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Nonclassicality of induced coherence witnessed by quantum contextuality
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Quantum indistinguishability by path identity generates a new way of optical coherence, called “induced
coherence.” The phenomenon, originally uncovered by Zou, Wang, and Mandel’s experiment, is an emerging
notion in modern quantum experiments with a wide range of implications. However, there has been controversy
over its true quantum nature and whether the result can be emulated with classical light. We design a suitable
contextuality test that can determine the conditions under which the setting produces distinguishing quantum
predictions that cannot be described classically, namely, via the noncontextual hidden variable model.
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I. INTRODUCTION

Quantum experiments often challenge our understanding
of physical processes. A prominent example is an experiment
done by Zou, Wang, and Mandel (ZWM) in 1991 [1,2]. Re-
cently, there has been renewed interest in its quantum origin
as well as its applications [3]. The main innovation of ZWM’s
work was the introduction of induced coherence without in-
duced emission. Such a brilliant idea can be realized using
two similar nonlinear crystals inside a Mach-Zehnder-like
interferometer. The schematic representation of the ZWM
setup is shown in Fig. 1. These two nonlinear crystals (NL)
were pumped by a laser, and spontaneous parametric down-
conversion (SPDC) can potentially occur at both, each with
a correlated photon pair generation called signal and idler
photons. Signal photons s1 and s2 from NL1 and NL2, re-
spectively, are combined at a beam splitter (BS2) and then
collected by detector Ds. The remarkable point about this
approach is that when the i1 photon is aligned through NL2
so that two idler photons of i1 and i2 coincide, then the path
identity between them is achieved and the idler photons be-
come indistinguishable, thereby erasing the information about
which crystal the signal photon was generated from. As a
result of that, the signal photon turns into a superposition of
the two modes interfering at the beam splitter (BS2).

In the ZWM experiment, laser light was used to pump the
identical nonlinear crystals. The first beam splitter provides
equal pumping of both NL crystals. Therefore, when the idler
photon from NL1 (i1) is aligned to the idler path of NL2 (i2),
the occurrence of stimulated (induced) emission becomes, in
principle, unavoidable. But when a weak field of the input
pump is used, the average photon number generated by down-
conversion is low. This leads to the low amount of generation
and amplification of the idler photon in NL2. Their theoretical
analysis shows a linear dependence of visibility obtained after
BS2 against the amplitude transmission coefficient between
NL1 and NL2 (O-plate in Fig. 1) that correctly predicted
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the experimental observations. In this way, it is claimed that
the stimulated emission is absent in the concept of induced
coherency [1,2].

From the practical point of view, ZWM interferometric
technique is employed in different applications such as imag-
ing [4–10], microscopy [11], spectroscopy [12], generating
a light beam in any state of polarization [13], testing the
complementarity principle [14,15], two-color interferometry
[16], measuring correlations between two photons [17,18],
and generating many-particle entangled states [19–22].

From the fundamental point of view, the nonclassicality of
induced coherence has been extensively debated over recent
years [1–4,23–29]. Wiseman and Molmer compared quantum
interference with its classical counterparts and concluded that
the induced emission may complete the interference for any
finite transmission [24]. Lahiri et al. showed in a theoretical
analysis [23] that, for a single-photon pump as a pure quantum
state, no emission from the NL1 can stimulate the SPDC at the
NL2. This, however, is challenging to be tested, forasmuch as
the statistical behavior of the SPDC gives almost no proba-
bility to generate paired photons with single photon pumping.
However, the amount of photons in the stimulated emission
for low-power pumping (low-power laser as a coherent state)
is negligible. In contrast with the above-mentioned references,
Shapiro et al. summarized the concept with a classical or
semi-classical interpretation [7]. In another article with a dif-
ferent point of view, Boyd et al. by obtaining an expression
for the interference pattern that is valid in both the low-
and the high-gain regimes of parametric down-conversion,
showed how the coherence of the light emitted by the two
crystals can be controlled [25]. In a follow-up study [30] the
SPDC process together with the imaging of an object using
undetected photons (ZWM setup) were analyzed classically.
The reason behind it is the intensity-based measurement in
which no nonclassical behavior of detected photons can be
extracted. This may reflect that merely looking at the in-
terference phenomenon with simple intensity measurement
(first-order correlation) does not contain enough evidence to
rule out a classical explanation, and therefore, one can repro-
duce the result with classical resources. Thus, reasoning based
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on interferometric data is convoluted and one needs to look
for a more stringent test to identify the quantum nature of the
ZWM effect.

Quantum contextuality is a general approach for demon-
strating the nonclassical aspect of quantum mechanics [31].
Noncontextuality inequalities represent testable constraints
imposed by certain classical models. Therefore, the quantum
violation of such inequalities indicates the conflict of the
quantum predictions with those of classical models or noncon-
textual hidden variable models in general [32]. In the present
work, we focus on Kochen-Specker contextuality. Another
approach to nonclassicality was proposed by Spekkens which
was a generalized notion of contextuality [33]. The proposed
scheme indicates conditions under which the induced coher-
ence by path identity leads to a nonclassical result beyond the
interference effect. The contextuality tests have the advantage
of verifying the quantumess in a “black-box” scenario. This
is because the specifications of the measurements, such as
measurement compatibility and sharpness, follow operational
definitions that are examined solely from the measurement’s
outcome statistics without presupposing the validity of quan-
tum mechanics or the inner workings of the devices [31].
The simulation [34] of the proposed setup involves the uti-
lization of symbolic algebra [35]. (Its details are explained in
Appendix 5.)

This article is organized as follows. First, in Sec. II the
necessary background on the physical model of the ZWM
experiment is presented and its basic relations are derived.
Then an extended version of the ZWM setup is envisaged to
qualify to witness contextuality. In Sec. III an experimentally
testable proposal based on the notion of quantum contextual-
ity is introduced and the results are discussed.

