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Uniqueness of steady states of Gorini-Kossakowski-Sudarshan-Lindblad equations: A simple proof
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We present a simple proof of a sufficient condition for the uniqueness of nonequilibrium steady states of
Gorini-Kossakowski-Sudarshan-Lindblad equations. We demonstrate the applications of the sufficient condition
using examples of the transverse-field Ising model, the XY Z model, and the tight-binding model with dephasing.
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I. INTRODUCTION

Recent advances in quantum engineering have brought
renewed interest in the effect of dissipation on quantum
many-body systems. Under the Markov approximation, the
dynamics of an open quantum system is described by
the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equa-
tion [1–3]. Throughout this paper, we consider quantum
systems described by a d-dimensional Hilbert space H. By
writing the set of linear operators on H as B(H), a state of
the system is described by a density operator ρ ∈ B(H) that
is Hermitian, positive semidefinite, and Trρ = 1. Then, the
GKSL equation reads

dρ

dτ
= L̂(ρ) = −i[H, ρ] +

M∑
m=1

(
LmρL†

m − 1

2
{L†

mLm, ρ}
)

.

(1)

Here, τ is the time, H is the Hamiltonian, and Lm (m =
1, . . . , M ) are the Lindblad operators that act on H.

We write the eigenvalues of L̂ as � j and corresponding
eigenmodes as ρ j . Then, Re[� j] � 0 for all � j . A nonequi-
librium steady state (NESS) ρ∞ is a density operator that is
an eigenoperator of L̂ with eigenvalue 0. There always exists
at least one NESS in a finite-dimensional system. However,
whether the NESS is unique or not depends on the system.
Frigerio [4,5] gave an algebraic criterion for the uniqueness
of the NESS with the assumption that there exists a positive-
definite (or full-rank) NESS. See the Appendix for the details
of the result. See also related results by Spohn [6,7] and
Evans [8], Refs. [9,10] for a review of these works, Ref. [11]
for an application, and Refs. [12–20] for recent progress in
understanding the degeneracy of the NESSs.

In this paper, we provide a proof of a sufficient condition
for the uniqueness of NESS. Compared with Frigerio’s theo-
rem, our theorem does not require any prior information about
the NESS. While a sufficient condition for general infinite-
dimensional systems is presented in Ref. [21], the proof
provided there requires knowledge of von Neumann algebras.
In contrast, our paper focuses solely on finite-dimensional
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systems. The significant advantage of such a limitation is
that our proof for the sufficient condition is much more con-
cise compared to Ref. [21] and readers are only expected to
possess an elementary knowledge of linear algebra to com-
prehend the proof. Next, we see that the sufficient condition
can also be used to study the steady-state degeneracy of
systems with strong symmetries. In the presence of a strong
symmetry, there is at least one NESS in every symmetry sector
[15,19]. We give a sufficient condition for the uniqueness of
the NESS in every symmetry sector. Finally, we demonstrate
the applications of the sufficient condition using examples
of the transverse-field Ising model, the XY Z model, and the
tight-binding model with dephasing.

II. MAIN THEOREM

Theorem 1. If the set of operators {H −
i
2

∑M
m=1 L†

mLm, L1, . . . , LM} generates all the operators
under multiplication, addition, and scalar multiplication, then
ρ∞ is unique and positive definite.

To prove Theorem 1, we prove the following lemma.
Lemma 2. Let ρ be a positive-semidefinite operator that

satisfies L̂(ρ) = 0. Under the same conditions as Theorem 1,
ρ is positive definite or zero.

The following proofs of Theorem 1 and Lemma 2 are
inspired by the method of spin reflection positivity [22,23].

