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Initial correlations in open quantum systems are always detectable

Iman Sargolzahi *

Department of Physics, University of Neyshabur, Neyshabur 9319774446, Iran

(Received 16 November 2023; accepted 23 January 2024; published 12 February 2024)

Consider an open quantum system which interacts with its environment. Assuming that the experimenter has
access only to the system, an interesting question is whether it is possible to detect initial correlations between
the system and the environment by performing measurements only on the system. Various methods have been
proposed to detect correlations by local measurements on the system. After reviewing these methods, we will
show that initial correlations between the system and the environment are always detectable. In particular, we
will show that one can always find a unitary evolution, for the whole system-environment, such that the trace
distance method, proposed to witness correlations locally, succeeds. We also find the condition for existence of
the optimal unitary evolution, for which the entire correlation is locally detectable. Next, we address the case
where the system and the environment interact through a time-independent Hamiltonian. For this case we will
see that if the initial correlation can be detected locally at some time t , then it can be detected for almost all
the other times too. On the other hand, we see that one can find cases for which initial correlations between
the system and the environment always remain undetectable even though the unitary evolution, generated by the
Hamiltonian, is not factorized.
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I. INTRODUCTION

In general, a quantum system S is not closed and interacts
with its environment E . We can consider the whole system-
environment as a closed quantum system which evolves
unitarily [1]:

ρ ′
SE = AdU (ρSE ) ≡ UρSEU †, (1)

where U is a unitary operator, on HS ⊗ HE . HS and HE

are the Hilbert spaces of the system and the environment,
respectively. In addition, ρSE and ρ ′

SE are the initial and the
final states (density operators) of the system-environment,
respectively.

So the reduced dynamics of the system is given by

ρ ′
S = TrE (ρ ′

SE ) = TrE ◦ AdU (ρSE ). (2)

Usually one assumes that the initial state ρSE is factorized,
ρSE = ρS ⊗ ω̃E , where ρS is an arbitrary state of the system
but ω̃E is a fixed state of the environment. Therefore the
reduced dynamics of the system is given by a completely
positive map:

ρ ′
S = ES (ρS ) =

∑

i

EiρSE†
i ,

∑

i

E†
i Ei = IS, (3)

where Ei are linear operators and IS is the identity operator on
HS [1,2].

When the coupling between the system and environment is
weak, the whole state of the system-environment can remain
(approximately) factorized during the time evolution, and so
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the reduced dynamics of the system is given by a Marko-
vian master equation [2]. Obviously, the above assumption
is not valid in general, and so the reduced dynamics may be
non-Markovian. To detect and quantify the non-Markovianity
some methods have been proposed [3–6]. One of them, in-
troduced in Ref. [4], is based on the trace distance, which is
a measure of distinguishability between two states. The trace
distance between two states ρ and σ is defined as

D(ρ, σ ) = 1
2 Tr(|ρ − σ |), (4)

where |A| =
√

A†A [1]. If, for some time t , we have

d

dt
D(ρS (t ), σS (t )) > 0, (5)

for two (reduced) states of the system ρS (t ) = TrE (ρSE (t ))
and σS (t ) = TrE (σSE (t )), it means that the distinguishability
between ρS (t ) and σS (t ) is increasing at this moment. This has
been interpreted as the consequence of the flow of information
from the environment to the system, and thus as the signature
of non-Markovianity [4].

As the assumption that the whole state of the system-
environment remains factorized during the evolution is not
valid in general, the assumption that the initial state of the
system-environment is factorized may be violated too. This
may be due to the fact that the experimenter could not isolate
the system from the environment before beginning the experi-
ment. Therefore, some works have been focused on describing
the reduced dynamics of the system when the initial states
of the system-environment are not necessarily factorized (see,
e.g., Refs. [7–12]).

An interesting question is whether it is possible to detect
the initial correlation between the system and the environment
by only tracking the (reduced) dynamics of the system. In
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general, the experimenter has access only to the system and
not to the environment. Even if the experimenter has access to
both the system and the environment, obviously, performing
state tomography on the system is much simpler than doing so
on the whole system-environment. Therefore it would be
desirable to get information about the whole system-
environment by performing measurements only on the system.

