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Simulating two-level quantum systems via classical orbit motion:
Adiabatic cyclic evolution and Berry phase
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We propose a method to simulate adiabatically driven two-level quantum systems and detect the Berry
phase induced in the cyclic evolution by observing the classical orbit motion of a charged particle under a
time-varying magnetic field. Analogy between the dynamics of these two species of systems is revealed and
the correspondence relationship is established by virtue of their equations of motion, i.e., the von Neumman
equation of the quantum binary system and the Newton-Lorentz equation of the charged particle. In particular,
we show how the complex phase information of the quantum system, say, the Berry phase shift acquired by
its wave function during the loop evolution, can be visually captured by examining the spatial motion of the
classical particle.
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I. INTRODUCTION

The cyclic evolution of adiabatically driven quantum sys-
tems can lead to the emergence of the Berry phase [1], which
is a geometric phase shift acquired by the eigenstates of the
Hamiltonian in addition to the dynamical phase. The Berry
phase only arises when the eigenfunctions of the Hamiltonian
are complex, and it is defined by the contour integral along
the loop evolution of the complex eigenfunction within the pa-
rameter space. As a measurable quantity, the Berry phase has
significant implications in various physical domains [2–4].
The geometric or holonomic approach to quantum com-
putation [5–10], which exploits the Berry phase shift and
its non-Abelian counterpart, is believed to provide a fault-
tolerant way to implement quantum information processing.
In the field of condensed matter physics, the Berry phase
offers valuable insights into the topological properties of ma-
terials and underlies the phenomena like Hall effects and
charge pumping [11–14].

Direct observation of the Berry phase in quantum systems
has been reported, e.g., in the spin qubit associated with the
nitrogen-vacancy color center in diamond [15–17], in the
superconducting charge qubits by means of the microwave
radiation [18], and recently in the optical Möbius-strip micro-
cavity [19]. These experiments surely require a fair amount
of demanding conditions and technologies. Specifically, since
decoherence has a long time to bite in the slow adiabatic
evolution of the quantum system, it may seriously affect the
visibility of the phase-dependent interference experiments.
Meanwhile, there have been many studies upon the classi-
cal analogy and simulation for the dynamical behavior of
quantum systems. For example, it has been shown that a
classical system which obeys the Landau-Lifshitz equation is
in the general ability to mimic a qubit’s behavior [20]. Such
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classical analogues for strongly driven qubit systems have
been manifested with various resonator systems, e.g., the
nanomechanical resonator [21,22] and coupled electrical res-
onators [23].

In this paper we propose to simulate the dynamical evolu-
tion and detect the Berry phase generated by the adiabatically
driven two-level quantum systems through the spatial motion
of a classical charged particle subjected to a time-varying
magnetic field. The usage of complex numbers is at the heart
of quantum physics, especially the quantum coherence ef-
fects associated with the information of relative phase shifts.
To simulate quantum states and their unitary evolution by
real amplitudes and matrix entries is generally not trivial
which should resort to a Hilbert space with higher dimen-
sions [24]. For the two-level quantum system, the evolution
of the wave function can be equally described by that of
the three-parameter Bloch vector, which corresponds to the
homomorphism between the unitary SU(2) group and the real
orthogonal SO(3) group. We will demonstrate the analogy
between the dynamical evolution of the Bloch vector of the
driven binary quantum system and the orbit motion of the
classical particle governed by the Newton-Lorentz equation,
which allows for the classical simulation for this particular
quantum system. Consequently, we aim at how the complex
phase information, say, the Berry phase shift induced dur-
ing the adiabatic cyclic evolution can be captured by the
orbit motion of the classical charged particle in the real
space.

The rest of the paper is organized as follows. In Sec. II, we
will elucidate the analogy between the adiabatic evolution of
the driven two-level quantum system and the spatial motion
of a charged particle under a time-varying magnetic field.
The correspondence relationship is established between the
equations of motion of these two species of systems, i.e.,
the Bloch equation responsible for the density state of the
quantum system and the Newton-Lorentz equation describ-
ing the orbit motion of the classical particle. Subsequently,
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we employ the driven spin-1/2 model and explore how the
phase information can be captured by the orbit motion of the
classical particle (Sec. III). In Sec. IV, we apply a double-loop
strategy to achieve the pure Berry phase of the adiabatic cyclic
evolution and show how its effect can be detected by the
corresponding particle velocity. Finally, relevant discussions
about the experimental realization and a brief summary are
presented in Sec. V.

