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Probing fractal spatiotemporal inhomogeneity in a quantum walk
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We investigate the transport and entanglement properties exhibited by quantum walks with coin operators
concatenated in a space-time fractal structure. Inspired by recent developments in photonics, we choose the
paradigmatic Sierpinski gasket. The 0-1 pattern of the fractal is mapped into an alternation of the generalized
Hadamard-Fourier operators. This two-state coin-operator approach overcomes the intricacies caused by the
utilization of high-dimensional coin operators required in prior studies of discrete-time quantum walks on
fractals. In fulfilling the blank space on the analysis of the impact of inhomogeneity in quantum walk properties,
specifically, fractal deterministic inhomogeneity, our results show a robust effect of entanglement enhancement
as well as an interesting road to superdiffusive spreading with a tunable scaling exponent attaining robust
superdiffusion, subballistic though. Explicitly, with this fractal approach it is possible to obtain an increase
in quantum entanglement with reduced impact on standard quantum walk theoretical spreading. Alongside those
features, we analyze further properties such as the degree of interference and visibility. The present model
corresponds to an application of fractals in an experimentally viable setting, namely, the building block for
the construction of photonic patterned structures.

DOI: 10.1103/PhysRevA.109.022217

I. INTRODUCTION

Scale invariance, i.e., the intuitive sense of indistinguisha-
bility between the overall shape of several natural systems and
a portion of them, has marveled humankind since a long time.
Ultimately, this paved the way to the concept of fractals, either
self-similar or self-affine, i.e., objects whose capacity and
Lebesgue covering dimension are different from one another.
Aside from its inherent beauty, fractality has found its place
at the first tier of science and technology [1–3]. The endeavor
to set forth fractal theory applications in the development of
new scale-invariant structures can be gauged by the amount of
literature that has been produced in recent years. For instance,
it was shown it is possible to use molecular self-assembly to
engineer an artificial nanometer-scale Sierpinski hexagonal
gasket [4], structures such as Peano, Greek cross, and the
Vicsek constructions to build stretchable electronic devices
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with unusual mechanics [5]. Nonetheless, fractals went deep
into the quantum realm by the assembling of artificial archi-
tectures of electrons with fractal geometry [6,7]. Such studies
allowed the experimental investigation of subjects that have
been studied only from a theoretical perspective for long.

Quantum walks (QW) [8] are the celebrated proxy lattice
models for studying wave-packet spreading. Within the scope
of homogeneous QWs, it is well known the emergence of
interesting properties such as ballistic spreading with a non-
Gaussian bimodal probability distribution that are both very
distinct from the classical random walk. Still, a richer phe-
nomenology comes up when new ingredients are introduced
in the coin [9–15] or step [16–22] operators.

On the one hand, temporal inhomogeneity in QWs can
be implemented by breaking the time independence of the
walk operators while keeping their spatial translation invari-
ance [13,23–28]. On the other hand, spatial inhomogeneity in
QWs can break the lattice constancy of the walk operators
without changing their time invariance [29–34]. A third type
of inhomogeneity, the focus of our work, involves breaking
both space and time constancy of the walk operators. In
a comprehensive study [35], it was shown that spatiotem-
poral randomness embedded in the coin operator promotes
the transition to a classical-like spreading in quantum walks.
Other works, namely Refs. [10,36], confirmed such findings,
where it was noticed that random spatiotemporal inhomogene-
ity leads to a slowing down in the wave-packet spreading.
In Ref. [37], it was found that carefully devised nonran-
dom space-time inhomogeneity can be used as a probability
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distributions universal generator. Particularly, in Ref. [38], it
was introduced a method to create spatiotemporal dependence
in the coin operator that is able to display an exact classical-
like binomial distribution without randomness. Those works
naturally lead to the question of what dynamics should emerge
if the coin operator is embedded in a deterministic space-
time inhomogeneity tailored with nontrivial patterns such as
fractals.

Although fractals can emerge as the output of a QW
dynamics [39,40], we are going to deal with fractals the
other way around, namely, as the input in the model-
ing process and relate it to previous works as follows: in
Refs. [41–45] the focus was the problem of quantum search
and in Ref. [46] it was conducted an experimental work on
continuous-time quantum walks in fractal photonic lattices
whereas in Ref. [47] the goal was to study the scaling of
the spreading by considering a flip-flop shift operator with
a four-dimensional Grover coin. In complement, the authors
of Ref. [48] studied a discrete-time quantum walk (DTQW)
with a two-dimensional coin operator with space dependence
prescribed by the Cantor set and Sierpinski fractals were
considered in a protocol of a continuous-time quantum walks
(CTQWs) [49,50]. Explicitly, we take a different road by
considering a theoretical proposal very close to recent ex-
perimental setups by considering a discrete-time QW with
two-state coins where the fractals model a spatiotemporal
alternation between generalized Hadamard and Fourier coin
operators.

In this work, we present a theoretical investigation of
position- and time-dependent quantum walks with fractals that
are attainable in experiments with newly developed photonic
architectures. Its implementation is also simpler due to the
two-state nature of the coin operator, which subdues the need
for introducing high-dimensional coin operators as we have
aforementioned. The remaining of this paper is organized as
follows: in Sec. II we introduce our DTQW model with fractal
inhomogeneities; in Sec. III we present our numerical results
and analytical considerations about spreading of the wave
packet, the degree of interference, the entanglement entropy,
and the trace distance between time-consecutive coin states;
in Sec. IV we discuss the results in light of the state of the art;
and finally in Sec. III we address the final considerations and
further perspectives on our work.