Interestingly, the evolution of the trace distance can be used
to answer the above question too [3,13]. For two initial states
of the system-environment, ρSE = ρS ⊗ ω̃E and σSE = σS ⊗
ω̃E , using Eq. (2), the reduced dynamics of the system is given
by the completely positive map in Eq. (3). Now, since the trace
distance is contractive under completely positive maps [1], we
have

D(ES (ρS ), ES (σS )) � D(ρS, σS ). (6)

So, if one observes an increase of the trace distance, above
the initial value D(ρS, σS ), this may imply that at least one
of the initial states ρSE or σSE is not factorized. In the next
section we review this method in more detail, and also other
proposed methods to detect initial correlations by performing
measurements only on the system.

In this paper we show that if there exists initial correlation
between the system and the environment, it is always de-
tectable by tracking only the reduced dynamics of the system.
In other words, there exists a unitary time evolution U , for the
whole system-environment, such that the reduced dynamics
of the system for the correlated initial state of the system-
environment differs from that of the factorized one. So the
initial correlation can be detected using the trace distance
method. This result is given in Sec. III.

Next, in Sec. IV we give some more results on the trace
distance methods of detecting initial correlation, reviewed in
Sec. II. The possibility of finding the optimal U and also the
case that the system-environment evolution is governed by a
time-independent Hamiltonian are studied in Secs. V and VI,
respectively. Finally, we end this paper in Sec. VII, with a
summary of our results.

II. VARIOUS METHODS OF DETECTING
INITIAL CORRELATIONS

As stated in the Introduction, one proposed way to detect
initial correlations between the system and the environment
is to track the trace distance of the reduced states. Consider
two different initial states of the system-environment, ρSE and
σSE . The following inequality has been proved in Ref. [13]:

D(ρ ′
S, σ

′
S ) − D(ρS, σS ) � D(ρSE , ρS ⊗ ρE )

+ D(σSE , σS ⊗ σE ) + D(ρE , σE ),
(7)

where ρS = TrE (ρSE ) and σS = TrE (σSE ) are the initial states
of the system, and ρE = TrS (ρSE ) and σE = TrS (σSE ) are
the initial states of the environment. In addition, ρ ′

S =
TrE (UρSEU †) and σ ′

S = TrE (UσSEU †) are the final states of
the system. Therefore, if the trace distance of the reduced
states of the system increases after the evolution, it implies
that ρSE or σSE is correlated, or ρE differs from σE . One
can also find a generalization of inequality (7) using another

quantifier of distinguishability instead of the trace distance
[14].

Inequality (7) can be used to detect correlation in an un-
known initial state ρSE as follows [13]: Construct the state σSE

by performing a completely positive map FS on the system,
σSE = FS ⊗ idE (ρSE ), where idE is the identity map on the
environment. Therefore, σE = ρE , and if ρSE is factorized,
so is σSE . Consequently, any increase in the trace distance
implies that the initial ρSE is correlated.

Note that the above method includes no restrictions on the
initial state ρSE , system-environment evolution U , and the
quantum operation on the system FS . It only requires that
the experimenter can perform quantum operations and state
tomography on the system S. Therefore this method is ex-
perimentally feasible and has been implemented successfully,
detecting the initial correlations [15,16].

There are at least two interesting choices for FS . First,
if one chooses FS as the measurement in the basis of the
eigenstates of initial ρS , then it can be shown that any increase
in the trace distance is a witness that the initial ρSE includes
quantum correlation [17], i.e., it includes quantum discord,
introduced in Ref. [18]. Second, when one chooses FS such
that

σSE = FS ⊗ idE (ρSE ) = ρS ⊗ ρE , (8)

we can construct FS as FS = �S ◦ |0S〉〈0S|TrS , where |0S〉 ∈
HS is a fixed state and �S is a completely positive map that
maps |0S〉〈0S| to ρS . Given two arbitrary density operators,
one can always find a completely positive map which maps
one to the other [19].

For σSE in Eq. (8), inequality (7) is simplified as

D(ρ ′
S, σ

′
S ) � D(ρSE , ρS ⊗ ρE ). (9)

So, if ρ ′
S 
= σ ′

S , we conclude that the initial ρSE is not factor-
ized. In the next section we will show that for any correlated
ρSE , one can find unitary evolution U such that we have
ρ ′

S 
= σ ′
S .

