈X,Y 〉 ≡ 〈XY 〉 − 〈X 〉〈Y 〉. The noisy DK model

contains three important noisy models as the special cases,
namely, the noisy RZ model [9] for �1 = 0, the noisy AE
model [10,11] for �0 = 0, and the noisy BB model [12] for
�0 = �1.

As a reference, let us first briefly recapitulate the proper-
ties of the noise-free DK model with Jnoisy(t ) = J . There the
time evolution of the wave function ψ (t ) = [C1(t ),C2(t )]T is
governed by i∂ψ/∂t = Hψ . By introducing the new variable
z = [1 + tanh(t/T )]/2, with z ∈ [0, 1] corresponding to t ∈
(−∞,+∞), the solutions of C1(t ) can be transformed into
the solutions of the Gauss hypergeometric equation

z(1 − z)
d2C1

dz2
+ [ν − (λ + μ + 1)z]

dC1

dz
− λμC1 = 0, (2)

where ν = 1/2 − iT (�0 − �1), λ = iT (
√

�2
1 − J2 + �1),

and μ = iT (�1 −
√

�2
1 − J2). Equation (2) has two lin-

early independent solutions expressed by the hypergeometric
function, i.e., 2F1(λ,μ, ν, z) and z1−ν

2F1(λ + 1 − ν, μ + 1 −
ν, 2 − ν, z).

The key quantity of interest is the survival probability
QDK = |C1(t → ∞)|2 under the initial condition |C1(t →
−∞)| = 1. For the noise-free DK model, the exact expres-
sion of QDK was obtained in Refs. [14–16] (or the detailed
derivation can be found in Appendix A of Ref. [16]):

QDK =
cosh(2πT �1) + cosh

(
2πT

√
�2

1 − J2
)

cosh(2πT �0) + cosh(2πT �1)
. (3)

Setting �0 = 0 yields the transition probability for the AE
model, QAE = 1 − sinh2(πT

√
�2

1 − J2)/cosh2(πT �1)
[10,11], whereas if �1 = 0 one obtains QRZ =
cos2(πT J )/cosh2(πT �0) for the RZ model [9].

The presence of the noisy component Jnoisy(t ) in the Hamil-
tonian parameter leads to random shaking of the system. We
denote the survival probability in the presence of noise by
Qnoisy

DK . Depending on the ratio between the noise correlation
time τc and the typical transition time τDK ∝ 1/J of the DK
model, there are two limits. (i) In the limit of fast noise
τc/τDK → 0, the stochastic parameter Jnoisy(t ) is expected to
undergo many oscillations within the transition time, so the
occupations in each of the two diabatic levels are nearly iden-
tical. (ii) In the limit of slow noise τc/τDK → ∞, the Jnoisy(t )
can be treated as a constant on the timescale of the transition.
This implies that the resulting Qnoisy

DK can be roughly averaged
over the distribution P(J ) of the stochastic parameter Jnoisy(t )
as 〈Qnoisy

DK 〉 = ∫
dJ P(J )Qnoisy

DK . In our work we focus on the
slow noise case in the sense of (ii), but taking into account
the finite 1/τc correction associated with the level crossing
regime, along the lines of Ref. [31].

We will explore two typical kinds of colored Markovian
noises [37,38]. In Sec. III we consider a random telegraph
process as illustrated in Fig. 1(a) and analytically study the
survival probability in the DK model in the fast noise limit. In
Sec. IV we consider Gaussian noise where Jnoisy(t ) changes
continuously [cf. Fig. 1(b)] and investigate the transition be-
havior in the slow noise limit.
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III. TELEGRAPH NOISY DK MODEL

In the two-state telegraph noise model, the stochastic pa-
rameter Jnoisy(t ) in the Hamiltonian (1) randomly switches
between two discrete values −J and J . The telegraph noise
property is characterized by 〈Jnoisy(t )〉 = 0 and 〈Jnoisy(t +
τ ), Jnoisy(t )〉 = J2 exp(−|τ |/τc). We follow Ref. [31] and con-
sider a sufficiently slow noise but with finite 1/τc correction.
During the course of the transition, the noise jump typically
occurs at time t0 ∼ τc 
 τDK ∼ 1/J , in agreement with the
slow noise assumption. However, as illustrated in Fig. 1(a),
there is some (small) chance that the random switch occurs
near the level crossing point that may significantly affect the
tunneling probability.