II. MODEL

A. 1D + 1 quantum walk

Our model is constituted in such a manner that at a given
time t ∈ N we can write the quantum walker’s full wave
function �t as

�t =
∑
x∈Z

|x〉 ⊗ ψt (x), (1)

ψt (x) = ψU
t (x) |U 〉 + ψD

t (x) |D〉 , (2)

where ψU,D
t (x) are the time- and site-dependent amplitudes of

probability associated with the internal degree of freedom, the
coin state, c = {U, D}.

The temporal evolution proceeds with the iterative applica-
tion of the operator Ŵ as

�t
Ŵt−→ �t+1, (3)

Ŵt = T̂ (R̂t ⊗ IZ), (4)

with the identity operator IZ = ∑
x∈Z |x〉〈x|. The remaining

operators that compose it are as follows:
(i) The coin operator that leaves each internal state

{U or D} in a weighted superposition R̂t = ∑
x |x〉〈⊗|R̂t (x),

with

R̂t (x) :

{|x,U 〉 → cUU (x, t )|x,U 〉 + cDU (x, t )|x, D〉,
|x, D〉 → cUD(x, t )|x,U 〉 + cDD(x, t )|x, D〉, (5)

where ci j (x, t ) are the elements of the rotation matrices play-
ing the role of quantum walk coins used in our study: the
biased Hadamard coin operator ĈH (θH ) and the biased Fourier
coin operator ĈF (θF ) mathematically described by

ĈH =
(

cos θH sin θH

sin θH − cos θH

)
,

ĈF =
(

cos θF i sin θF

i sin θF cos θF

)
. (6)

(ii) The spin-dependent displacement operator that splits
the wave packet towards ±x:

T̂ :

{|x,U 〉 → |x + 1,U 〉,
|x, D〉 → |x − 1, D〉. (7)

B. The Sierpinski gasket concatenation of optical elements

As already mentioned, herein we center our attention on the
impact of one of the canonical instances of self-similarity, the
Sierpinski gasket (SG). It corresponds to a fractal with (equi-
lateral) triangle external contour shape obtained by means
of the recursive division of a first triangle into ever smaller
triangles. Geometrically, it corresponds to starting with an
equilateral triangle that is divided into four congruent smaller
equilateral triangles with half the size and the removal of the
central triangle. Analyzing it the other way around, i.e., from
a zooming-out perspective, we understand that in doubling the
size of a triangle the Sierpinski generator creates three repli-
cas of the previous triangle. That allows finding the fractal
dimension of the nonrandom pattern,

d f = ln(number of replicas)

ln(resize factor)
= ln 3

ln 2
= 1.58 . . . , (8)

which is less than the Lebesgue covering dimension D = 2 but
greater than the dimension of a line, d = 1. Formal aspects of
this matter can be found in Refs. [1,51].

Scale invariance mainly splits into two classes: when we
are dealing with homogeneous dimensions and when the frac-
tal spans through different dimensions such as space and time.
In the former case we refer to self-invariance whereas in the
latter we are dealing with self-affinity. In respect thereof, the
Sierpinski gasket is obtained not only using geometrical argu-
ments, as we have stated, but it is the space-time outcome of
several dynamical models as well. Aside from the celebrated
Rule 90 of cellular automata [52], as well as a plethora of other
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FIG. 1. Sierpinski gasket (SG). In this binary carpet yellow indi-
cates the value 1 that corresponds to the application of the operator
ĈH . The other sites inside the largest yellow triangle indicate the
value 0 that corresponds to the application of the operator ĈF . In
this way it is possible to build a fractal assembly of optical elements.

algorithms [53], the space-time SG can be obtained by means
of the next fast modular arithmetic rule [54]

bt (x) = [bt−1(x − 1) + bt−1(x + 1)] mod 2, (9)

where bt (x) is a site- and time-dependent binary {0, 1} vari-
able. At first glance, Eq. (9) seems to be linear, but a closer
look reveals that the modular arithmetic that constrains bt (x)
to either 0 or 1 introduces nonlinearity. In Fig. 1, we present
t = 50 generations of the SG. From Eq. (9) it is clear that
inside the cone −t � x � t there is only 0 − 1.

We are now in the condition of using the self-similarity
seasoning of our work into the quantum walk dynamics by
defining the quantum operator

R̂t (x) ≡ bt (x)ĈH + (1 − bt (x))ĈF . (10)

This equation reads as whenever a given site has bt (x) = 0 we
set ĈF and whenever bt (x) = 1 we set ĈH . That establishes an
important difference between our model and other photonic
transport work; specifically, in the system we study the fractal
element resides within the coin operator selector whereas in
other cases the fractal element has to do with the physical
geometry of the grid (see, e.g., Ref. [46]). Overall, we un-
derstand the present model as a space-time inhomogeneous
model and such traits will be taken into consideration in the
interpretation of the results.

As a matter of clarification, we must stress that despite
that the position and internal state of the walker are randomly
determined through measurement, the quantum walk evolu-
tion that we just described is a deterministic one, in the same
way as the standard discrete-time quantum walk protocol.
Given that the fractal pattern is obtained by a fixed rule,
the coin operators that are in turn determined by the fractal,
although being inhomogeneous in space and time, also follow
a deterministic rule. This differs from other types of quantum
walk protocols that while they are composed through unitary
operators each of them are determined through a probabilistic
rule, for instance, where the coin operators [9,10] or where the
shift operators [17,18] are determined randomly in each time
step, making the whole evolution a random one.