II. CORRESPONDENCE RELATIONSHIP BETWEEN
EQUATIONS OF MOTION OF THE TWO SPECIES OF

DRIVEN SYSTEMS

Let us consider the two-level quantum system described by
a Hamiltonian

H (t ) = 1
2�(t ) · σ, (1)

where the driving field �(t ) ≡ [�x(t ),�y(t ),�z(t )] is gen-
erally time dependent and σi (i = x, y, z) are Pauli matrices
satisfying [σi, σ j] = 2iεi jkσk . To describe the dynamics of the
system, we look into the time evolution of the density state
which is governed by the von Neumann equation

ih̄
∂

∂t
ρ(t ) = [H (t ), ρ(t )]. (2)

For a closed two-level system the density operator takes
the form of ρ(t ) = 1

2 [I2 + α(t ) · σ], in which α(t ) ≡ ∑
i αiêi

denotes the Bloch vector and its modulus remains constant
over the time evolution. It is verified that the compo-
nents αi(t ) = tr[ρ(t )σi] and they satisfy the following Bloch
equation:

α̇i(t ) = −1

h̄
[α(t ) × �(t )]i. (3)

The key point is to recognize the similarity between Eq. (3)
and the Newton-Lorentz equation characterizing the spatial
motion of a charged particle under a magnetic field, i.e.,

v̇(t ) = q

m
v(t ) × B(t ). (4)

Here, q/m is the charge-to-mass ratio of the particle and the
time-varying B(t ) is assumed to be spatially uniform. By
comparing the above two equations (3) and (4), it is readily
seen that, if we set B(t ) ≡ −m�(t )/(h̄q), the correspondence
is established between the Bloch vector α(t ) of the quantum
system and the velocity vector v(t ) of the classical particle,
differing only by a constant ratio with respect to their initial
magnitudes.

It should be noted that the time-varying magnetic field
may create an inductive electric field which, satisfying
∇ × E(r, t ) = − ∂

∂t B(t ), has not been included in the above
Newton-Lorentz equation (4). Nonetheless, the above mod-
est correspondence can be utilized as a preliminary tool to
seek potential magnetic confinement protocols [25], which
builds upon the methods and results already achieved in the
field of quantum control for the driven quantum system. In
what follows we shall consider that the driving field �(t )
varies adiabatically, allowing us to neglect the electric field
generated by the corresponding magnetic field. The above
correspondence relationship hence offers an effective way
to simulate dynamical evolution for the quantum system

FIG. 1. Two times the loop evolution of the adiabatically driven
spin-1/2 system. (a) The first cyclic evolution during which the wave
function |ψ+

ad(0)〉 (corresponding to the Bloch vector n̂�) acquires
a total phase φtot (t ) = φd (t ) + φg(t ). (b) Adiabatic reversal process
of the field orientation embedded in the two times loop evolution.
(c) The second cyclic evolution during which |ψ+

ad(0)〉 acquires a
total phase φ̄tot (t ) = −φd (t ) + φg(t ).

by virtue of the spatial motion of the classical particle. In
particular, we concentrate below on how the effect of the
Berry phase shift induced in the cyclically driven quantum
system can be detected by the particle’s motion in the real
space.

III. CAPTURING PHASE INFORMATION OF THE
QUANTUM SYSTEM BY THE CLASSICAL ORBIT MOTION

Let us move to consider a paradigmatic quantum model,
a spin subjected to a cyclic field which evolves adiabati-
cally with a cone angle θ [see Fig. 1(a)]. The Hamiltonian
reads