II. METHODOLOGY

In this section, the key notion of quantum indistinguisha-
bility caused by path identity in the ZWM scheme using two
nonlinear crystals is briefly reviewed. Afterward, an extended
scheme to the three nonlinear crystals is proposed in which
illustration of contextual correlations would be possible.

A. ZWM setup: Emergence of induced coherence
without induced emission

The correlated photon pair generation is important for
various applications in quantum optics. Besides different
methods, the SPDC utilized in the second-order optical non-
linear medium is a promising technique to generate both
(heralded) single or correlated paired photons due to its ef-
ficiency and simplicity [36]. In the SPDC process, a nonlinear
χ (2) medium pumped with a single frequency photon of
specific energy (h̄ωp) and wave vector ( �kp) to generate two
photons of lower energies called signal (h̄ωs, �ks) and idler
(h̄ωi, �ki). The process obeys laws of energy (h̄ωp = h̄ωs +
h̄ωi) and momentum (h̄ �kp = h̄ �ks + h̄�ki) conservations [36,37].
The latter is known as phase matching between interacting
waves. The probabilistic behavior of SPDC yields single and
multipair emissions in low- and high-pump intensities [38].
To distinguish between them, they are referred to as low- and
high-gain regimes, respectively. The Hamiltonian describing

FIG. 1. Schematic representation of the ZWM experiment. The
identical coherent pump laser can pump two of the same nonlinear
crystals, NL1 and NL2, which results in the photon pairs (signal and
idler) generation in each crystal. The indistinguishability between
idler photons emerges from the perfect alignment of their paths (path
identity). Using a second beam splitter BS2, the interference between
signal photons appears due to induced coherence yielded by the
path identity. Object O with amplitude transmission coefficient t can
control the path identity quality.

SPDC process and the evolution of generated photon pairs, in
the interaction picture, is given by

HDC j (t ) = gei�ωt âp j â
†
s j

â†
i j

+ H.c., (1)

where j = 1, 2 labels the nonlinear crystals, g represents
the interaction strength,

�
ω = ωs + ωi − ωp, â and â† are

photon annihilation and creation operators, respectively. H.
c. denotes the Hermitian conjugation [39]. With the unitary
operator of SPDC ÛDC j (t ) = exp (−iHDC j (t )/h̄), (see details
in Appendix 1) the quantum state becomes

|ψ〉 = ÛDC j (t )|ψin〉, (2)

in which, |ψin〉 is the state of light before down-conversion,
often being a laser pump coherent state |αp j 〉 with amplitude
αp j indicating the strength of the pump. Since the first beam
splitter causes the same pump for each NL, then αp1 = αp2 =
αp (see Fig. 1). Therefore the initial state is

|ψin〉 = UBS1 |αp〉 =
∣∣∣∣ αp√

2
,

αp√
2

〉
. (3)

Based on Eqs. (2) and (3), the quantum state of light in the
ZWM setup depicted in Fig. 1 has the following form after
down conversions:

|ψ〉 = |ψin〉 ⊗
(

|0s1,2 , 0i1,2〉 + gαp√
2

[|1s1 , 1i1〉 + |1s2 , 1i2〉]

+ g2α2
p

2
[|2s1 , 2i1〉 + |2s2 , 2i2〉 + |1s1 , 1i1〉|1s2 , 1i2〉]

+
√

2g3α3
p

4
[|2s1 , 2i1〉|1s2 , 1i2〉

+ |1s1 , 1i1〉
∣∣2s2 , 2i2〉] + · · ·

)
. (4)

The most crucial point in the ZWM scheme is the path iden-
tity of two idler photons [1,2]. This can be achieved by the
precise alignment of them in such a way that they cannot
be distinguished in any degree of freedom. Since during the
alignment of two idler photons with the same frequencies
(ωi1 = ωi2 ) their polarizations are kept unchanged, perfect
alignment means their spatial frequencies must be equal. In
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the other words, the equal phase matching of the SPDC pro-
cess in the first crystal is forced to be equivalent with the
second one when the perfect spatial frequency matching is
achieved. This is reduced to equalizing the wave vector of two
idler photons �ki1 = �ki2 = �ki which permits to write âi1 ( �ki1 ) =
âi2 ( �ki2 ) = âi( �ki ). The path identity achieved in this way erases
the which-crystal information of the final photon in the idler’s
path. The difference between this method and the traditional
quantum eraser is that all photons arrive at the same output,
regardless of which crystal they are created, rather than being
erased by postselection. After the path identity, the state can
be written as

|ψ〉 = |ψin〉 ⊗
(

|0s1,2 , 0i1,2〉 + gαp√
2

[(|1s1〉 + |1s2〉)|1i〉]

+ g2α2
p

2
[(|2s1〉 + |2s2〉 +

√
2
∣∣1s1〉|1s2〉)|2i〉]

+
√

6g3α3
p

4
[(|2s1〉|1s2〉 + |1s1〉|2s2〉)|3i〉] + · · ·

)
. (5)

In Eq. (5), two interaction regimes of SPDC are evident. In
the low-gain regime, the input laser light is so weak that the
simultaneous generation of single photon-pair in both crystals
is negligible. In addition, the probability of multiphoton pair
generation is low as well. Therefore, in such a regime of
interaction, only one photon of each signal and idler is in
the setup. This leads to the absence of the necessary idler
photon for the stimulation of induced emission. This regime
of interaction which is related to the term proportional to αp in
Eq. (5) acts as the single-photon pumped regime. Under this
condition, Eq. (5) is reduced to

|ψ〉 ≈ |ψin〉 ⊗
(

|0s1,2 , 0i1,2〉 + gαp√
2

[(|1s1〉 + |1s2〉)|1i〉]
)