With respect to the initial condition, we have placed the
starting point of the QW at the same initial location of the
seed in the fractals. For the boundary conditions, we have

established that for each t we worked with an augmented
chain of positions so that the quantum walker was not able
to reach the boundaries. Instances of the quantum walk as
established by our dynamics are provided in Fig. 2.

Taking an experimental-friendly setup, we consider the
proposals in Refs. [55,56], where the role of the coin operators
is played by beam splitters and the internal degree of freedom
c = {U, D} is the polarization of the photons. While ĈF leaves
each state in a superposition with an additional phase, ĈH

produces a superposition of states without such extra phase. If
θ = π/4, we recover the standard Hadamard and Fourier coin
operators that can be implemented with an unbiased beam
splitter.

III. RESULTS

In this section, we will present our results regarding the
transport properties of the quantum walk, as well as the de-
gree of interference, entanglement entropy, and trace distance
between time-consecutive coin states.

A. Spreading

At a given instant t , we compute the probability

Pt (x) = ∣∣ψD
t (x)

∣∣2 + ∣∣ψU
t (x)

∣∣2
. (11)

That is of experimental interest for it allows obtaining prelim-
inary assessment of the wave-packet transport properties. For
each t , we also have computed Pmax

t that is the maximum of
Pt (x) over the chain.

At this point we must mention that in the standard quantum
walk evolution, which is with a spatiotemporal invariant coin
operator, it is possible to find the walk time-asymptotic prop-
erties through the Schrödinger approach [57–59]. This method
consists in analyzing the evolution in momenta space, where a
diagonalizable evolution operator is found. Then, we are able
to find the time-asymptotic state and therefrom its properties
by taking the proper limit t going to infinity. However, in our
proposed QW the evolution operator loses its invariance by
pairing the Sierpinski fractal with the coin operator, which
makes such sort of treatment impracticable. Therefore, all the
following results are obtained through numerical calculations.

In Fig. 2 we plot the normalized profile Pt (x)/Pmax
t for

the typical angles θ = {15◦, 45◦, 75◦}, where we immediately
note that the standard QW (upper panel) already displays a
trianglelike shape. That signals the overwhelming majority of
the flux of probability is near the edges. Such a feature ac-
commodates well our proposal for implementing QW through
the Sierpinski triangle (ST). In the homogeneous setting, we
also see that the smaller the value of θ , the broader the wave
packet. This is because the mathematical structure of the coin
operators favors the terms cUU and cDD in Eq. (10), which are
related to spreading. However, this property is modified when
the flux of probability passes through the SG. The profiles
of Pt (x) are neither bimodal-like distribution nor a Gaussian-
type shape. In other words, the intrinsic nonlinearities of the
fractals leaves peculiar fingerprints in the wave packet. Even
though the SG is symmetric, there are clear asymmetries in
Pt (x) due to the swinging between the coin operators that give
different phases to the local spinor (2).
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FIG. 2. Space-time evolution of the normalized probability distribution Pt (x)/Pmax
t where the brightness denotes the magnitude of this

quantity. Quantum carpets for the homogeneous setting (upper panels) and inhomogeneous cases (lower panels). We set with tmax = 100 and
θ = {15◦, 45◦, 75◦}.

The qualitative information obtained by the visual in-
spection of the quantum carpets presented in Fig. 2 is
quantitatively boosted by computing the second statistical
moment

m2(t ) = x2
t =

∑
x

x2Pt (x), (12)

from which we get the scaling exponent

α = lim
t→∞

log10 m2(t )

log10 t
, (13)

that defines the sort of diffusion the system presents. For
0 < α < 1, a system is subdiffusive; α = 1 corresponds to
standard diffusion (similar to the classical random walk);
when 1 < α < 2, it exhibits superdiffusion; for α = 2, we
have ballistic diffusion like the standard QW and for α > 2
a system runs in a superballistic regime with the particular
value α = 3 corresponding to hyperballistic diffusion [17].

In Fig. 3, we understand that the nonrandom fractal inho-
mogeneity fails to make the scaling exponent decrease to the
level of the diffusive behavior α = 1, as happens for random
spatiotemporal assembly of coin operations [35]. Therefrom,
we perceive a nonmonotonic and nonsmooth dependence of
α with θ that arises from substantial enhancement of the in-
terference between the paths along the time evolution caused
by the fractal infrastructure as previously shown in Fig. 2.
This nonmonotonicity is an intriguing feature if we take into
account the overall regularity in the patterns through the SG.

The behavior of α with θ is shown in Fig. 4. In the standard
QW it is well known that changing θ alters the particular fea-
tures of m2(t ) while keeping the scaling exponent α invariant.
Here, our results show that by tuning θ it is possible to slightly
change (and with statistical significance) the level of superdif-
fusivity of the quantum walker, still below the ballistic regime
though. This result, the dependence of α with θ , is absent in all
the previous endeavors working with coined QWs on fractals
[41–45,47–50]. Indeed, with the present proposal it is possible
to adjust θ = m π (m ∈ N ) in order to obtain a spreading
that is substantially close to α = 2. Namely, allowing for the

current experimental state of the art, this spreading behavior
would effectively overlap that obtained from ballistic quantum
walk implementations within error bars; see, e.g., Fig. 4 in
[56] where α = 2 is assumed simply.

In complement, this setup can be interpreted from the
perspective of the physics of inhomogeneous systems [3,51].
Space-time inhomogeneity is not only of theoretical interest,
but it has been shown in optical systems that they are able
to produce a remarkably new phenomenology as well [60].
The results in Figs. 3 and 4 highlight the emergence of a
mechanism to access the superdiffusive regime, which is an
important class of anomalous diffusion on its own [61].