Below we exactly solve the dynamics governed by the
Hamiltonian (1) for the survival probability Qnoisy

DK , under the
initial conditions C1(−∞) = 1 and C2(−∞) = 0. We proceed
in two steps. First, we consider Jnoisy(t ) flipping its sign once

at some random time t0 during the transition and calculate the
corresponding Qnoisy

DK . Then, since t0 is random, we average

Qnoisy
DK over t0 to get the average Qnoisy

DK .
We begin by calculating the transition dynamics when one

switch occurs between the two discrete values −J and J at
some t0. For times t < t0, the system dynamics is governed by
Eq. (2) with Jnoisy(t ) = J . Therefore, the instantaneous state
can be expressed in terms of Gauss hypergeometric functions
as (

C1(z)

C2(z)

)
=

(
2F1(λ,μ, ν, z)

√
λμz(1−z)

ν 2F1(λ + 1, μ + 1, ν + 1, z)

)
, (4)

where the parameters μ, ν, and λ are defined in Eq. (2).
For times t > t0, the stochastic parameter Jnoisy(t ) is

switched to Jnoisy(t ) = −J . In this case, the general solution of
Eq. (2) involves a linear superposition of two hypergeometric
functions, i.e.,

(
C1(z)

C2(z)

)
= A

(
2F1(λ,μ, ν, z)

−
√

λμz(1−z)
ν 2F1(λ + 1, μ + 1, ν + 1, z)

)
+ B

⎛
⎝ z1−ν

2F1(λ + 1 − ν, μ + 1 − ν, 2 − ν, z)

−
√

z(1−z)
λμ

(1 − ν)z−ν
2F1(λ + 1 − μ,μ + 1 − ν, 1 − ν, z)

⎞
⎠. (5)

Here the coefficients A and B are determined by the continuity condition of C1 and C2 in Eqs. (4) and (5) at t0 as

A(t0) =
2F1(λ+1−ν,μ+1−ν,1−ν,z0 )

2F1(λ+1,μ+1,ν+1,z0 ) + λμz0

ν(1−ν)
2F1(λ+1−ν,μ+1−ν,2−ν,z0 )

2F1(λ,μ,ν,z0 )

2F1(λ+1−ν,μ+1−ν,1−ν,z0 )
2F1(λ+1,μ+1,ν+1,z0 ) − λμz0

ν(1−ν)
2F1(λ+1−ν,μ+1−ν,2−ν,z0 )

2F1(λ,μ,ν,z0 )

, (6)

B(t0) = 2

− ν(1−ν)
λμ

z−ν
0

2F1(λ+1−ν,μ+1−ν,1−ν,z0 )
2F1(λ+1,μ+1,ν+1,z0 ) + z1−ν

0
2F1(λ+1−ν,μ+1−ν,2−ν,z0 )

2F1(λ,μ,ν,z0 )

. (7)

For t0 → ∞, corresponding to the absence of parameter switching, we obtain A = 1 and B = 0 as expected. The introduction of
parameter switching leads to B �= 0, causing a significant impact on the survival probability, as demonstrated below.