HC (t ) = 1
2�[sin θ (cos ϕσx + sin ϕσy) + cos θσz], (5)

where ϕ(t ) = γ t goes from 0 to 2π with a fixed fre-
quency. Accordingly, the classical charged particle is sub-
jected to a magnetic field B(t ) = Bzêz + Bτ (t ), in which
Bz = −m� cos θ/(h̄q) denotes a longitudinal field along the
z axis and Bτ (t ) = Bτ [cos ϕ(t )êx + sin ϕ(t )êy] represents a
time-varying transverse field with Bτ = −m� sin θ/(h̄q). We
assume that the adiabatic condition is fulfilled, i.e., h̄γ �
� or γ � q

m |B|, equivalently. It indicates that the inductive
electric field created by Bτ (t ), supposed to be of the form
E(z, t ) = γ zBτ (t ), can be neglected since the resulting elec-
tric force is much less than the magnetic force in view of
the fact that the size of the particle orbit is of the order
v/( q

m |B|).
During the adiabatic loop evolution, the energy eigenstates

of the Hamiltonian HC (t ) will remain to be in its instantaneous
eigenstates |ψ±

ad(t )〉 = cos θ
2 e∓iϕ/2|±〉 ± sin θ

2 e±iϕ/2|∓〉, but
attaining a total phase during the time evolution |ψ±

ad(0)〉 →
e∓iφtot (t )|ψ±

ad(t )〉, where φtot (t ) = φd (t ) + φg(t ) contains a dy-
namical part φd (t ) = 1

2�t/h̄ and an extra Berry phase

φg(t ) = −i
∫ t

0
〈ψ+

ad(τ )|∂τ |ψ+
ad(τ )〉dτ = −γ t

2
cos θ. (6)

The evolution of the density state of the system is then char-
acterized by ρ(t ) = UC (t )ρ(0)U †

C , where the time evolution
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operator is shown to be

UC (t ) =
∑
±

e∓iφtot (t )|ψ±
ad(t )〉〈ψ±

ad(0)| =
(

cos ϑe−i(χ+ ϕ

2 ) −i sin ϑe−i ϕ

2

−i sin ϑei ϕ

2 cos ϑei(χ+ ϕ

2 )

)
. (7)

We chose “|±〉” as the computational basis for the representative matrix and the contained parameters ϑ (t ) and χ (t ) are
specified by

sin ϑ (t ) = sin θ sin φtot (t ),
tan χ (t ) = cos θ tan φtot (t ). (8)

Following the group homomorphism between SU(2) and SO(3), the evolution of the Bloch vector of ρ(t ) is thus described by
αi(t ) = ∑

j U
i j
C (t )α j (0), in which UC (t ) is a real 3 × 3 orthogonal matrix given by

UC (t ) =
⎛
⎝cos ϕ sin2 ϑ + cos(2χ + ϕ) cos2 ϑ sin ϕ sin2 ϑ − sin(2χ + ϕ) cos2 ϑ sin 2ϑ sin(χ + ϕ)

sin ϕ sin2 ϑ + sin(2χ + ϕ) cos2 ϑ cos(2χ + ϕ) cos2 ϑ − cos ϕ sin2 ϑ − sin 2ϑ cos(χ + ϕ)
sin 2ϑ sin χ sin 2ϑ cos χ cos 2ϑ

⎞
⎠. (9)

Note that the time evolution of the density state
|ψ±

ad(t )〉〈ψ±
ad(t )|, with the Bloch vector expressed as

n̂�(t ) = sin θ (cos ϕêx + sin ϕêy) + cos θ êz, does not reflect
any of the above phase information. To detect the effect of
the Berry phase shift, the initial state should be prepared
in a superposition of the two basis states |ψ±

ad(0)〉.
Furthermore, to ensure that the corresponding classical
particle possesses a bounded orbit, the initial Bloch vector
must be perpendicular to n̂�(0), i.e., within the plane
determined by n̂⊥(0) = cos θ êx − sin θ êz and n̂y(0) = êy.
This is because the characteristic solution n̂�(t ) has a
constant z component, which would lead to unbounded
motion of the classical particle in the z direction if the
initial Bloch vector possesses any of its ingredients. To be
specific, we consider that at t = 0 the quantum system is in
a state |ψ (0)〉 = [|ψ+

ad(0)〉 + |ψ−
ad(0)〉]/√2, that is, the initial

Bloch vector reads αC (0) = n̂⊥(0). Under the described
adiabatic evolution, the Bloch vector of the density operator
ρ(t ) = |ψ (t )〉〈ψ (t )| is obtained as

αC (t ) = cos[2φtot (t )]n̂⊥(t ) + sin[2φtot (t )]n̂y(t ), (10)

in which

n̂⊥(t ) = cos θ (cos ϕêx + sin ϕêy) − sin θ êz,

n̂y(t ) = − sin ϕêx + cos ϕêy. (11)

It is seen that αC (t ) evolves along a geodesic loop that is nor-
mal to the axis n̂�(t ), while the latter processes adiabatically
around the z axis.