On the whole, the results depicted in Figs. 2–4 show that a
fractal assembly of coin operators leads to a rich phenomenol-
ogy in terms of wave-packet spreading, even when the coin

FIG. 3. Temporal behavior of the spreading measure m2 in a
log10 - log10 scale. Data points are the results from simulations and
the lines are linear fittings.
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FIG. 4. Diagram α vs θ . We use tmax = 5 × 105 to estimate α

from m2 ∼ tα . The case θ = mπ/2 with m = {1, 3, 5} is not shown
because it leads to a bounded behavior that leads to α = 0 (non-
spreading) corresponding to specious localization.

operators differ only by mere phase factors as explicit in the
operators ĈH and ĈF shown in Eq. (6).

B. Degree of interference

As a means to study with more detail the interference
effects between the different paths that come up with different
dynamics of the walker in this setup, we have also investi-
gated the degree of interference. The degree of interference
is defined as the norm of the quantity responsible for the
interference in the visibility pattern. The visibility, in turn,
suitable for probability waves is defined as

V (x, t ) ≡ max[Pt (x)] − min[Pt (x)]

max[Pt (x)] + min[Pt (x)]
. (14)

Then, the degree of interference at each position and time step
is defined as the norm of the numerator of the visibility. For
further details on how we calculated this quantity in the quan-
tum walk with fractal inhomogeneity see Appendix, Sec. A 1:

μ(x, t ) = |max[Pt (x)] − min[Pt (x)]|. (15)

In Fig. 5, we have the degree of interference at each posi-
tion as a function of time for the same evolution represented at
Fig. 2 in the second row, i.e., the inhomogeneous case. There,

it is possible to see that the interference pattern evolution
closely follows that of the probability distribution; in other
words, the plot tells us that at each site the interference occurs
between its immediate neighbors, as one would expect from
the short-range coupling of the quantum walk step evolution.

By investigating how the degree of interference behaves as
a function of the coin operators [Eq. (6)], we also found some
interesting patterns that resemble the fractal structure used
to implement the inhomogeneous coin operator [Eq. (10)] as
shown in Fig. 6. These patterns arise when we set the Fourier
coin operator to be equal to the identity, i.e., θF = 0, and we
start with a coin initial state parametrized by the angles on the
Bloch sphere

ψ0(0) = cos
γ

2
|U 〉 + eiφ sin

γ

2
|D〉 , (16)

with angles γ = π/2 and φ = 0.
One can understand why the pattern resembles a SG frac-

tal by recalling the definition of the degree of interference,
Eqs. (A11) and (A13), with the arithmetic rule used to gener-
ate the pattern (9). From Eq. (A11) we note that for the degree
of interference to be nonzero at a given position, at least one
of the coin operators applied in its immediate neighbors’ po-
sitions in the previous time instant must be different than the
identity operator ĈF (θF = 0), i.e., RUD

t−1 �= 0 and/or RDU
t−1 �= 0.

This matches with the sum modulus two where, if bt−1(x ± 1)
are both zero, then bt (x) = 0. Moreover, one must have a
coin in a superposition state, that is cU (x + 1, t − 1), cD(x +
1, t − 1) �= 0 and/or cU (x − 1, t − 1), cD(x − 1, t − 1) �= 0.
The lack of a superposition can come from the application
of an identity operator in a state previously in a basis state
or from the application of ĈH in one coin at x + 1 or x − 1.
That means when we have ĈH acting on both the coin states
at x ± 1 the interference degree can be zero or nonzero, based
on the prior states at these positions, and when ĈH acts on
either of them the outcome is the same. That differs from the
sum modulus two rule (9) that states when both bt−1(x ± 1)
are equal to one, then bt (x) = 0 and when only one of them
is equal to one, bt (x) = 1. Still, we can affirm that the pattern
closely resembles the SG fractal for the reason that the major-
ity of points are zero, imposing that the intermediate points in
the future are also zero. We also emphasize the dependence of
the pattern on the coin initial state [compare Fig. 6(a) with
Fig. 6(f)]. Given that one has a small θH , then one of the
components of the coin state in a given position can be made
smaller, resulting in a smaller interference for the points that
should be zero and not for the ones that should not. In the
Appendix, Sec. A 2, we show an analytical calculation of the

FIG. 5. Degree of interference spatial-temporal evolution in the walks following the same parameters of the lower panels (inhomogeneous
cases) in Fig. 2: (a) θH = θF = 15◦, (b) θH = θF = 45◦, and (c) θH = θF = 75◦.
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FIG. 6. Degree of interference spatial-temporal evolution in walks with θF = 0◦ initially localized in the origin with coin initial state
parameters γ = π/2, φ = 0. In (a) θH = 5◦, (b) θH = 15◦, (c) θH = 30◦, (d) θH = 45◦, (e) θH = 60◦, and (f) θH = 85◦.

initial steps of the degree of interference evolution in Fig. 6
for any θH .

C. Entanglement entropy

To quantify the amount of entanglement generated through
the position-coin system we have employed the entanglement
entropy

SE ≡ −tr(ρ log10 ρ), (17)

where ρ is the density operator of the system. Here, we focus
only on the entropy of the coin subsystem. As we are treating
a two-level system, the entanglement entropy varies between
0 � SE � 1, with zero corresponding to a separable state and
with one to a fully entangled state, and it is given by

SE = −λ+ log10 λ+ − λ− log10 λ−, (18)

with λ± being the eigenvalues of the coin density operator ρc.
Since the evolution of the coin entanglement entropy in

a quantum walk often presents an initial increase to then
stabilize around a given saturate value, we consider the time-
average entanglement entropy in the asymptotic regime, t �
t0 � 1. The time evolution of the entanglement entropy also
depends on the coin initial state and coin operator used. There-
fore, we take the initial time after which we can consider
the regime as being a quasistationary one, t0, based on each
evolution.