Using Eq. (5), we obtain an exact expression for the probability to remain at the same adiabatic level as

Qnoisy
DK = |A(t0)|2

cosh(2πT �0) + cosh
(
2πT

√
�2

1 − J2
)

cosh(2πT �0) + cosh(2πT �1)

+ |B(t0)|2
[1 − (�0 − �1)2T 2]

[
cosh(2πT �1) − cosh

(
2πT

√
�2

1 − J2
)]

J2T 2[cosh(2πT �0) + cosh(2πT �1)]

+ A∗B



( 1
2 − i

2 (�0 + �1)T
)



(
12 − i

2 (�0 − �1)T
)



( 3
2 − i

2 (�0 − �1)T
)



( 1
2 + i

2 (�0 + �1)T
)



(

1−T
√

J2+�2
1+i�0T

2

)



(
1+T

√
J2+�2

1+i�0T
2

)



(
2−T

√
J2−�2

1−�1T )
2

)



(
2+T

√
J2−�2

1−�1T )
2

) + H.c., (8)

where 
 is the Gamma function. Equation (8) constitutes the
first key result of this study, which describes the impact of
one random switch on the tunneling rate in the DK model.
By setting A = 1 and B = 0, Eq. (8) precisely reproduces the
noise-free results reported in Refs. [14–16].

Since in Eq. (8) the noise is fully encoded in the coef-
ficients A(t0) and B(t0), we now analyze how the telegraph
switching time t0 affects A(t0) and B(t0), as shown in Fig. 2(a).
In the asymptotic limit t0 → −∞, corresponding to the case
with Jnoisy = −J , it is clear that A → 1 and B → 0. This can
be understood as follows: (i) The energy gap of the DK model
is approximately 2

√
(�0 − �1)2 + J2 at t0 → −∞ and (ii)

the system is initially prepared in a state with A = 1 and

B = 0, and Jnoisy is switched from J to −J , so the telegraph
noise is not strong enough to excite the B state. In contrast,
when t0 → 0, there exists a level crossing in the parameter
regime �0 < �1 [see the dotted curves in Fig. 1(a)]. In this
case, an arbitrarily small J can excite the system, changing
B from zero to nonzero [see the black curves in Fig. 2(a)].
In Fig. 2(c) we further study how the gap closing affects the
coefficients A(0) and B(0) at t0 = 0 by varying �1, when
�0 = 4. We see that the optimal enhancement of B occurs at
�1 ≈ 4, corresponding to where the energy gap almost closes.

Next, based on the behaviors of A(t0) and B(t0) for various
t0 and �1, we study how the onset of one random jump affects
the tunneling rate. In Fig. 2(b) we fix �1 and show QDK as a
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FIG. 2. Effects of fast telegraph noise on the tunneling rate Qnoisy
DK

of the DK model. The magnitude of the coefficients A in Eq. (6)
and B in Eq. (7) is plotted as a function of (a) the switching time t0

and (c) the chirp detuning parameter �1. The tunneling rate Qnoisy
DK

in Eq. (8) is plotted as a function of (b) t0 and (d) �1. In (b) the
dashed curves represent the tunneling rate in the absence of noise.
The parameters are (a) J = π/2, �0 = 4, and �1 = 5; (b) J = π/2
and �1 = 5; (c) J = π/2, �0 = 4, and t0 = 0; and (d) J = π/2 and
�0 = 4.

function of t0. There, when �0 = 0 (red curves), the results
are similar to those of the telegraph noisy LZ model studied
in Ref. [31]. Moreover, Qnoisy

DK is symmetric with respect to
t0 and exactly recovers the noise-free counterpart in the limit
t0 → ±∞. When �0 �= 0 (black curves), however, the Qnoisy

DK
becomes asymmetric with respect to t0. In addition, it exactly
recovers the noise-free counterpart in the limit of t0 → ±∞.
The symmetry can be understood as arising from the symme-
try of the energy levels with respect to t = 0. Surprisingly,
we see that Qnoisy

DK decreases with t0 in the regime where
�0 + �1 tanh(t0/T ) → 0 in the Hamiltonian (1).