. (6)

Another interaction regime in Eq. (5) is related to the high-
gain regime (the term α2

p and higher order of αp). For such
a strong pumping the first beamsplitter provides sufficient
pumps for both NLs. Therefore, the photon-pair generation
occurs in each NL. Here two types of stimulated processes
may be accessible: (i) induced emission due to stimulation of
SPDC process by multipair generation in high pump power in-
side of each NL (|2s1〉 and |2s2〉); (ii) induced emission by idler
photons that their path identity is achieved (

√
2|1s1〉|1s2〉). In

the higher order of αp, however, these two types of processes
appear simultaneously (|2s1〉|1s2〉 and |1s1〉|2s2〉). Similar to
[25], the term α2

p is known as a high-gain source and the higher
order of αps refers to the high-gain regime. Again, it is worth
mentioning that, in the low-gain regime, induced coherence
is most probable, while induced emission dominates in the
high-gain source and regime.

Now to observe an unambiguous quantum mechanical dis-
tinction, nonclassical correlation measurements of generated
photons are needed. This can be done using quantum con-
textuality as a general framework of a nonclassicality test in
which a simple noncontextual inequality should be tested. To
examine such a method, the extension of the ZWM setup from
two to at least three crystals is necessary. This, including the
results of different pumping regimes, is presented in the next
subsection.

(a)

(b)

FIG. 2. (a) Extended version of the ZWM experiment. Three
similar nonlinear crystals (NL1, NL2, and NL3) can be pumped
with the same coherent pump laser. Each crystal can potentially emit
biphotons via spontaneous parametric down-conversion (the idlers i1,
i2, and i3 and the signals s1, s2, and s3). Signal photons are combined
by two different beam splitters BS3 and BS4, then counted with
the detector Ds. The gray rectangle shows the path identity between
the idler i2 and i3 in one measurement. (b) Conceptual circuit-like
representation. The first tritter causes the crystals to be pumped
equally, and the second tritter performs transformation for a specific
postselection state. Detectors can either be on (white color) or off
(black color).

B. Extended version of ZWM scheme

In the original ZWM setup shown in Fig. 1, the operations
and measurements of interest are defined in two-dimensional
Hilbert space. Since the proposed scheme studied here is
based on contextuality, the operational dimension should be
increased. According to the Kochen-Specker theorem, the
minimal dimension to witness contextuality is d = 3 [32].
To implement such tests for a ZWM-based concept, extended
three-path interferometry is proposed. The new scheme which
is shown both schematically and operationally in Figs. 2(a)
and 2(b), respectively, consists of a straightforward exten-
sion of the ZWM scheme to three paths in which the path
identity can be applied consecutively in two of these three
paths (NL1 and NL2 or NL2 and NL3) for each set of mea-
surement explained below. The three nonlinear crystals can
be pumped equally to generate a pair of correlated signal
and idler photons. Tritter A is the combination of two beam
splitters and a mirror and prepares the same pump for each
NL. (BS1 and BS2 with transmission coefficients of 1√

3
and

1√
2
, respectively, together with mirror M1 in Fig. 2(a) gen-

erates Ui in Fig. 2(b) [40,41]). Therefore, the laser pump,
described by a coherent state with amplitude αp, under the
first tritter Ui splits into equally weighted beams with the
amplitude of αp√

3
. Then the input state of the scheme can be
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represented as

|ψin〉 = Ui|αp, 0, 0〉 =
∣∣∣∣ αp√

3
,

αp√
3
,

αp√
3

〉
. (7)

Each beam illuminates a nonlinear crystal in which the SPDC
process can generate photon pairs as follows:

|ψ〉 =UDC3UDC2UDC1 |ψin〉 = |ψin〉 ⊗
(

|0s1,2,3 , 0i1,2,3〉

+ gαp√
3

[|1s1 , 1i1〉 + |1s2 , 1i2〉 + |1s3 , 1i3〉] + · · ·
)

. (8)

Note that αp is equal for each NL. In addition, different
pumping regimes, similar to the two-crystal scheme, can be
characterized here as well. In fact, this is essential while it
provides useful tools to compare results from the original
ZWM setup with two crystals with the extended version of
that with three crystals.

The key feature in the extended version of the ZWM
scheme is the indistinguishability of successive generated
idler photons either in NL1 and NL2 (i1 = i2 = i) or NL2 and
NL3 (i2 = i3 = i) when their path identity is satisfied. Since
these crystals are usually pumped by laser beams, there is
always a nonzero probability of the presence of idler photons
generated by NL1 at the NL2 or NL2 at the NL3, when the
down-conversion is taking place at the latter. Therefore, the
stimulated (induced) emission at NL2 or NL3 occurs. To vary
the path identity of generated idler photons, one can insert a
beam splitter between two NLs (NL1 and NL2 or NL2 and
NL3). In this case (when placed between NL2 and NL3), i2
and i3 are connected by

âi3 = t âi2 + râ0, (9)

where t as transmissivity and r as reflectivity amplitudes
of beamsplitter obey the |t |2 + |r|2 = |T | + |R| = 1 relation-
ship. â0 describes the vacuum field at the unused port of the
beam splitter. This leads to the evaluated state of the low-gain
regime as

|ψ〉 ≈ |ψin〉 ⊗
(

|0s1,2,3 , 0i1,2,3〉 + gαp√
3

[|1s1〉|1i1〉

+ (t |1s2〉 + |1s3〉)|1i〉 + r|1s2〉|10〉]
)

. (10)

In the following, a detailed discussion of the expected out-
come of the proposed three-crystal scheme is presented in
detail. Along with previous works [23,25,30], the visibility
and coincident detection rate of signal photons are investi-
gated in different pumping regimes, and their limitation for
providing conclusive evidence of nonclassicality is outlined.