Interestingly, the trace distance approach can be used to
detect correlations within the environment too [20]. Consider
the case that the environment E is bipartite: HE = HB ⊗ HC .
For the two initial states of the system-environment, ρSE =
ρS ⊗ ρE = ρS ⊗ ρBC and σSE = σS ⊗ ρB ⊗ ρC , where ρB =
TrC (ρBC ) and ρC = TrB(ρBC ), the following inequality has
been proven in Ref. [20]:

D(ρ ′
S, σ

′
S ) − D(ρS, σS ) � D(ρBC, ρB ⊗ ρC ). (10)

Therefore an increase in the trace distance implies that in the
initial state ρSE the environment is not factorized.

In many cases it is known how the system and the environ-
ment interact. This can help with detecting initial correlations,
as is shown in Refs. [21,22], and is implemented experimen-
tally in Ref. [23]. For example, in Ref. [21] the authors have
considered the case that the system-environment Hamiltonian
is known. So the reduced dynamics of the system can be cal-
culated simply for all factorized initial states ρ̄SE = ρS ⊗ ρ̄E ,
where ρS is a given initial state of the system but ρ̄E is an
arbitrary state of the environment. Then, these calculated final
states of the system can be compared with the real one ρ ′

S ,
given from the state tomography. If they do not match, we
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conclude that the initial state of the system-environment ρSE

is not factorized as ρ̄SE .
Master equations can give us some information about the

system-environment correlations too. In Ref. [24] it has been
shown that, knowing ρS (t ) (from solving the master equation),
the system-environment interaction, and also the state of the
environment at least at the initial moment t = 0, gives us
the approximate system-environment correlation at the other
times t .

Finally, we mention that the initial correlation can remark-
ably affect the quantum process tomography [25]. Consider
the following method for the process tomography [26]: The
experimenter, who has access only to the system, starts with
an unknown (maybe correlated) initial state of the system-
environment ρ

(1)
SE . Implementing a process ES on the system,

given by an unknown unitary operator U on the whole system-
environment, the final state of the system becomes ρ ′

S
(1) =

ES (ρ (1)
S ) = TrE (Uρ

(1)
SE U †), where ρ

(1)
S = TrE (ρ (1)

SE ) is the ini-
tial state of the system. The experimenter characterizes both
ρ

(1)
S and ρ ′

S
(1) by performing state tomography [1].

Assuming that the system is dS-dimensional, in addition to
ρ

(1)
S , one can find (d2

S − 1) other linearly independent states

ρ
(i)
S , i 
= 1, such that the set {ρ (1)

S , ρ
(2)
S , . . . , ρ

(d2
S )

S } constructs
a basis for the space of the linear operators on HS . So any
arbitrary state ρS on HS can be expanded as

ρS =
d2

S∑

i=1

aiρ
(i)
S , (11)

where ai are real coefficients.
The experimenter can construct each ρ

(i)
S by performing

a suitable completely positive map F (i)
S on ρ

(1)
S [19], so the

whole state of the system-environment converts to ρ
(i)
SE =

F (i)
S ⊗ idE (ρ (1)

SE ). Then, implementing the mentioned un-
known process ES on this new initial state, he/she can find the
corresponding final state ρ ′

S
(i) = ES (ρ (i)

S ) = TrE (Uρ
(i)
SEU †).

Until now, we know how ES acts on ρ
(i)
S , i = 1, . . . , d2

S .
Assuming that ES is linear, and using Eq. (11), we can obtain
the final state of the system for the arbitrary initial state ρS:

ρ ′
S = ES (ρS ) =

d2
S∑

i=1

aiES (ρ (i)
S ) =

d2
S∑

i=1

aiρ
′
S

(i)
. (12)

In other words, Eq. (12) determines how the quantum process
ES acts on an arbitrary initial state ρS .

If the initial ρ
(1)
SE is factorized as ρ

(1)
SE = ρ

(1)
S ⊗ ω̃E , and so

the other ρ
(i)
SE are also factorized as ρ

(i)
SE = ρ

(i)
S ⊗ ω̃E , then the

above method for the process tomography works well. In fact,
then ES is not only linear but is also completely positive. But if
ρ

(1)
SE is not factorized, Eq. (12) may fail in predicting the final

ρ ′
S correctly [25]. We will come back to this point in the next

section too.