Proof of Lemma 2. Assume that ρ is positive semidefinite
but not positive definite. Then, there exists a nonzero vector
|ψ〉 ∈ H such that ρ|ψ〉 = 0. By expanding 〈ψ |L̂(ρ)|ψ〉, one
finds

〈ψ |L̂(ρ)|ψ〉 =
M∑

m=1

〈ψ |LmρL†
m|ψ〉 =

M∑
m=1

‖√ρL†
m|ψ〉‖2 = 0,

(2)

where
√

ρ is a positive-semidefinite operator such that
(
√

ρ )2 = ρ. Since ‖√ρL†
m|ψ〉‖2 � 0, we have

√
ρL†

m|ψ〉 = 0
for all m, which means that ρL†

m|ψ〉 = 0 for all m. Next, by
expanding L̂(ρ)|ψ〉, one obtains

L̂(ρ)|ψ〉 = iρ

(
H + i

2

M∑
m=1

L†
mLm

)
|ψ〉 = 0. (3)

2469-9926/2024/109(2)/022218(5) 022218-1 ©2024 American Physical Society

https://orcid.org/0000-0002-3849-9308
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.022218&domain=pdf&date_stamp=2024-02-16
https://doi.org/10.1103/PhysRevA.109.022218


HIRONOBU YOSHIDA PHYSICAL REVIEW A 109, 022218 (2024)

Therefore, if |ψ〉 ∈ Ker ρ, then L†
m|ψ〉 ∈ Ker ρ for

all m and (H + i
2

∑M
m=1 L†

mLm)|ψ〉 ∈ Ker ρ. By the
assumption of Lemma 2, the set of operators {H +
i
2

∑M
m=1 L†

mLm, L†
1, . . . , L†

M} generates B(H), and therefore
Ker ρ = H, which means that ρ = 0. �

Proof of Theorem 1. Assume that ρ1 and ρ2 (ρ1 �= ρ2) are
NESSs. Since they are density operators, they are Hermi-
tian, positive semidefinite, and Trρ j = 1 ( j = 1, 2). Thus, by
Lemma 2, they are positive definite. If we define [24]

ρun(x) = (1 − x)ρ1 − xρ2 (0 � x � 1), (4)

ρun(0) = ρ1, ρun(1) = −ρ2, and L̂(ρun(x)) = (1 − x)L̂(ρ1) −
xL̂(ρ2) = 0 for all x because L̂(ρ1) = L̂(ρ2) = 0 by defini-
tion. Since all the eigenvalues of ρun(0) [ρun(1)] are positive
[negative] and the spectrum of ρun(x) is continuous with re-
spect to x, there exists a real number 0 � x0 � 1 such that
the minimum eigenvalue of ρun(x0) is zero. Namely, ρun(x0)
is positive semidefinite but not positive definite. Thus by
Lemma 2, ρun(x0) = 0. Then Trρun(x0) = 1 − 2x0 = 0 and
therefore x0 = 1/2. Thus ρun(x0) = (ρ1 − ρ2)/2 = 0. How-
ever, this contradicts the assumption ρ1 �= ρ2, so the NESS
has to be unique. �

When all the Lindblad operators are Hermitian, the com-
pletely mixed state Id/d is a NESS [25], where Id is the
identity matrix of size d . In this case, Theorem 1 boils down
to the following corollary.

Corollary 3. If all Lm are Hermitian and the set of op-
erators {H, L1, . . . , LM} generates all the operators under
multiplication, addition, and scalar multiplication, then ρ∞ is
unique and ρ∞ = Id/d .

III. STRONG SYMMETRY

Next, we consider systems with the strong symmetry
[15,17,19].

Definition 4 (Strong symmetry). The GKSL equation has a
strong symmetry if there exists a unitary operator S on H such
that

[S, H] = 0, [S, Lm] = 0 for all m. (5)

We write nS different eigenvalues of S as sα = eiθα (α =
1, . . . , nS ) and corresponding eigenspace as Hα . Then, the
following theorem is proved in Ref. [15].

Theorem 5 (Buča and Prosen). If there is a unitary opera-
tor S that satisfies Eq. (5), then we obtain the following (1)
and (2).

(1) The space of operators B(H) can be decomposed into
n2

S invariant subspaces of L̂:

L̂(Bα,β ) ⊆ Bα,β, Bα,β = {|ψ〉〈φ|; |ψ〉 ∈ Hα, |φ〉 ∈ Hβ}
(6)

for α, β = 1, . . . , nS.