1. Visibility

In previous works [1–3,14,15,23–28,42], the main ap-
proach addressing the quantum behavior of ZWM was based
on the visibility of the interference. The photon counting rate
using the annihilation and creation operators after the second
tritter Uf (Similar to the Ui, the Uf is the combination of two
beam splitters BS3 and BS4 with additional π phase shift,
respectively. see details in Appendix 2) at the detector Ds is

FIG. 3. The visibility as a function of path-identity variation
(controlled by beam splitter transmissivity t) for different regimes
of operation. Only the yellow curve α2

p, which is for the low-gain
regime (roughly the single-photon pumping) has a linear relationship
with t . The visibility for the high-gain source (red curve α4

p) is larger
than the high-gain regime (blue curve α6

p, α8
p, and α10

p ). For higher
transmissivity, the visibility increases due to the path identity of idler
photons.

given by

Rs = 〈ψ |â†
s âs|ψ〉. (11)

Thereby, the resultant photon counting rate for the single-
photon pumping (low-gain regime) after the second tritter
using state Eq. (10) becomes

Rs = g2α2
p

3

(
1 + t√

3
cos φs

)
, (12)

where φs is the relative phase due to the different optical
paths of signal photons from NL2 to NL3. From Eq. (12), the
visibility of interfering signal photons can be obtained as

ν = Rs max − Rs min

Rs max + Rs min
. (13)

As expected for the low-gain regime, visibility is linearly
proportional to the modulus of the amplitude transmission
coefficient t [the yellow curve (α2

p) in Fig. 3]. The physical
reason for the nonclassicality of linear dependence is that
stimulated emission is suppressed, and only spontaneous
emission occurs. As mentioned before, since pumping
nonlinear crystals usually is via laser light, the induced
emission may occur in the experiment. Therefore, for high
gain, visibility no longer has a linear dependence on t the
blue curves (α6

p, α8
p and α10

p ) in Fig. 3. The visibility for the
high-gain source is larger than the low-gain regime the red
curve (α4

p) in Fig. 3. There is an intuitive explanation for this
fact: due to the seeding of NL3 with generated idler by NL2,
induced emission causes more photon generation in NL3 in
comparison with NL2. Hence, both arms become unevenly
populated, and with raised amplitude transmissivity, the
visibility increases. In high-gain regimes, visibility decreases
remarkably. This is again due to more induced emission which
results in the reduction of induced coherence. In comparison
between these three regimes of interaction, one can conclude
that visibility follows induced coherency. In addition, with
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FIG. 4. The coincidence detection rate (dimensionless unit) for
different regimes. The full curves show the idler photons are fully
aligned for NL2 and NL3 and the dashed curves show the idler
photons are fully misaligned. The yellow curve (light gray) shows
the low-gain regime and the red one (dark gray) shows the high-gain
source. In the inside subplot, the high-gain regime for different orders
of αp is plotted. The yellow (light greay), orange (medium gray),
red (dark gray), and black (black) curves show α6

p, α8
p, α10

p , and α12
p ,

respectively. In all cases of the high-gain regime, the coincidence
detection rate increases with the growth of the pump power. How-
ever, if the idlers are fully misaligned due to loss of path identity the
coincidence rate becomes smaller than the value obtained for fully
aligned idlers.

increasing transmissivity, increasing in visibility is observed.
This is a direct consequence of path identity influence. In
general, the path identity together with its consequence of in-
duced coherency enhances the visibility which is in contrast to
induced emission that causes decreasing in visibility (Fig. 3).

2. Coincidence detection rate

To view the appearance of induced coherency without in-
duced emission in different regimes, the coincidence detection
rate can be calculated [5,23,25]. The coincidence detection
rate after down-converters is given by

Cs = 〈ψ |â†
s2

â†
s3

âs3 âs2 |ψ〉. (14)

Figure 4, shows the coincidence detection rate Cs for dif-
ferent regimes against the pump power when the idler photons
are fully aligned (full curves) and misaligned (dashed curves)
between NL2 and NL3. In the case of the low-gain regime
(single photon regime) no stimulated emission is present, even
with fully aligned idler photons. Therefore, the coincidence
detection rate remains unchanged (zero) when the idler pho-
tons are misaligned. In the high-gain regime, the alignment of
the idler photons causes the induced emission, and the curve
of fully aligned shows a higher counting rate compared with
the fully misaligned one.

Results presented in this section claim that a challenge
to distinguish between induced coherency and emission still
remains. The visibility obtained from the low-gain regime
and high-gain source is roughly the same, and the coincident
detection of the low-gain regime and the high-gain source
is as well. In addition, distinguishing between perfect align-
ment (with path identity) and misaligned (no path identity)

idlers in high-gain sources is problematic with coincident
detection. Moreover and most importantly, as it is claimed in
[30,43], both the visibility and the coincident detection rate
are intensity-based measurements in which the nonclassicality
of the detected light cannot be ensured.

Induced coherence without induced emission (to a good
approximation) occurs at low-gain input, but coincidence
detection alone cannot confirm it. A feasible nonclassical-
ity witness which goes beyond measuring visibility and
coincidence detection is therefore necessary. In the next sec-
tion contextuality based on the Kochen-Specker theorem is
introduced for the extended version of ZWM setup with three
NLs. The setup is capable of performing genuine sequential
measurements on photons. That is, the joint probability of
the two outcomes is read out directly from two detectors,
coincidence detection, or in other words, evaluating second-
order coherence. The necessity of sequential implementation
of the joint measurement, in which the individual observables
of a given context (correlated measurements) are measured
directly and used again in other contexts, is discussed in detail
in a recent review in [31] as a formal requirement of the
Kochen-Specker contextuality test. This requirement in any
test of contextuality with photons was also emphasized in
[44]. The shortcoming of previous implementations is that
the joint probabilities are estimated from local intensities
[45], characterized by first-order coherence. Consequently,
any photonic test whose measurements constitute only first-
order coherence can be simulated with the classical theory
of coherence [44]. Our setup provides an improved test of
nonclassicality based on sequential measurements measured
with second-order coherence. Thus, only the induced coher-
ence (with nonclassical property) can pass it.