To further understand the noise-suppressed tunneling in the
regime �0 + �1 tanh(t0/T ) → 0, we set t0 = 0 and analyze
how the tunneling rate depends on �1. In Fig. 2(d) we show
Qnoisy

DK as a function of �1 for different t0 and compare it with
the noise-free case (red dashed curves). As expected, both

asymptotic results in the limit t0 → −∞ (blue solid curves)
and the limit t0 → +∞ (orange dash–double-dotted curves)
almost coincide with the noise-free case. In contrast, the result
of the noisy DK model for t0 → 0 (black dotted curves) differs
significantly from the noise-free case. In particular, there is
a dip of Qnoisy

DK where �1 corresponds to the level crossing
closing. Thus we conclude that the smaller the energy gap of
the telegraph noisy DK model is, the stronger the suppression
of Qnoisy

DK is.
Finally, we account for the random nature of t0 and average

Eq. (8) over t0 [31] to obtain the corresponding results. The

average result Qnoisy
DK is plotted as the purple dash-dotted curve

in Fig. 2(d). Note that Qnoisy
DK is qualitatively similar to the

result for a single t0 ∼ 0. This suggests that the transition can
be particularly strongly affected by a random occurrence of
switching near the level crossing.

IV. GAUSSIAN NOISY DK MODEL

So far, we have systematically studied how the fast tele-
graph noise affects the DK tunneling rate Qnoisy

DK based on
Eq. (8). In this section we consider slow Gaussian noise
characterized by 〈Jnoisy(t )〉 = 0 and 〈Jnoisy(t + τ ), Jnoisy(t )〉 =
J2 exp(−|τ |/τc) and investigate its effect on Qnoisy

DK . Note that
Ref. [39] first investigated the effect of the slow Gaussian
noise on the tunneling rate in the context of the LZ model.
Here, extending the approach developed in Refs. [31,39] for
the study of the LZ model with slow Gaussian noise, we seek
to exactly solve the Gaussian noisy DK model.

Specifically, we assume the following form for the off-
diagonal term of the Hamiltonian (1):

Jnoisy(t )sech(t/T ) = J

[
tanh

(
t

T

)
− tanh

(
t0
T

)]
. (9)

Here t0 is a random number. Similar to the case of telegraph
noise, the relevant situation is expected to be when t0 is near
the level crossing closing.

We start by considering a single choice of t0. Using Eq. (9),
the dynamics of the Gaussian noisy DK model is governed by
two coupled equations

i
dC1

dt
=

[
�0 + �1 tanh

(
t

T

)]
C1 + J

[
tanh

(
t

T

)
− tanh

(
t0
T

)]
C2, (10)

i
dC2

dt
= J

[
tanh

(
t

T

)
− tanh

(
t0
T

)]
C1 −

[
�0 + �1 tanh

(
t

T

)]
C2. (11)

Equation (11) can be exactly solved by introducing the new variables(
C′

1

C′
2

)
=

(
cos θ sin θ

sin θ − cos θ

)(
C1

C2

)
, (12)

with tan(2θ ) = J/�1. Using Eq. (12) transforms Eq. (11) into the dynamical equations for C′
1 and C′

2, i.e.,

i
dC′

1

dt
=

[
�′

0 + �′
1 tanh

(
t

T

)]
C′

1 + J ′C′
2, (13)

i
dC′

2

dt
= J ′C′

1 −
[
�′

0 + �′
1 tanh

(
t

T

)]
C′

2, (14)

with �′
0 = [�0 cos2 2θ − �1 sin2 2θ tanh(t0/T )]/cos 2θ , �′

1 = �1/cos 2θ , and J ′ = [�0 + �1 tanh(t0/T )] sin 2θ .
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It turns out that Eqs. (13) and (14) are the second Demkov-Kunike model [31] with the renormalized parameters �′
0, �′

1, and
J ′. Therefore, after straightforward yet tedious calculations we analytically obtain the exact result

Qnoisy
DK (t0, J ) = sinh[πT (Ee − Ea + 2�′

1)/2] sinh[πT (Ea − Ee + 2�′
1)/2]

sinh(πT Ea) sinh(πT Ee)
, (15)

with Ea = √
(�′

0 − �′
1)2 + J ′2 and Ee = √

(�′
0 + �′

1)2 + J ′2.
Equation (15) is another key result of this study, which de-
scribes the survival probability of the system at the initial level
for the Gaussian noisy DK model.