Following the correspondence αC (t ) ↔ v(t ), the velocity
of the classical particle hence is described by a combination
of the cyclotron around n̂�(t ) with a frequency ωn = �/h̄ −
γ cos θ and an adiabatic cyclic motion of its reference frame
{n̂⊥(t ), n̂y(t ), n̂�(t )} around the z axis. In the laboratory frame,
the velocity reads [Fig. 2(a)]

vx(t ) =v(cos θ cos γ t cos ωnt − sin γ t sin ωnt ),

vy(t ) =v(cos θ sin γ t cos ωnt + cos γ t sin ωnt ),

vz(t ) = − v sin θ cos ωnt .

(12)

The bounded property of the orbit motion [see Fig. 2(b)]
is easily understood since the displacement along all three
directions, ri(t ) = ∫ t

0 vi(t )dt + ri(0), is either periodic or

quasi-periodic (depending on whether the ratio h̄γ /� is
a rational number or not). The Berry phase information
of the quantum system can be extracted by observing
the orbit motion of the classical particle. For example, it
can be captured by the y component of the velocity in
view of vy(0) = 0 and vy(T ) = v sin[�T/h̄ + 2φg(T )], where
φg(T ) = −π cos θ accounts for the Berry phase generated
during the cyclic evolution.

IV. DOUBLE-LOOP STRATEGY AND PURE GEOMETRIC
PHASE SHIFT

In the cyclic evolution described above, the Berry phase
is always accompanied by the dynamical phase. To enhance
the scheme for detecting a pure geometric phase shift, one
can employ a double-loop strategy which effectively cancels
out the dynamical phase, leaving only a pure geometric phase
at the ending of the evolution. Such a strategy has been
exploited to achieve fault-tolerant gate operations for ge-
ometric quantum computation [6,26,27]. Specifically, the
quantum system should undergo cyclic evolution twice and
the evolution of the second loop is driven by a Hamiltonian

FIG. 2. The bounded orbit motion of the classical charged par-
ticle under the corresponding magnetic field, in which the initial
r(0) = 0, v(0) = cos θ êx − sin θ êz (being dimensionless by setting
v = 1), and the parameters are set as h̄γ /� = 0.02 and θ = arccos 3

5 .
(a) Time evolution of the velocity vector specified by the components
vx (t ) (blue solid) and vy(t ) (green dashed). (b) Planar projection of
the particle’s trajectory on the x-y plane, which is bounded within an
annular range with the major and minor radii being approximately
v/ωn and v cos θ/ωn, respectively.
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HC̄ (t ) = −HC (t ) (see Fig. 1). Note that HC̄ (t ) possesses the
same instantaneous eigenstates with HC (t ), HC̄ (t )|ψ±

ad(t )〉 =
∓�

2 |ψ±
ad(t )〉, but has opposite eigenvalues, i.e., with +�

2
corresponding to |ψ−

ad(t )〉 and −�
2 to |ψ+

ad(t )〉, respectively.
Therefore, the dynamical phases induced during the two times
loop evolution will cancel each other out. As a consequence,
the entire double-loop process yields that

|ψ±
ad(0)〉 → |ψ±

ad(2T )〉 = e∓i2φg(T )|ψ±
ad(0)〉. (13)

In the previous proposal of the double-loop strategy for ge-
ometric quantum gate operations [26,27], the field direction
is reversed suddenly at the ending of the first loop, i.e.,
�(T ) → �(T + 0+) = −�(T ), so that the wave function of
the quantum system is kept unchanged at that moment. Never-
theless, for the present scheme, the reversal process of the field
direction should be performed adiabatically, otherwise the
sudden change of the counterpart magnetic field of the classi-
cal system will lead to the creation of inductive electric fields.
Suppose that this embedded adiabatic process (in between the
double loop evolution) is implemented by altering only the
amplitude �(t ) of the driving field [see Fig. 1(b)], e.g., from
� to 0 during (T, T + τ/2) and from 0 to −� during (T +
τ/2, T + τ ). It will just give rise to a null operation on the
wave function if there is

∫ T +τ

T +τ/2 �(t )dt = − ∫ T +τ/2
T �(t )dt ,

that is, such an adiabatic change of the driving field will not
affect the result of the double-loop evolution. We therefore
omit the time duration (T, T + τ ) in the discussion below.