III. NONCLASSICAL CORRELATIONS
GENERATED BY PATH IDENTITY

In this section, the correlation measurements probing the
nonclassical aspect of ZWM based on the notion of Kochen-
Specker (KS) contextuality are developed. It is started by
illustrating how the proposed setup realizes an interesting
example of contextual behavior known as Hardy-like contex-
tuality [46]. Then the description of its implementation in the
proposed setup is presented.

In the following, it is shown that the extended ZWM setup
assisted by path identity fulfills the required conditions for
implementing joint measurements of compatible observables.

Note that the photon generation in SPDC process is proba-
bilistic and therefore the registered experiment for estimating
the outcomes’ probabilities is identified by projection onto a
non-vacuum state. That is, a laser pump that fails to produce
photons, in which case none of the detectors click, should be
discarded.

After the full alignment of idler beams (i1 = i2 = i3 = i),
the state of the idler and signal modes in the second line in
Eq. (8) reduces to

|ψis〉 = 1√
3

(|1s1〉 + |1s2〉 + |1s3〉)|1i〉, (15)

in the single-photon limit. This means that the single pho-
ton being in signal modes turns into a quantum coherent
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superposition of the three signal paths due to the indistin-
guishability of idler paths, which is known as path identity.
Here, |ψs〉 = 1√

3
(|1s1〉 + |1s2〉 + |1s3〉) constitute a desired

preselected state.
We use so-called on-off detectors to perform dichotomic

measurements. For example, if we place the detector in idler
beam i1 the corresponding projectors are

	on
i1 = 1i1 − 	off

i1 , 	off
i1 = |vaci1〉〈vaci1 |. (16)

Of course, in the single-photon regime, the detector projectors
effectively reduce to 	on

i1 ≡ |1i1〉〈1i1 |.
A particular postselection (second measurement) is con-

sidered a dichotomic measurement performed on the signal
photon with the associate projector being

	on
post = Uf

(
1 − |vacs1〉〈vacs1 |)U †

f . (17)

In the single-photon limit 	on
post = Uf |1s1〉〈1s1 |U †

f and the fail-

ure detection is described by 	off
post = Uf |vacs1〉〈vacs1 |U †

f . The
unitary Uf is defined with effect

|ψpost〉 = Uf |1s1〉 = (|1s1〉 − |1s2〉 + |1s3〉)/
√

3. (18)

The key fact about our model is that the idler modes serve
as an ancillary read-out system for sensing signal photons in-
directly. This enables us to perform sequential measurements.
The first measurement is performed on idler photons and the
second measurement on signal photons. The photon detection
of the detector Di1 is described by 	on

i1 and the detector Di2,3

is described by 	on
i2,3

, which does not resolve as to which
crystal NL2 or NL3 the photon was generated from. This
intrinsic loss of information turns the signal photon into a
superposition between s2 and s3. Therefore, before the idler
photon is detected the faithful form of |ψs,i〉 due to the detector
locations should read as

1√
3
|1s1〉|1i〉 +

√
2

3

( |1s2〉 + |1s3〉√
2

)
|1i2,3〉. (19)

The measurement scheme performed in the extended
ZWM setup is capable of implementing a testable noncon-
textual inequality explained in the following section.

A. Hardy-like quantum contextuality

The link between pre and postselection paradoxes and
Hardy nonlocality argument are known [47], and in a sense,
all Hardy-like arguments can be translated as Hardy-like con-
textuality arguments [48]. The Hardy-like paradox presents
a simple proof of quantum contextuality [45,46] that follows
a similar argument to the three-box paradox in the sense that
both are examples of logical contextuality. Imagine five boxes,
numbered from 1 to 5, where each can be either empty (0)
or full (1). Let us denote P(0, 1|1, 2) as the joint probability
of finding box 1 empty and box 2 full. One can construct a
system in a state such that

P(0, 1|1, 2) + P(0, 1|2, 3) = 1, (20a)

P(0, 1|3, 4) + P(0, 1|4, 5) = 1. (20b)

Condition Eq. (20a) means that when box 1 is empty then box
2 is full and when box 2 is empty then box 3 is full. The above

FIG. 5. The orthogonality relationships between the five mu-
tually orthogonal vectors (events) help to present them in a
pentagon-shaped Kochen-Specker subgraph. The vertices represent
measurable events and the edges represent the exclusivity relation
between the events. In the NCHV theory the logical values are
assigned to all events, i.e., all vertices need to be colored either black
or white. The white vertices show the detected events and the black
vertices represent the undetected ones. The graph structure implies
the paradox.

conditions imply

P(0, 1|5, 1) = 0. (21)

This is true for the case in which opening the boxes reveals
the predetermined values. We can depict these conditions by
coloring the vertices of a pentagram with white or black color
indicating mutually exclusive events, see Fig. 5.