Since t0 is random, next we average Qnoisy
DK (t0, J ) in Eq. (15)

over t0 as Qnoisy
DK = ∫ +∞

−∞ dt0/τcQnoisy
DK . Consequently, relevant

for the tunneling rate are three free parameters �0, �1, and J .

In Fig. 3(a) we show Qnoisy
DK as a function of �1 for various J .

We see that there is a steep increase of Qnoisy
DK as �1 approaches

�1 ∼ 4, where the level crossing occurs [cf. the blue dotted
curves in Fig. 1(b)]. Moreover, we observe an increase in

Qnoisy
DK with J before the level crossing. This can be understood

as the stronger J is, the easier the transition is. In contrast, in

the regime �1 > 4 after the level crossing, we see that Qnoisy
DK

decreases with J .
Finally, for the slow Gaussian noise, Qnoisy

DK should be fur-
ther averaged over the Gaussian-type distribution P(J ). We

have 〈Qnoisy
DK 〉 = ∫

dJ P(J )Qnoisy
DK . The resulting noise-averaged

DK tunneling rate 〈Qnoisy
DK 〉 only depends on �0 and �1. As

∆10

∆10 5
0
0.2
0.4
0.6
0.8

0
0.2
0.4
0.6
0.8

= /20

= /2

= /2

=

(a)

(b)

FIG. 3. Superadiabaticity of the Gaussian noisy DK model.

(a) Time-averaged tunneling rate Qnoisy
DK = ∫ +∞

−∞ dt0/τcQnoisy
DK as a

function of �1. (b) Noise-averaged tunneling rate 〈Qnoisy
DK 〉 =∫

dJ P(J )Qnoisy
DK as a function of �1. Here P(J ) is the Gaussian-type

distribution. In both plots we use �0 = 4 and τc = 1.

shown in Fig. 3(b), increasing �1 always leads to an enhanced

〈Qnoisy
DK 〉.

V. DISCUSSION

The emphasis as well as value of this study is a general
and exactly solvable model that is capable of describing a
noisy two-level quantum system. The unavoidable presence of
impurities in most real-world physical systems has provided
a strong motivation to study noisy two-level models. While
usually the noisy model is considered as phenomenological in
the context of condensed matter, the noisy DK model studied
here is of relevance in cold-atom experiments, where the noise
can be engineered [40,41]. An optically trapped atomic real-
ization of the DK model may thus serve as an ideal platform
to study the effect of time-dependent disorder in a controlled
setting by appropriate modulation of the laser beams to mimic
various noise sources [42], thus providing an experimental
counterpart of the present theoretical study. At the same time,
there also exist several other quantum simulation platforms,
such as trapped ions [43], Rydberg atoms [44,45], and cavity
quantum electrodynamics [46], which have displayed the ca-
pability to implement controlled disorder in otherwise clean
many-body systems. With these state-of-the-art experimental
technologies, we hope the predicted results can be observed
in future experiments.

We should also bear in mind the assumptions that underlie
our results. Our study is based on the two-level model and
primarily focuses on transition probabilities. In other words,
our theoretical framework only considers coherent noise and
has ignored the decoherence or purity of the state after the
transition has passed. To study the effects of noise on both
transition probabilities and decoherence, one needs to use the
generalized master equation for the marginal system density
operator [37,38,47–49], which is beyond the scope of the
present study.

VI. CONCLUSION

In summary, we have explored the dynamics of the DK
model in a noisy environment, where the influence of the
(classical) environment was modeled by telegraph noise and
Gaussian noise characterized by J → Jnoisy(t ). We analytical
obtained exact expressions for the survival probability Qnoisy

DK
of finding the system to remain in the initial state. For the slow
telegraph noise, we found parameter regimes where Qnoisy

DK is
suppressed, rather than enhanced. For slow Gaussian noise,
we found that the noise always leads to an enhanced Qnoisy

DK ,
which originates from the absorption of the noise quanta
across the gap. Our study introduces a different perspective
for quantum control of two-level quantum systems.
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