III. INITIAL CORRELATION IS DETECTABLE

Consider two initial states of the system-environment, ρSE

and σSE , such that ρS = TrE (ρSE ) = TrE (σSE ) = σS . In other
words, though ρSE differs from σSE , the initial state of the

system is the same for both ρSE and σSE . So,

σSE = ρSE + R, (13)

where R is a Hermitian operator on HS ⊗ HE , such that
TrE (R) = 0. We now ask whether the final state of the system
is also the same for both initial states ρSE and σSE . In the
following Proposition, we show that one can always find a
unitary evolution U , for the whole system-environment, such
that σ ′

S = TrE (UσSEU †) differs from ρ ′
S in Eq. (2).

Proposition 1. Consider the case that both the system and
the environment are finite dimensional, with dimensions dS �
2 and dE � 2, respectively. For the two initial states of the
system-environment ρSE and σSE in Eq. (13), one can always
find a unitary operator U such that TrE (URU †) 
= 0.

Proof. The Hermitian traceless operator R can be expanded
as

R =
n∑

i=1

μ
(+)
i |μ(+)

i 〉〈μ(+)
i | +

N∑

i=n+1

μ
(−)
i |μ(−)

i 〉〈μ(−)
i |, (14)

where μ
(+)
i and μ

(−)
i are positive and negative eigenvalues

of R, respectively. The states |μ(+)
i 〉 and |μ(−)

i 〉 are the cor-
responding eigenstates. In addition, N = dSdE . Obviously,
n = mdE + r, with the integers 0 � m < dS and 0 � r < dE .
We add the zero eigenvalues of R to the sets {μ(+)

i } or {μ(−)
i }

appropriately such that r is as small as possible.
If m � 1, we consider a unitary operator U such that, for

mdE of |μ(+)
i 〉, we have

U |μ(+)
i 〉 = | jS〉|lE 〉, (15)

where the states | jS〉, 1 � j � m, are some members of an
orthonormal basis of HS , and the states |lE 〉, 1 � l � dE ,
construct an orthonormal basis of HE . In addition, U maps
the r remaining |μ(+)

i 〉 and all the |μ(−)
i 〉 to | jS〉|lE 〉, with

m + 1 � j � dS and 1 � l � dE .
Therefore,

R′ = URU † = R′(p) + R′(h), (16)

where R′(p) is a positive operator on the subspace spanned
by the states | jS〉|lE 〉, with 1 � j � m and 1 � l � dE . In
addition, R′(h) is a Hermitian operator on the subspace spanned
by | jS〉|lE 〉, with m + 1 � j � dS and 1 � l � dE . Tracing
over the environment, we have

R′
S = TrE (R′) = R′(p)

S + R′(h)
S , (17)

where R′(p)
S = TrE (R′(p) ) is a positive operator on the subspace

spanned by | jS〉, 1 � j � m, and R′(h)
S = TrE (R′(h) ) is a Her-

mitian operator on the subspace spanned by | jS〉, m + 1 �
j � dS .

Since the positive operator R′(p)
S is nonzero and its support

does not overlap with the support of R′(h)
S , the Hermitian

operator R′
S in Eq. (17) is also nonzero. (In fact, since R′

S is
traceless, the Hermitian operator R′(h)

S is nonzero too.)
If m = 0, we can follow a similar line of reasoning for

|μ(−)
i 〉 instead of |μ(+)

i 〉 and conclude that the operator R′
S is

nonzero. �
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Let us illustrate the above proof for the simple case where
dS = 2, m = 1, and r = 0. So R in Eq. (14) is

R =
dE∑

i=1

μ
(+)
i |μ(+)

i 〉〈μ(+)
i | +

2dE∑

i=dE +1

μ
(−)
i |μ(−)

i 〉〈μ(−)
i |. (18)

We choose U such that it maps all the kets |μ(+)
i 〉 to

|1S〉|lE 〉, and all the kets |μ(−)
i 〉 to |2S〉|lE 〉 (1 � l � dE ).

Therefore, in Eq. (17), R′(p)
S = (

∑
μ

(+)
i )|1S〉〈1S| and R′(h)

S =
(
∑

μ
(−)
i )|2S〉〈2S|. Obviously, all the operators R′(p)

S , R′(h)
S , and

R′
S are nonzero, as expected.