In quantum mechanics, however, one can prepare a quan-
tum system in state |ψpre〉 and five different projections onto

|v1〉 = |ψpost〉, (22a)

|v2〉 = 1√
2

(|1〉 + |2〉), (22b)

|v3〉 = |3〉, (22c)

|v4〉 = |1〉, (22d)

|v5〉 = 1√
2

(|2〉 + |3〉), (22e)

which contradicts the classical result (21).
In the following, we wish to realize a correspondence

between the above projectors and the detection scheme em-
ployed in the extended ZWM setup Fig. 2. We translate the
above projectors into the corresponding detector’s projectors
as follows: |v1〉〈v1| → 	on

post, |v2〉〈v2| → 	on
i1,2

, |v3〉〈v3| →
	on

s3
, |v4〉〈v4| → 	on

i1 , and |v5〉〈v5| → 	on
i2,3

. Note that |ψpre〉 ≡
|ψs,i〉. Therefore, this identification enables us to implement
the joint probabilities in Eqs. (20) and (21) in our setup. For
example,

P(0, 1|1, 2) = 〈
	off

post	
on
i1,2

〉
. (23)

Indicating the joint probability of detecting photons at detec-
tor Di1,2 while no photon detection occurs at detector Ds. The
other joint probability which explicitly indicates the contra-
diction between quantum and classical prediction is

P(0, 1|5, 1) = 〈
	off

i2,3
	on

post

〉 = 1
9 , (24)

predicting a nonzero probability that measuring 1 and 5 reveal
different values. Kochen and Specker’s graph, Fig. 5 demon-
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strates the contradiction between QT and NCHV theories by a
set of eight vectors [31,32,49–52]. The five vectors in Eq. (22)
are represented by a pentagon-shaped Kochen-Specker sub-
graph. These vectors lead to the maximum quantum violation
of the KCBS inequality [53–56].

B. Results for witnessing contextuality

Hardy-like proof of contextuality is a particular violation
of the simplest noncontextual inequality connected to the
Kochen-Specker theorem [46,57,58]. Based on that theorem,
the Klyachko, Can, Binicioğlu, and Shumovsky (KCBS) in-
equality and its maximum quantum bound [53,58,59] can be
written as

κ =
i=5∑
i=1

P(0, 1|i, i + 1)
NCHV
� 2

Q
�

√
5. (25)

The left side of Eq. (25) is the sum of the five joint proba-
bilities introduced above. For NCHV theories [53,60,61], this
sum is upper bounded by 2.

Performing the above inequality by our detection scheme
is explicitly expressed as

κ = 〈
	off

post	
on
i1,2

〉 + 〈
	off

i1,2
	on

s3

〉 + 〈
	off

s3
	on

i1

〉
+ 〈

	off
i1 	on

i2,3

〉 + 〈
	off

i2,3
	on

post

〉
� 2. (26)

For instance, the placement of detectors in Fig. 2 represents
the implementation of P(0, 1|5, 1) = 〈	off

i2,3
	on

post〉. Our corre-
lation detections fulfill Eqs. (20) and (24) in the low-gain
regime where the single-photon generation is more likely to
occur. However, Eq. (24) is obtained contradicting the clas-
sical prediction, giving 2 + 1/9. Therefore, the result is a
particular violation of the KCBS inequality. Note that the
maximum violation is achieved in the low gain regime (α2

p)
of the pump for the case when the idler beams are perfectly
aligned. The violation in this regime is suppressed by mis-
aligning the idler beams. The explicit dependence of joint
probabilities on t are expressed as follows:

P(0, 1|1, 2) = 〈
	off

post	
on
i1,2

〉 = 1
3 (1 + t2), (27a)

P(0, 1|2, 3) = 〈
	off

i1,2
	on

s3

〉 = 1
3 , (27b)

P(0, 1|3, 4) = 〈
	off

s3
	on

i1

〉 = 1
3 , (27c)

P(0, 1|4, 5) = 〈
	off

i1 	on
i2,3

〉 = 1
3 (1 + t2), (27d)

P(0, 1|5, 1) = 〈
	off

i2,3
,	on

post

〉 = 1

2

(
1

3
− t2

9

)
. (27e)

The expectation values are obtained from Eq. (10) conditioned
on the occurrence of SPDC. Thus, the value of the contextu-
ality witness as a function of t is

κ = 3

2
+ 11t2

18
, (28)

which produces the yellow curve (α2
p) in Fig. 6(b). Note that

Eq. (10) reduces to Eq. (19) upon photon pair generation
and in the case of perfect alignment. The violation disap-

pears for t �
√

9
11 � 0.904. The general analytic expression

of κ reproducing the other curves by including higher-order

(a)

(b)

FIG. 6. (a) Results for KCBS inequality shown for different
regimes of the laser pump. κ is obtained for the two cases when
the idler beams are perfectly aligned and the beams are completely
misaligned. (b) KCBS inequality when the beam splitters between
nonlinear crystals control the quality of path identity. As the ampli-
tude transmissivity t increases, the path identity becomes complete,
leading to violated KCBS inequality for the low-gain regime.

approximation to take into account the high-gain pump is
shown in Appendix 4.

In the high-gain pump, the signals and idlers are generated
in every three NLs and therefore all detectors should click.
In other words, in the high gain, even though the induced
coherence remains, the input state approaches the classical
limit of light. Therefore the sum of five joint probabilities is
smaller than the maximum limit for NCHV theory, and for
higher power of alpha tends to be zero. Figure 6 shows the
result of calculating the Simple Form of KCBS inequality for
different regimes. Figure 6(b) shows the KCBS inequality for
amplitude transmissivity t of beam splitters between down-
conversion crystals. For the low-gain regime, When amplitude
transmissivity increases and path identity is completed, the
KCBS inequality is violated.

Classical model of SPDC is sufficient to explain many
features that appear in ZWM setup, such as quantum imaging,
involving Laser light, whether being in the low- or high-gain
regime, interacting with nonlinear media [30]. Here, we pro-
pose a counterexample in which a classical model, or more
general, noncontextual hidden variable description, cannot
reproduce the observation. The dramatic effect of correlated
detectors at the low-gain regime turns the process into a quan-
tum behavior that violates a classical inequality. The example
is reminiscent of heralded single-photon generation with weak
enough laser pumping in an optical nonlinear medium; The
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detector’s click on one beam projects the state of the other
beam onto a single-photon Fock state, i.e., resulting in a
nonclassical state.