(2) Every Bα,α contains at least one NESS:

ρα
∞ ∈ Bα,α for α = 1, . . . , nS. (7)

This theorem states that, in the presence of strong sym-
metry, NESSs are always degenerate. However, we can
apply Theorem 1 to prove the uniqueness of the NESS
in Bα,α . When H and Lm commute with S, they can

be decomposed as H = ⊕nS
α=1H |Hα

and Lm = ⊕nS
α=1Lm|Hα

,
where H |Hα

and Lm|Hα
are elements of Bα,α . Then, if

{H − i
2

∑M
m=1 L†

mLm, L1, . . . , LM} generates all the opera-
tors that commute with S, the set of operators {H −
i
2

∑M
m=1 L†

mLm|Hα
, L1|Hα

, . . . , LM |Hα
} generates Bα,α for all α

[26]. By applying Theorem 1 to Hα and writing dim Hα = dα ,
we have the following corollaries.

Corollary 6. If the set of operators {H −
i
2

∑
m L†

mLm, L1, . . . , LM} generates all the operators that
commute with S under multiplication, addition, and scalar
multiplication, then ρα

∞|Hα
is unique and positive definite for

all α.
Corollary 7. If all Lm are Hermitian and the set of opera-

tors {H, L1, . . . , LM} generates all the operators that commute
with S under multiplication, addition, and scalar multiplica-
tion, then ρα

∞|Hα
is unique and ρα

∞|Hα
= Idα

/dα for all α.

IV. EXAMPLES

In this section, we demonstrate the applications of The-
orem 1, Corollaries 3 and 7. As the simplest example, we
consider the two-level system with gain and loss. Next, we
present an application of Corollary 3 to the transverse-field
Ising model with boundary dephasing. Finally, we present
applications of Corollary 7 to the XY Z model and the tight-
binding model with bulk dephasing, as prototypical examples
of models with Z2 and U(1) strong symmetries. We also note
that Theorem 1 can be applied to the boundary-driven open
XXZ chain [11,27–29].

A. Two-level system with gain and loss

As our first example, we consider a two-level system with
gain and loss. We write an orthonormal basis of H = C2 as
| ↑〉 and | ↓〉. The Lindblad operators of gain and loss are Lg =√

γg| ↑〉〈↓ | and Ll = √
γl | ↓〉〈↑ |. Then, LgLl ∝ | ↑〉〈↑ | and

Ll Lg ∝ | ↓〉〈↓ |, and therefore Lg, Ll , LgLl , and LlLg form the
basis of B(C2). From Theorem 1, the NESS ρ∞ is unique and
positive definite for an arbitrary Hamiltonian.

B. Transverse-field Ising model with boundary dephasing

Next, we consider the spin-1/2 transverse-field Ising chain
under open boundary conditions [30]

H =
N−1∑
j=1

σ z
j σ

z
j+1 + hx

N∑
j=1

σ x
j (8)

with dephasing noise L1 = √
γ σ z

1 at the first site of the lat-
tice. Here, σα

j (α = x, y, z) are the Pauli operators at site
j = 1, . . . , N acting on d = 2N dimensional Hilbert space
H, hx �= 0 is the external magnetic field, and γ > 0 is the
dissipation strength parameter.

By using Corollary 3, we can prove that the NESS ρ∞ is
unique and written as ρ∞ = I2N /2N .

Proof. We first note that L1 ∝ σ z
1 , [σ z

1 , H] ∝ σ
y
1 , and then

1
2σ

y
1 [σ y

1 σ z
1 , H] = σ z

2 , [σ z
2 , H] ∝ σ

y
2 . Next, we observe the
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recurrence relation
1
2σ

y
j

[
σ

y
j σ

z
j , H

] − σ z
j−1 = σ z

j+1, (9)[
σ z

j+1, H
] ∝ σ

y
j+1 (10)

for j = 2, . . . , N − 1, which generates σ
y
j and σ z

j for all j
from L1 and H . Then, it is clear that they generate all the
operators in B(H) and therefore the NESS is unique and
written as ρ∞ = I2N /2N from Corollary 3. �

C. XY Z model with bulk dephasing

As a prototypical example of models with the Z2 strong
symmetry, we consider the spin-1/2 XY Z chain under peri-
odic boundary conditions [30,31]

H =
N∑

j=1

(
Jxσ

x
j σ

x
j+1 + Jyσ

y
j σ

y
j+1 + Jzσ

z
j σ

z
j+1

) + hz

N∑
j=1

σ z
j ,

(11)

with dephasing strength Lj = √
γ σ z

j at every site j. Here,
Jα ∈ R (α = x, y, z) are the exchange couplings, hz ∈ R is
the external magnetic field, γ > 0 is the dissipation strength
parameter, and N is the number of sites. We assume that
|Jx| �= |Jy| [32]. By defining a unitary operator S = ∏N

j=1 σ z
j ,

one finds

[S, H] = 0, [S, Lj] = 0 for all j. (12)

The eigenvalues of S are ±1 and we write the corresponding
subspace of operators as Bα,β (α, β = ±). If we define ρ± as
ρ± := (I2N ± S)/2N , it can be checked that ρ+ ∈ B+,+, ρ− ∈
B−,−, and L̂(ρ±) = 0. By using Corollary 7, we prove that
they are the unique NESSs in B+,+ and B−,−, respectively.

Proof. First, we identify all the operators that commute
with S. From the relations

Sσ x
j = −σ x

j S, Sσ
y
j = −σ

y
j S, Sσ z

j = σ z
j S, (13)

all the operators that commute with S are spanned by products
of an even number of σ x

j and σ
y
j . Thus it is sufficient to prove

that σ
μ
j σ ν

k (μ, ν = x, y) can be generated by H and Lj for
all 1 � j � k � N . When j = k, it can be generated only by
Lj , because σ x

j σ
y
j = −σ

y
j σ

x
j ∝ Lj and (σ x

j )2 = (σ y
j )2 ∝ (Lj )2.

Next, we consider the cases where j �= k. First, one finds

A1 := [
σ z

l , H
] ∝

∑
σ=±1

(
Jxσ

y
l σ x

l+σ − Jyσ
x
l σ

y
l+σ

)
, (14)

A2 := [
σ z

l+1, A1
] ∝ (

Jxσ
y
l σ

y
l+1 + Jyσ

x
l σ x

l+1

)
, (15)

A3 := [
σ z

l , A2
] ∝ (

Jxσ
x
l σ

y
l+1 − Jyσ

y
l σ x

l+1

)
, (16)

A4 := [
σ z

l+1, A3
] ∝ (

Jxσ
x
l σ x

l+1 + Jyσ
y
l σ

y
l+1

)
, (17)

A5 := [
σ z

l , A4
] ∝ (

Jxσ
y
l σ x

l+1 − Jyσ
x
l σ

y
l+1

)
. (18)

Noting that |Jx| �= |Jy|, we obtain σ x
l σ x

l+1 and σ
y
l σ

y
l+1 by linear

combinations of A2 and A4 and σ x
l σ

y
l+1 and σ

y
l σ x

l+1 by linear
combinations of A3 and A5. Finally, since

σ
μ
j σ ν

k = σ
μ
j σ x

j+1

⎛
⎝ k−2∏

l= j+1

σ x
l σ x

l+1

⎞
⎠σ x

k−1σ
ν
k , (19)

we have σ
μ
j σ ν

k (μ, ν = x, y) for all 1 � j � k � N , and thus
we have all possible products of an even number of σ x

j and
σ

y
j ( j = 1, 2, . . . , N ). Therefore, from Corollary 7, the NESS

is unique in B+,+ and B−,−, respectively. �
Remark 8. For simplicity, we assumed that the Hamilto-

nian is one-dimensional and translationally invariant. How-
ever, these assumptions are not necessary. To illustrate this,
we write the set of sites as  and the set of bonds as B
and consider the following Hamiltonian on a general lattice
(, B):