Let us go on to consider the Bloch vector of the quantum
system in the second loop evolution. The time evolution oper-
ator generated by HC̄ (t ) is given by

UC̄ (t ) =
∑
±

e∓iφ̄tot (t )|ψ±
ad(t )〉〈ψ±

ad(0)|, (14)

in which φ̄tot (t ) = −φd (t ) + φg(t ). By applying the corre-
sponding SO(3) group element UC̄ (t ) on the Bloch vector
αC̄ (0) ≡ αC (T ) (the output state of the first loop evolution),
one obtains the evolution over the second loop

αC̄ (t ) = cos �(T + t )n̂⊥(t ) + sin �(T + t )n̂y(t ), (15)

where �(T + t ) = 2[φtot (T ) + φ̄tot (t )]. The final output of
the velocity vector of the classical particle hence is
obtained as

v(2T ) = v cos[4φg(T )]n̂⊥(0) + v sin[4φg(T )]n̂y(0). (16)

As a result, the Berry phase may be determined either by the
relative orientation between the initial velocity vector v(0) =
vn̂⊥(0) and the above v(2T ), or by the ratio of any of the
components vi(2T ) to the initial velocity magnitude v.

V. DISCUSSION AND CONSLUSION

A critical issue regarding the experimental realization of
the above simulation scheme is the requirement for a high

charge-to-mass ratio of the dielectric particle. Assuming that
the gyro frequency is measured in seconds and the mag-
netic induction intensity is approximately 1 Tesla, this implies
that the ratio q/m of the classical particle must be around
1 C/kg, which is significantly higher than that of the Millikan
oil droplet (typically within 10−4–10−3 C/kg). Possible ap-
proaches to enhance the charge-to-mass ratio of the dielectric
particles include, for example, using materials with an appro-
priately high dielectric constant and subjecting the particles to
corona discharge at a high voltage. In addition, air damping
and stochastic disturbances (resulting the Brownian motion)
should be considered in a practical process. Such experimental
setups may also offer a visual demonstration about the dissi-
pative effect on the geometric phase caused by the classical
damping and noise.

The Aharonov-Anandan phase [28] is known to be a nona-
diabatic extension of the Berry phase. Thus it is of interest
to ask whether the Aharonov-Anandan phase can be detected
similarly by the above-described classical system. One pos-
sible approach to addressing this issue is to simulate the
Aharonov-Anandan phase generated during parallel transport
[29]. We note that a similar problem will be encountered about
how to prevent or reduce the generation of an electric field
since the time dependency of the classical magnetic field is
also implicated in this process. Additionally, we would like to
mention the Hannay angle [30], an anholonomy effect known
as the classical analog of the Berry phase, and those geomet-
ric phases discovered in the non-Hamiltonian setting [31,32].
Exploring the Hannay angle of the described charged particle
system and its relationship to the Berry phase detected by the
currently proposed scheme would be another interesting topic.

In summary, we proposed a scheme to simulate the adia-
batically driven two-level quantum system using a classical
charged particle moving in a corresponding magnetic field.
We revealed the analogy between the dynamics governed by
the equations of motion of these two kinds of systems. The
real-value simulation described in this paper hence can be
understood as a physical realization of the group homomor-
phism SU(2)∼SO(3), not by the Bloch vector but by the
velocity vector of the orbit motion of the classical particle.
We demonstrated how the phase information accumulated
during the cyclic adiabatic evolution of the quantum system
can be captured by the motion of the classical particle with
bounded orbits. Based on a double-loop scheme, we show that
it is possible to detect a pure geometric phase shift through
probing the velocity of the particle at the ending of the two
times cyclic evolution.
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