In addition, note that one can find infinitely many unitary
operators U which satisfy Eq. (15). In other words, there are
infinitely many unitary evolutions U , for the whole system-
environment, such that the reduced dynamics of the system,
for the initial states ρSE and σSE in Eq. (13), is not the same.

For an arbitrary initial state ρSE we can construct σSE as
Eq. (8). When ρSE is correlated, i.e., ρSE 
= ρS ⊗ ρE , then R
in Eq. (13) is nonzero. Using Proposition 1, we conclude that
one can find unitary evolution U such that ρ ′

S 
= σ ′
S , and so

inequality (9) can detect correlation in the initial state ρSE .
In other words, one can always find an appropriate U such
that the method introduced in Ref. [13] to detect the initial
correlation is successful.

We can also apply Proposition 1 to realize why the process
tomography method, given in the previous section, may fail.
First note that for the ρS = TrE (ρSE ) expanded in Eq. (11), we
have

ρSE =
d2

S∑

i=1

aiρ
(i)
SE + Y, (19)

where Y is a Hermitian operator, on HS ⊗ HE , such that
TrE (Y ) = 0. Now, it can be shown simply that for the system-
environment unitary evolution U , the reduced dynamics ES is
linear if and only if TrE (UYU †) = 0 [12]. From Eq. (12) it is
obvious that assuming ES is linear is the main assumption of
the mentioned process tomography method. If this assumption
is failed, the mentioned method is failed too.

Using a similar line of reasoning given in Proposition 1, we
can show that if Y is nonzero, one can always find a unitary
operator U such that TrE (UYU †) is also nonzero. So the
reduced dynamics ES is not linear, and the mentioned process
tomography method will fail.

Now we can show simply that when the initial ρ
(1)
SE is not

factorized, then the mentioned method may fail. Remember,
we have assumed that the experimenter can manipulate only
the system, and not the environment. So, using the local op-
eration FS in Eq. (8), he/she can construct the state σSE =
ρ

(1)
S ⊗ ρ

(1)
E , where ρ

(1)
E = TrS (ρ (1)

SE ). Using Eq. (11), we can
expand σS = TrE (σSE ) as σS = ρ

(1)
S . So, using Eq. (19), σSE =

ρ
(1)
SE + Y , where Y 
= 0. Therefore, for each unitary evolution

U which leads to a nonzero TrE (UYU †), the mentioned pro-
cess tomography method will fail.

In summary, construct the set of initial states of the system-
environment as

S = {
ρSE = FS ⊗ idE

(
ρ

(1)
SE

)}
, (20)

where FS are arbitrary completely positive maps on the sys-
tem. Then, expand each ρSE ∈ S as Eq. (19). If, for a given
U , TrE (UYU †) = 0 for all ρSE ∈ S , then the reduced dynam-
ics ES is linear [12] and the mentioned process tomography
method will work; otherwise, it may fail.

IV. MORE ON THE TRACE DISTANCE METHODS OF
DETECTING INITIAL CORRELATIONS

When the initial state ρSE is correlated, then R = ρS ⊗
ρE − ρSE 
= 0. Now, from the left-hand side of inequality (9),
it is clear that R′

S = TrE (URU †) 
= 0 is the necessary and suf-
ficient condition that this inequality can detect correlation. In
the following we want to prove similar results for inequalities
(7) and (10).

First, consider inequality (7). If we want to detect corre-
lation in the initial state ρSE , using the method introduced in
Ref. [13], we have σSE = FS ⊗ idE (ρSE ), performing some
quantum operation FS on the system. Therefore ρE = σE ,
and so the last term in the right-hand side of inequality (7)
vanishes. When the initial ρSE is correlated, then R = ρS ⊗
ρE − ρSE 
= 0. We may also have R̄ = σS ⊗ σE − σSE 
= 0.