H =
∑
j,k∈

(
Jx

j,kσ
x
j σ

x
k + Jy

j,kσ
y
j σ

y
k + Jz

j,kσ
z
j σ

z
k

) +
∑
j∈

hz
jσ

z
j ,

(20)

with dephasing noise Lj = √
γ jσ

z
j , where γ j > 0 for all

j ∈ . We assume that |Jx
j,k| �= |Jy

j,k| when ( j, k) ∈ B and
Jx

j,k = Jy
j,k = 0 when ( j, k) /∈ B. If the lattice (, B) is con-

nected [33], one can prove that the NESS is unique in B+,+
and B−,−, respectively. For example, Eq. (20) includes the
one-dimensional quantum compass model

H = −
N/2∑
j=1

Jxσ
x
2 j−1σ

x
2 j −

N/2−1∑
j=1

Jyσ
y
2 jσ

y
2 j+1, (21)

with dephasing noise Lj = √
γ σ z

j discussed in Ref. [34].

D. Tight-binding model with bulk dephasing

Finally, we consider the tight-binding chain under the peri-
odic boundary conditions [35]

H = t
N∑

j=1

(c†
j c j+1 + c†

j+1c j ) + δI2N , (22)

with dephasing noise Lj = √
γ n j at every site j. Here, c†

j and
c j are the creation and annihilation operators, respectively, of
a fermion at site j = 1, . . . , N , n j = c†

j c j is the number oper-
ator, t �= 0 is the hopping amplitude, γ > 0 is the dephasing
strength, and δ is a real constant. The eigenvalues and eigen-
modes of L̂ do not depend on the constant δ, but we assume
that δ �= 0 to simplify the proof. If we write the vacuum state
annihilated by all c j as |0〉, then the Hilbert space H is spanned
by states of the form {∏L

j=1(c†
j )

mj }|0〉 (mj = 0, 1).

Next, we write the total number operator as Ntot = ∑N
j=1 n j

and define a unitary operator S = eiNtot . Then, the eigenvalues
of S are eiα (α = 0, 1, . . . , N ). Since S commutes with H and
all Lj , B(H) can be decomposed into invariant subspaces of
L̂ and we write them as Bα,β (α, β = 0, 1, . . . , N ). Then, we
prove that the NESS is unique in every Bα,α . �

Proof. Since all the operators that commute with S are
written as a sum of monomials that are products of the same
number of creation and annihilation operators, it is sufficient
to prove that I2N and c†

j ck can be generated by H and Lj for

all 1 � j, k � N . When j = k, c†
j c j is proportional to Lj , so

we concentrate on the case j �= k. Without loss of generality,
we can assume that j < k. First, we see that the following
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commutation relations hold:

[nl , H] = t
∑

σ=±1

(c†
l cl+σ − c†

l+σ
cl ), (23)

[nl+1, [nl , H]] = −t (c†
l cl+1 + c†

l+1cl ), (24)

[nl , [nl+1, [nl , H]]] = −t (c†
l cl+1 − c†

l+1cl ). (25)

Therefore, we obtain c†
l cl+1 and c†

l+1cl from multiplication,
addition, and scalar multiplication of H , Ll , and Ll+1. Since
[c†

l cm, c†
mcn] = c†

l cn when l �= n, we can generate c†
j ck for

any 1 � j < k � N with c†
j c j+1, . . . , c†

k−1ck . Finally, I2N can

be obtained by [H − t
∑N

j=1(c†
j c j+1 + c†

j+1c j )]/δ. Therefore,
from Corollary 7, the NESS is unique in every Bα,α .

Remark 9. The result can be generalized to the tight-
binding model on a general lattice (, B) with N sites:

H =
∑
j,k∈

t j,kc†
j ck + δI2N , Lj = √

γ jn j, (26)

where H is Hermitian, i.e., t j,k = t∗
k, j , γ j > 0 for all j ∈ ,

and δ is a real constant. We also assume that t j,k �= 0 when
( j, k) ∈ B and t j,k = 0 when ( j, k) /∈ B. When the lattice
(, B) is connected, one can prove that the NESS is unique
in every Bα,α .