Violation of the noncontextual hidden variable model is ar-
gued to be associated with the nonexistence of positive-valued
quasiprobability representation for preparation and measure-
ments simultaneously [62].

The vacuum projection at mode a is a Gaussian and there-
fore is represented by positive-valued Wigner distribution
over phase space ξ|0〉〈0|(λa). The linear transformations also
preserve the Gaussianity of the state. The probability of the
projection onto the vacuum for a given state would read
P(0) = ∫

dλaWρ (λa)ξ|0〉〈0|(λa) in which Wρ (λa) is the Wigner
function associated with the prepared state ρ. The Wigner
representation joint probabilities of the adopted measurements
in our scheme may read as

P(0, 1|i, j)

=
∫

dλadλbWρis (λa, λb)ξ|0〉〈0|(λa, i)(1 − ξ|0〉〈0|(λb, j)).

(29)

Since the Vacuum projector and its linear transformations
are Gaussian, its Wigner representation is positive-valued.
Therefore, the violation should be attributed to the Wigner
negativity of the input state of signal and idler beams ρis. A
sufficient amount of the Wigner function negativity is neces-
sary to achieve the violation and the negativity of the input
state is maximal in the single-photon regime, Eq. (15).

IV. CONCLUSION

This paper presents an alternative way of revealing the non-
classical property of the ZWM setting by violating the adopted
noncontextuality inequality. The measurement scheme em-
ploys the correlations between various pairs of detectors, the
data which go beyond interference information. The test based
on the proposed scheme in this study is feasible within the
current state-of-the-art experiment facilitates used in standard
ZWM setup. The realization of hardy-like contextuality in
the extended version of the ZWM setup, pumped by weak
laser light, provides a shred of unambiguous evidence on the
quantumness of induced coherence without stimulated emis-
sion such that it cannot be emulated by classical resources.
Furthermore, the proposal put forward a versatile platform for
rigorous tests of contextuality involving sequential measure-
ments with photons.

Measuring interference visibility and coincidence counts
confirm the occurrence of induced coherence without in-
duced emission conditioned on restrictive assumptions, such
as single-photon input state, while the violation of the NCHV
model provides sufficient evidence for induced coherence
without induced emission. The theoretical analysis presented
in this article has broad implications in the fundamental
characterization of SPDC processes and their classical limit.
Furthermore, the adopted model is capable of implement-
ing spatial and temporal correlations and therefore extending
the applicability of our setup for implementing a simultane-
ous test of nonlocality on signal and idler photon pairs and
single-particle contextuality on the signal photon. Therefore,

our work enables experiments that combine nonlocality and
contextuality and analyze the interplay between them [63].
An interesting future direction is to extend the study of the
induced coherence to other tests regarding other approaches
to nonclassicality which can be also performed with two-
dimensional systems [64,65].
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APPENDIX

1. Unitary operator of SPDC

The unitary time evolution operator for SPDC is

ÛDC j (t ) = exp

[
1

ih̄

∫ τ

0
Hj (t )dt

]
. (A1)

τ is the interaction time, usually the time taken by the pump
to travel the crystal’s length. The exponential expansion is
rewritten as follows:

ÛDC j (t ) = 1 + 1

ih̄

∫ τ

0
Hj (t )dt + 1

2!

[
1

ih̄

∫ τ

0
Hj (t )dt

]2

+ · · · .

(A2)

The following mathematical relationship is used to solve the
integral:∫

exp(ixz)dz = 1 − exp(ix)

ix
= exp

(
ix

2

)
sinc

( x

2

)
. (A3)

For phase match condition ωp = ωs + ωi, therefore, expres-
sions of exp(

�
ω) and sinc(

�
ω) lead to 1. Therefore, the

Eq. (A2) is written as follows:

ÛDC j (t ) = 1 + gâpj â
†
s j

â†
i j

+ g2

2
(âp j â

†
s j

â†
i j

)2 + · · · , (A4)

where g = g′τ
ih̄ exp( i

�
ωτ

2 )sinc(
�

ωτ

2 ), and g′ contains the same
order of g. Although their explicit forms are not necessary for
the purpose of our discussion.

2. Explicit form of Tritter unitaries

The reader might be interested to see the explicit form of
the tritter unitary which is a combination of two beam splitters
and a mirror [40]. Imagine a single-photon |ψin〉 = |1p〉. Such
a photon can be routed to one of the three NLs using the first
tritter Ui = UBS2UBS1 as

Ui = 1√
3

⎡
⎢⎢⎢⎣

1 −√
2 0

1 1√
2

−
√

3√
2

1 1√
2

√
3√
2

⎤
⎥⎥⎥⎦. (A5)

The matrix Ui is a combination of two rotation matrices
around the axis of z and x with transmission coefficients of 1√

3

and 1√
2

for BS1 and BS2, respectively, and a mirror M1. Sim-
ilar to the Ui, the second tritter Uf = UPSUBS4UBS3 consists of
two beam splitters (BS3 with a transmission coefficient of 1√

3
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and BS4 with a transmission coefficient of 1√
2
), along with a

phase shifter in path s2 and a mirror M2 (Fig. 2)

Uf = 1√
3

⎡
⎢⎢⎢⎣

1 −√
2 0

−1 − 1√
2

√
3√
2

1 1√
2

√
3√
2

⎤
⎥⎥⎥⎦. (A6)