We start by analyzing the coin entanglement entropy as a
function of the coin operator parameters [Eq. (6)] θH and θF

in Fig. 7 with a density plot view of it in Fig. 8. The coin
initial state considered is the one with φ = γ = π/2 in the
qubit Bloch-sphere equation (16) and localized at the origin.
Figure 7 shows us that the entanglement entropy reaches its
maximum value for the set of parameters with θF � 85◦,
which is almost the entire set of parameters. For θF = 90◦,
the maximum value is obtained with θH = 0◦, after which it
starts to decay and reach the minimum value of SE ≈ 0.498
with θH = 90◦ (Fig. 9). This is an interesting feature since
it does not happen in the standard quantum walk evolution.
Moreover, a similar effect was reported for other types of in-
homogeneous quantum walk, with the inhomogeneity also in

the coin operation and in the shift operator [9,18,33,36]. How-
ever, all of them impose a random quantum walk evolution
whereas in the present model the evolution is deterministic.
The presence of temporal inhomogeneity in the evolution of
those walks is the key factor leading to the same phenomenon,
as was asserted in [22,36].

When we have fixed the coin operators to be the ones with
θH = θF = π/4, we observed that by varying the coin initial
state angles the entanglement entropy averaged over time is
independent of the entire set of parameters. That is indicative
of the robustness of the generation of entanglement between
the coin and position states with regard to changes in the initial
state [19].

D. Asymptotic regime

Next, we probe how the coin state evolves towards its
time-asymptotic regime. To that, we employ the trace distance
measure

D(ρ, σ ) = 1
2‖ρ − σ‖1, (19)

where ‖A‖1 = tr(
√

A†A). If a quantum system is evolving in
a stationary regime, its density operator does not change with
time, ρ(t + �t ) = ρ(t ), therefore, the trace distance between
ρ(t + �t ) and ρ(t ) would return zero. In this way we see
how the trace distance between two time-consecutive states
evolves.

Initially, we fix one of the parameters of the coin operator
θH = π/4 in Fig. 10(a). There, we can see that for all θF but
θF = 0, the trace distance decays essentially in the same way.
The inset gives us the log-log graph of the same curves with
the respective linear fittings yielding the decay exponents if
D(ρc(t + 1), ρc(t )) ∝ t−β , confirming this observation.

When we fix the other coin operator with θF = π/4
[Fig. 10(b)], the evolution with θH = 0 does not decay as fast
as in the case where θF = 0 in Fig. 10(a), with β ≈ 0.59. For
the remaining angles, the decay rates are essentially the same
with the exception of θH = π/2 that gives us β ≈ 0.08. At
this angle something interesting happens: the trace distance
does not decay, on average, monotonically, having intervals
of constant evolution with some increases in-between.
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FIG. 7. Time-average coin entanglement entropy in the asymptotic regime as a function of the parameters of the two possible coin operators
[Eq. (6)] θH (deg) and θF (deg), respectively. The initial state considered was the one with φ = γ = π/2 with the initial position in the origin,
x0 = 0. For θH = θF = 0 is SE = 1.

Figure 11 shows the time evolution of the trace distance
between two consecutive coin states when we set the coin
operators to be the those with θH = θF = π/4 and change the
coin initial state. In Fig. 11(a), the polar angle is set γ = π/2
while we change the phase angle φ. We see that changes in this
parameter do not change the trace distance decay behavior,
on average, giving us essentially the same decay exponent
β ≈ 0.66 for φ = {0, π/6, π/4} with the most divergent, but
still very close, β ≈ 0.57 for φ = π/2. Setting φ = π/2 and
changing γ , Fig. 11(b) demonstrates that changes in this
parameter also do not change the trace distance decay signif-
icantly, now even when we set γ = π/2. From both Figs. 10
and 11 we observe a decay law compatible with an effective
stationary behavior, i.e., stationary on average and within a
fluctuation band, validating the time average taken on the von
Neumann entropy analysis.

These results tell us that despite our quantum walk model
being inhomogeneous, it goes to the quasistationary regime

FIG. 8. Two-dimensional display of the time-average entangle-
ment entropy as a function of θH (deg) and θF (deg) data used to plot
Fig. 7.

essentially in the same way as if we had fixed the coin
operators and changed the coin initial state and vice versa, ex-
cluding the cases where the parameters are near to π/2. This is
strongly indicative that this property derives from the quantum
walk protocol and only has a small limited dependence on the
initial conditions. In the standard Hadamard walk, the pace
at which the coin state converges to the stationary regime
depends on the initial state and coin operator used. Comparing
with other types of inhomogeneous quantum walks, we see
that the introduction of a fractal inhomogeneity in the coin
operator induces a faster transition to the stationary regime
with β ≈ 0.55 than when one introduces a dynamically and
fluctuating randomness [9,36], where the decay exponent β =
1
4 . For walks with a weak inhomogeneous condition between
the Fourier and Hadamard coin operators [62], something
similar to our proposal, the coin state is also led to converge
faster to the asymptotic limit. The decay exponent of the walk
with fractal inhomogeneity is also greater than the ones in the
generalized elephant quantum walk, where the randomness is
on the step sizes and selected according to the q exponential,
when its parameter q is less than one but greater than half,
β(q) ≈ 1

4 , but in the uniform distribution limit q → ∞ it
becomes smaller, where β(q) ≈ 0.76.