V. CONCLUSION

We presented a simple proof of a sufficient condition
for the uniqueness of NESSs of GKSL equations. We also
presented applications of the sufficient condition to the
transverse-field Ising model, the XY Z model, and the tight-
binding model with dephasing. Our results here open many
interesting questions. The most important direction for future
study is to generalize our proof to the sufficient and necessary

condition for the uniqueness of the NESS. Another direction
is to apply the sufficient condition to clarify the degeneracy
of the NESS in the presence of the non-Abelian strong sym-
metries [19] or the hidden strong symmetries in the form of
quasilocal charges [36].
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APPENDIX: FRIGERIO’S THEOREM

In this section, we briefly review Frigerio’s theorem on the
uniqueness of the NESS. While his result applies to general
infinite-dimensional systems, here we state the theorem in the
d-dimensional case. For a set of operators A ⊆ B(H), let us
denote by A′ the commutant of the set A, i.e., the set of oper-
ators that commute with all the elements of A. Frigerio [4,5]
proved that if there exists a positive-definite NESS ρ∞, then
ρ∞ is the unique NESS iff {H, L1, . . . , LM , L†

1, . . . , L†
M}′ =

{cId |c ∈ C}, where Id is the identity matrix of size d . This
condition is equivalent to the condition that the set of oper-
ators {H, L1, . . . , LM , L†

1, . . . , L†
M} generates all the operators

under multiplication, addition, and scalar multiplication. Note
that the assumption of the existence of a positive-definite
NESS is necessary and, without this assumption, several coun-
terexamples can be found [37].
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[29] M. Žnidarič, A. Scardicchio, and V. K. Varma, Phys. Rev. Lett.

117, 040601 (2016).
[30] L. M. Vasiloiu, F. Carollo, and J. P. Garrahan, Phys. Rev. B 98,

094308 (2018).

022218-4

https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF00398571
https://doi.org/10.1007/BF01196936
https://doi.org/10.1016/0034-4877(76)90040-9
https://doi.org/10.1007/BF00420668
https://doi.org/10.1007/BF01614091
https://doi.org/10.1103/RevModPhys.52.569
https://doi.org/10.1088/1742-5468/ab0c1c
https://doi.org/10.1088/0031-8949/86/05/058511
https://doi.org/10.1088/1751-8113/41/6/065201
https://doi.org/10.1088/1751-8113/41/39/395303
https://arxiv.org/abs/1005.4545
https://doi.org/10.1088/1367-2630/14/7/073007
https://doi.org/10.1088/1367-2630/15/7/073045
https://doi.org/10.1103/PhysRevA.89.022118
https://doi.org/10.1103/PhysRevX.6.041031
https://doi.org/10.1088/1751-8121/ab88e3
https://doi.org/10.1088/1751-8121/acd828
https://doi.org/10.1063/1.1424475
https://doi.org/10.1103/PhysRevLett.62.1201
https://doi.org/10.1088/1367-2630/12/4/043001
https://doi.org/10.1103/PhysRevLett.106.217206
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevB.98.094308


UNIQUENESS OF STEADY STATES OF … PHYSICAL REVIEW A 109, 022218 (2024)

[31] D. Wellnitz, G. Preisser, V. Alba, J. Dubail, and J.
Schachenmayer, Phys. Rev. Lett. 129, 170401 (2022).

[32] If Jx = −Jy with even N or Jx = Jy, the system has the U(1)
strong symmetry [38]. Then we can prove that the NESS is
unique in every Bα,α in the same manner as in Sec. IV D.

[33] A lattice (, B) is connected if for any j, k ∈  such that j �=
k, there exists a finite sequence l1, . . . , ln ∈  such that l1 = j,
ln = k, and (li, li+1) ∈ B for i = 1, . . . , n − 1.

[34] N. Shibata and H. Katsura, Phys. Rev. B 99, 174303
(2019).

[35] M. V. Medvedyeva, F. H. L. Essler, and T. Prosen, Phys. Rev.
Lett. 117, 137202 (2016).

[36] M. de Leeuw, C. Paletta, B. Pozsgay, and E. Vernier,
arXiv:2305.01922.

[37] Y. Zhang and T. Barthel, arXiv:2310.17641.
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