3. Pre and postselected paradoxes

The study of quantum systems that are both pre and
postselected (PPS) was initiated by Aharonov, Bergmann,
and Lebowitz (ABL) in 1964 [66]. A prototype example
is known as the “three-box paradox” exhibiting a pecu-
liar contextual behavior. Imagine a quantum particle that
can be in one of three boxes, k = 1, 2, 3. The state of
the particle being in box k is denoted by |k〉. Suppose
the particle’s state is prepared in a superposition |ψpre〉 =

1√
3
(|1〉 + |2〉 + |3〉), and project it later onto a nonorthogo-

nal state |ψpost〉 = 1√
3
(|1〉 − |2〉 + |3〉). One can think of the

postselection as a dichotomic measurement. Hence, it is de-
scribed by {	post = |ψpost〉〈ψpost|,1 − 	post} that clicks on
positive results, obtaining |ψpost〉 with success probability
of 1/9 and discarding the negative result. In the PPS sce-
nario, |ψpre〉 and |ψpost〉 are called pre and postselected states,
respectively.

This innocent-looking example leads to counter-intuitive
predictions when certain intermediate dichotomic measure-
ments, Mk , are introduced on the pre and postselected system.
The PPS setting, therefore, can be viewed as a sequence of
two measurements with associated joint probabilities

pψpre (k, ψpost ) = 〈ψpre|	k	post	k|ψpre〉
= |〈ψpost|	k|ψpre〉|2. (A7)

Here the intermediate measurement Mk is described by the fol-
lowing set of projectors [67] {	k = |k〉〈k|,	k̄ = 1 − |k〉〈k|}
and k = 1, 3, whereas, 	post deemed the second measure-
ment’s postselection projector.

State (19) gives the joint probability

P(1, ψpost ) = 〈
	on

i1 	on
post	

on
i1

〉 = 1
3 . (A8)

By a straightforward application of Bayes’ theorem to the
joint probability one can derive the probability of finding the
particle in box k conditioned on the pre and postselected states
[33,66–69]

p(k|ψpre, ψpost ) = |〈ψpost|	k|ψpre〉|2∑
k |〈ψpost|	k|ψpre〉|2 . (A9)

The sticking fact about the above expression is that it im-
plies a unit probability of finding the particle regardless of
which measurement, M1 or M3 is chosen for such pre and
postselection. From the classical point of view, the sum of the
probability of the mutually exclusive event is bounded by one,
that is,

p(1|ψpre, ψpost ) + p(3|ψpre, ψpost ) � 1, (A10)

which is violated in this quantum experiment. Since
p(k|ψpre, ψpost ) is not predictive but rather retrodictive, that

is, the intermediate measurement outcome is conditioned on
the future (postselected) outcome as well, therefore inequality
of Eq. (A10) cannot be directly tested.

Let us clarify a point here. As far as the joint probabil-
ities are concerned the final measurement does not need to
realize the postmeasurement state |ψpost〉, called the Lüder
instrument. As a result, it is sufficient to only read out the
outcome from the detector Ds.

4. Analytic result of κ

Contextuality witness measure κ reproducing the kth order
of approximation illustrated in Fig. 6 is given by

κ =
k∑

n=1

cnκ
(n), (A11)

where

κ (1) =
(

11t2

18
+ 3

2

)
, (A12a)

κ (2) =
(

−61t4

324
+ 4t2

9
+ 37

36

)
, (A12b)

κ (3) =
(

13t4

243
+ 32t2

243
+ 1

3

)
, (A12c)

κ (4) =
(

385t4

8748
+ 263t2

4374
+ 493

8748

)
. (A12d)

The expansion coefficients are

cn = α2ng2n∑k
n=1 α2ng2n

. (A13)

5. Symbolic description language

Symbolic algebra is a powerful tool for representing
quantum states. This mathematical approach allows for the
description of quantum states in a concise and precise manner.
A single-photon state, for example, can be represented using
the following notation:

a[1, d1, . . . , dn], (A14)

where a denotes the path traversed by the photon and
di represents the properties of different degrees of free-
dom, such as polarization, orbital angular momentum,
and so on. It is also possible to generate the unitary
operator for each experimental element by representing
the creation and annihilation operators through symbolic
algebra

â†[ψin, a] = ψout ⇐ {a[n] → √
n + 1a[n + 1], (A15a)

â[ψin, a] = ψout ⇐ {a[n] → √
na[n − 1]. (A15b)

The symbol ⇐ indicates a symbolic replacement and n is
the number of photons. To simplify our analysis, it is as-
sumed that all photon degrees of freedom are the same.
As an example, after passing through a 50:50 symmet-
ric beam splitter (r = t = 1√

2
), the symbolic transformation

of a single-photon a[1]b[0] (â†a[0]b[0]) can be defined as
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follows:

BS[ψin, a, b] = ψout ⇐ {a[1]b[0]

→ 1√
2

(a[1]b[0] + a[0]b[1]), (A16)

here a and b are paths of photon. r and t denote the
amplitude of reflection and transmittance of the beam split-
ter, respectively. The unitary transformation of the BS
according to the creation operator is 1√

2
(â† + b̂†) [70].

The output state shows that a single-photon incident at
one of the input ports of the beam splitter (a), the other

port containing only the vacuum (b) will be either trans-
mitted or reflected with equal probability. The symbolic
algebra to perform calculations facilitates the effortless
addition of new elements and degrees of freedom to quan-
tum optics experiments. Moreover, this method enhances
the comprehensibility of the results for human interpreta-
tion. Therefore, the ZWM experiment can be expressed as
follows:

ZWM[ψin, p1, p2, s1, s2, i1, i2]

= BS[PI[NL[O[NL[BS[ψin, p1, p2], p1, s1, i1], i1],

× p2, s2, i2], i1, i2], s1, s2]. (A17)
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