IV. DISCUSSION

Within the context of quantum walks, the inhomogeneity
of our Sierpinski gasket case befalls twofold: every site of
the grid is associated to a given coin operator protocol that
is updated at each time step according to the dynamics (9).
On the one hand, it is known that the slightest spatial inhomo-
geneity induces an absence of diffusion and the subsequent
localization of the quantum walker wave; on the other hand,
temporal randomness can actually enhance spreading of the
wave packet, especially when such changes occur at typi-
cally long timescales [55]. Thus, taking into consideration this
model has spatial inhomogeneity, we would expect a dramatic
decrease of the exponent α, which is not the case. As shown,
the system preserves a level of diffusion not far from the
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FIG. 9. Time-average coin entanglement entropy as a function of θF (deg) (a) and as a function of θH (deg) (b). Each curve corresponds to
the following values for the other coin operator parameter, θH (a), θF (b), with 0◦ (blue circle), 15◦ (green cross), 30◦ (orange up triangle), 45◦

(purple down triangle), 60◦ (yellow star), and 90◦ (red dot).

standard ballistic behavior with mild dependence on the angle
of the coin. In order to understand that, we have inspected the
local statistics of coin operator updates. Excluding the central
grid site x = 0, we have verified that the average time for
coin change τx is never less than a two-digit figure, with that
average time increasing with |x|, namely, τ5 = 74, τ30 = 146,
τ100 = 219. Combining both elements, we understand the long
characteristic scale of the coin dynamics manages to zero out
to a large extent the likely localization that would be induced
by static inhomogeneity. At the same time, we have verified
the effect of spatial inhomogeneity in augmenting quantum
entanglement [33] (excluding the particular coin-operator

angles such as θ = 90), which is lessened by the temporal
inhomogeneity effects of the dynamics (9). In other words,
we have verified that deterministic fractal inhomogeneity en-
hances quantum entanglement without achieving the maximal
value though. It is precisely that deterministic nature of the
self-similar fractal dynamics that reins in quantum entan-
glement strengthening, as previously hinted [9]. That said,
we can particularly envisage this type of architecture as a
strong candidate for tailored problems for which one aims
at increasing entanglement while ensuring a high level of
spreading, e.g., search algorithms in a quantum cryptography
environment [63].

FIG. 10. Trace distance between time-consecutive coin states as a function of time for (a) different θH , with θF = π/4, and (b) different θF

with θH = π/4. The different angles used in each plot follow the colors and patterns 0 (blue dotted), π/6 (black circled), π/4 (red crossed),
and π/2 (orange up triangle). In each evolution a localized initial state was considered with coin initial state parametrized by φ = γ = π/2.
The insets indicate the log-log graph of the same plots with linear fittings of the form −β ln(t ) + α. For (a) we have the following angular
and linear coefficients: β = 0.00 ± 0.00, α = 0.00 ± 0.00 (blue dotted); β = 0.45 ± 0.04, α = −0.4 ± 0.3 (black circled); β = 0.57 ± 0.04,
α = 0.5 ± 0.3 (red crossed); β = 0.49 ± 0.04, α = −0.1 ± 0.3 (orange up triangle). For (b) we have the following ones: β = 0.59 ± 0.05, α =
0.2 ± 0.03 (blue dotted); β = 0.39 ± 0.04, α = −1.0 ± 0.3 (black circled); β = 0.57 ± 0.04, α = 0.5 ± 0.3 (red crossed); β = 0.08 ± 0.04,
α = −0.39 ± 0.06 (orange up triangle).
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FIG. 11. Trace distance between time-consecutive coin states as a function of time for different angles of the coin initial state Bloch
sphere φ (a), with γ = π/2, and different γ (b) with φ = π/2 [see Eq. (16)]. The different angles used in each plot follow the colors and
patterns 0(blue dotted), π/6(black circled), π/4(red crossed), and π/2(orange up triangle). In each evolution a localized initial state was
considered with coin operators given by θH = θF = π/4. The insets indicate the log-log graph of the same plots with linear fittings of the form
−β ln(t ) + α. For (a) we have the following angular and linear coefficients: β = 0.67 ± 0.04, α = 1.1 ± 0.3 (blue dotted); β = 0.66 ± 0.04,
α = 1.0 ± 0.3 (black circled); β = 0.65 ± 0.04, α = 1.0 ± 0.2 (red crossed); β = 0.57 ± 0.04, α = 0.5 ± 0.3 (orange up triangle). For (b) we
have the following ones: β = 0.48 ± 0.05, α = −0.1 ± 0.3 (blue dotted); β = 0.51 ± 0.04, α = 0.0 ± 0.3 (black circled); β = 0.54 ± 0.04,
α = 0.2 ± 0.3 (red crossed); β = 0.57 ± 0.04, α = 0.5 ± 0.3 (orange up triangle).

V. FINAL REMARKS

In our work we have presented a quantum-walk-based
fractal protocol in which it is possible to achieve an increase
in quantum entanglement, accompanied by a superdiffusive
regime that is able to attain values close to ballistic that
can be experimentally implemented using photonic archi-
tectures and which offers alternatives for bridging fractals
and photonics [64,65] in a more bold way. We have done
so by employing the paradigmatic Sierpinski gasket as a
prototype and explored the transport properties of that in-
homogeneous quantum walk, namely, the spreading of the
wave packet, the degree of interference, the entanglement
entropy, and the trace distance between time-consecutive
coin states.

An important advantage of our work in relation to previous
proposals [42–45,47] lies in the fact that the versions of the
discrete-time QWs on fractals studied in those works require
the use of high-dimensional coin operators that are harder to
implement. Our protocol simply considers a two-state coin.
Specifically, in Ref. [42] it was used a d-dimensional coin
Hilbert space. In Refs. [43–45,47] their flip-flop walk re-
quires a four-dimensional Grover coin. Thus, the experimental
feasibility of the present QW dynamics presented a clear
implementable advantage; furthermore, it can be realized
with the state-of-art photonics technology. Still, with minor
changes in the apparatus described in Ref. [56], it is possible
to implement the fractal concatenation of optical elements
where the role of time t is played by the propagation direction.
The nonrandom character of our proposal has the additional
feasibility of not requiring an extra sampling processing over
random inhomogeneity.

The employment of fractal principles in the creation of
patterned structures is an avenue of research to be studied
from both fundamental and applied perspectives. In this paper,
we have provided an application of fractal geometry, namely,
we showed that the Sierpinski gasket can be utilized to build
photonic architectures aimed at realizing highly nontrivial
site- and time-dependent quantum dynamics. While fractal
structures were previously addressed in the scope of QWs
[41–50], those efforts had different frameworks and goals than
what we presented here. Accordingly, with this work where
the inhomogeneity is deterministically established, we have
fulfilled a gap on the characterization of the impact of different
sorts of inhomogeneity on the properties of a quantum walk.
Last, this contribution brings fresh insights into the physics
of inhomogeneous photonics [66]. Alongside further studies
on the extension of the analytical treatment in the reciprocal
space for cases with this sort of inhomogeneity for which the
invariance of the evolution operator is subdued, an interesting
open problem to explore is how the wave-packet properties
behave when a multifractal structure is brought into play to
incorporate inhomogeneity in the system.
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APPENDIX A: THE DEGREE OF INTERFERENCE

1. Definition

In the following, we present the way we have calculated the degree of interference in connection with the proposed quantum
walk model. As we mentioned previously, the degree of interference is defined as the norm of the quantity responsible for the
interference in the visibility. The visibility, suitable for probability waves, is

V = Pmax − Pmin

Pmax + Pmin
. (A1)

Then, the degree of interference at each position and time step is defined as the norm of the numerator of the visibility

μ(x, t ) = |Pmax(x, t ) − Pmin(x, t )|. (A2)

Let |ψ (t )〉 be the walker state at time t expanded as

�(t ) =
∑

x

|x〉 ⊗ [cU (x, t ) |U 〉 + cD(x, t ) |D〉]. (A3)

The coin operator R̂t in the quantum walk is defined following the Sierpinski-gasket fractal rule so that

R̂t =
∑

x

|x〉〈x| ⊗ R̂t (x), (A4)

with R̂t (x) given by Eq. (10).
Therefore, the recursive maps that provide the walker state coefficients’ time evolution now are going to include the space-

time-dependent coin operator factors. Let

R̂t (x) = RUU
t (x)|U 〉〈+|RUD

t (x)|U 〉〈D| + RDU
t (x)|D〉〈U | + RDD

t (x)|D〉〈D|, (A5)

consequently, the recursive map for the state coefficients is going to be, assigning the up state to a displacement to the right,

cU (x, t + 1) = RUU
t (x − 1)cU (x − 1, t ) + RUD

t (x − 1)cD(x − 1, t ), (A6)

cD(x, t + 1) = RDU
t (x + 1)cU (x + 1, t ) + RDD

t (x + 1)cD(x + 1, t ). (A7)

The position probability distribution is given by the square norm of the walker state’s coefficients

P(x, t ) = |cU (x, t )|2 + |cD(x, t )|2. (A8)

Using the recursive relations Eqs.(A6) and (A7), we find

P(x, t ) = ∣∣RUU
t−1(x − 1)cU (x − 1, t − 1) + RUD

t−1(x − 1)cD(x − 1, t − 1)
∣∣2

+ ∣∣RDU
t−1(x + 1)cU (x + 1, t − 1) + RDD

t−1(x + 1)cD(x + 1, t − 1)
∣∣2

(A9)

= ∣∣RUU
t−1(x − 1)cU (x − 1, t − 1)

∣∣2 + ∣∣RDD
t−1(x + 1)cD(x + 1, t − 1)

∣∣2∣∣RUD
t−1(x − 1)cD(x − 1, t − 1)

∣∣2

+ ∣∣RDU
t−1(x + 1)cU (x + 1, t − 1)

∣∣2 + ∣∣RUD
t−1(x − 1)cD(x − 1, t − 1)

∣∣2

+ RUU
t−1(x − 1)

[
RUD

t−1(x − 1)
]∗

cU (x − 1, t − 1)cD(x − 1, t − 1)∗

+ RDU
t−1(x + 1)

[
RDD

t−1(x + 1)
]∗

cU (x + 1, t − 1)cD(x + 1, t − 1)∗ + c.c. (A10)

Defining the complex part as a function f (x, t ),

f (x, t ) = RUU
t−1(x − 1)

[
RUD

t−1(x − 1)
]∗

cU (x − 1, t − 1)cD(x − 1, t − 1)∗

+ RDU
t−1(x + 1)

[
RDD

t−1(x + 1)
]∗

cU (x + 1, t − 1)cD(x + 1, t − 1)∗,

the maximum probability and the minimum probability are going to be

Pmax(x, t ) = ∣∣RUU
t−1(x − 1)cU (x − 1, t − 1)

∣∣2 + ∣∣RUD
t−1(x − 1)cD(x − 1, t − 1)

∣∣2

+ ∣∣RDU
t−1(x + 1)cU (x + 1, t − 1)

∣∣2 + ∣∣RDD
t−1(x + 1)cD(x + 1, t − 1)

∣∣2 + f (x, t ) + f ∗(x, t ), (A11)

Pmin(x, t ) = ∣∣RUU
t−1(x − 1)cU (x − 1, t − 1)

∣∣2 + ∣∣RUD
t−1(x − 1)cD(x − 1, t − 1)

∣∣2

+ ∣∣RDU
t−1(x + 1)cU (x + 1, t − 1)

∣∣2 + ∣∣RDD
t−1(x + 1)cD(x + 1, t − 1)

∣∣2 − f (x, t ) − f ∗(x, t ). (A12)
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Therefore, the degree of interference will be given by

μx,t = |4 Re( f (x, t ))|. (A13)

2. Degree of interference evolution

In this section, we move on to calculate the initial time steps of the evolution used to plot the degree of interference patterns
in Fig. 6. In this evolution the coin operators used are ĈH (θH ) and the identity operator ĈF (θF = 0) = I2×2. The initial state used
is

�0 = |0〉 ⊗ |↑〉 + |↓〉√
2

. (A14)

At time t = 0 the fractal pattern tells us that the coin operator is equal to ĈH at x = 0 and the identity for x �= 0. Therefore, after
the application of the unitary operator we are going to have

�1 = (cos θH + sin θH )√
2

|+1,↑〉 + (sin θH − cos θH )√
2

|−1,↓〉 . (A15)

For t = 1, the coin operator follows R̂1 = {ĈH , x = ±1; I, x �= ±1}. Then, by applying it to the state following with the
application of the shift operator,

�2 = cos θH√
2

(cos θH + sin θH ) |+2,↑〉 + sin θH√
2

|0〉 ⊗ [(sin θH − cos θH ) |↑〉 + (cos θH + sin θH ) |↓〉]

− cos θH√
2

(sin θH − cos θH ) |−2,↓〉 .

When t = 2 and 3, R̂2 = {ĈH , x = ±2; I, x �= ±2} and R̂3 = {ĈH , x = ±1,±3; I, x �= ±1,±3}. The states at these times are,
respectively,

�3 = cos2 θH√
2

(cos θH + sin θH ) |+3,↑〉 + cos2 θH√
2

(sin θH − cos θH ) |−3,↓〉

+ sin θH√
2

|+1〉 ⊗ [(sin θH − cos θH ) |↑〉 + cos θH (cos θH + sin θH ) |↓〉]

− sin θH√
2

|−1〉 ⊗ [cos θ (sin θH − cos θH ) |↑〉 − (cos θH + sin θH ) |↓〉],

�4 = cos3 θH√
2

(cos θH + sin θH ) |+4,↑〉 − cos3 θH√
2

(sin θH − cos θH ) |−4,↓〉

+ sin θH√
2

cos θH |+2〉 ⊗ {[sin θH (1 + sin θH ) + cos θH (sin θH − 1)] |↑〉 + cos θH (cos θH + sin θH ) |↓〉}

+ sin θH√
2

|0〉 ⊗ {[sin θH (cos θH + sin θH ) − cos2 θH (sin θH − cos θH )] |↑〉

+ [sin θH (sin θH − cos θH ) − cos2 θH (cos θH + sin θH )] |↓〉}

+ sin θH√
2

cos θH |−2〉 ⊗ {cos θH (sin θH − cos θH ) |↑〉 − [sin θH (sin θH + 1) + cos θH (sin θH − 1)] |↓〉}.

Now we are going to use these states and the coin operators
defined for each time step to calculate the degree of interfer-
ence. At t = 0, as we do not have a previous time step, we set
the interference degree to be equal to one at the origin:

μ(x, 0) =
{

1, x = 0
0, x �= 0.

(A16)

At t = 1, we recall that for the degree of interference to be
nonzero at a given position the coin operator applied in its
immediate neighbors must be ĈH and the coin has to be in
a superposition as well. For x = ±1 these requirements are

satisfied since the initial state located at the origin is in a
superposition and ĈH was applied. Then, we obtain

μ(x, 1) =
{

2 sin θH cos θH , x = ±1
0, x �= ±1.

(A17)

In the next time step, t = 2, given that the state is an entangled
one, the requirement of having a superposition of coin states
in a position is not fulfilled. Therefore, the interference degree
is zero for every position:

μ(x, 2) = 0, ∀ x. (A18)
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Here we can already notice a difference between the degree of
interference pattern and the Sierpinski-gasket fractal.

For t = 3 the same happens, however, for the reason that
at x = 0 the coin operator used is the identity, while at x =
±2 ĈH is used but the coin states are not in superposition:

μ(x, 3) = 0, ∀ x. (A19)

At t = 4 we have to look at the walker state and the coin op-
erator at t = 3. We notice that at x = ±1 the coin state is in a
superposition and the identity is not applied at these positions.
Therefore, the only points that the interference degree can be
nonzero are at x = 0 and ±2. Performing the calculations, we

find

μ(x, 4) =

⎧⎪⎨
⎪⎩

4 cos2 θH sin3 θH cos 2θH , x = 0

2 cos2 θH sin3 θH cos 2θH , x = ±2

0, x �= 0,±2.

(A20)

Taking one more final step, t = 5, we find once again
that the interference degree is zero for every position given
that identity operator is applied to every position but at
x = ±4, however, the coin state at these positions is not in
superposition:

μ(x, 5) = 0, ∀ x. (A21)
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