Note that since ρE = σE , we have

ρSE − σSE = R̄ − R + Q, (21)

where Q = ρS ⊗ ρE − σS ⊗ ρE . In addition, using Eq. (4) we
have

D(ρS, σS ) = 1
2 Tr(|Q|) = 1

2 Tr(|UQU †|)
� 1

2 Tr(|TrE (UQU †)|). (22)

Performing the operation TrE ◦ AdU to both sides of Eq. (21),
and then using the triangle inequality for the trace distance
[1], we have

D(ρ ′
S, σ

′
S ) � 1

2 Tr(|TrE (URU †)|) + 1
2 Tr(|TrE (UR̄U †)|)

+ 1
2 Tr(|TrE (UQU †)|)

= 1
2 Tr(|R′

S|) + 1
2 Tr(|R̄′

S|)
+ 1

2 Tr(|TrE (UQU †)|). (23)

Now, subtracting Eq. (22) from Eq. (23), we conclude that

D(ρ ′
S, σ

′
S ) − D(ρS, σS ) � 1

2 Tr(|R′
S|) + 1

2 Tr(|R̄′
S|). (24)

Therefore, in order that inequality (7) can detect correlation
in the initial state ρSE , at least one of the Hermitian operators,
R′

S or R̄′
S , must be nonzero. We will use this result in Sec. VI.

Next, consider inequality (10). If we choose σSE as σSE =
ρS ⊗ ρB ⊗ ρC , then inequality (10) reads

D(ρ ′
S, σ

′
S ) � D(ρBC, ρB ⊗ ρC ). (25)

As Eq. (13), we can define R = σSE − ρSE = ρS ⊗ ρB ⊗ ρC −
ρS ⊗ ρBC . Thus TrE (R) = 0. Now, inequality (25) states that
if R′

S = TrE (URU †) 
= 0, we can detect correlation in the state
of environment ρE = ρBC . From Proposition 1, we know that
one can find such unitary evolution U , and so the correlation
in the environment is always detectable.

For the general σSE in inequality (10), i.e., when σSE =
σS ⊗ ρB ⊗ ρC , we can define the Hermitian operator Q =
ρS ⊗ ρB ⊗ ρC − σS ⊗ ρB ⊗ ρC . Thus inequality (22) is valid
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for this case too. Also, we have a similar equation as Eq. (21),
with R = ρS ⊗ ρB ⊗ ρC − ρS ⊗ ρBC and R̄ = 0. Therefore,
for inequality (10) we have a similar inequality as given in
Eq. (24):

D(ρ ′
S, σ

′
S ) − D(ρS, σS ) � 1

2 Tr(|R′
S|). (26)

So, in order that inequality (10) can detect correlation in the
environment, we must have R′

S = TrE (URU †) 
= 0.
In summary, the nonzero-ness of the Hermitian operator R′

S
is the necessary and sufficient condition for applicability of
inequality (10) to detect initial correlation in the environment.

V. FINDING THE OPTIMAL UNITARY EVOLUTION

In this section we want to consider inequality (9) and find
the condition for which the equality sign holds in this relation.
First, we expand the Hermitian traceless operator R = ρS ⊗
ρE − ρSE as Eq. (14). So, using Eq. (4), we have

D(ρSE , ρS ⊗ ρE ) = 1

2
Tr(|R|) =

n∑

i=1

μ
(+)
i . (27)

After performing the unitary evolution U , we have

R′ = URU † = � − �. (28)

The positive operators � and � are defined as

� =
n∑

i=1

μ
(+)
i |μ̂(+)

i 〉〈μ̂(+)
i |,

� = −
N∑

i=n+1

μ
(−)
i |μ̂(−)

i 〉〈μ̂(−)
i |, (29)

where |μ̂(±)
i 〉 = U |μ(±)

i 〉. Therefore, R′
S = TrE (R′) = �S −

�S , where �S = TrE (�) and �S = TrE (�).
Consider the case that n, i.e., the number of positive eigen-

values of R, is n = mdE , for some integer 0 < m < dS . So we
can choose U as Eq. (15), and conclude that the left-hand side
of inequality (9) reads

D(ρ ′
S, σ

′
S ) = 1

2
Tr(|R′

S|) = Tr(�S ) =
n∑

i=1

μ
(+)
i , (30)

since the supports of �S and �S are orthogonal. Therefore we
achieve the equality sign in Eq. (9).

In general, the supports of �S and �S are orthogonal if we
can decompose the Hilbert space of the system as

HS = H(+)
S ⊕ H(−)

S , (31)

such that all |μ̂(+)
i 〉 ∈ H(+)

S ⊗ HE and all |μ̂(−)
i 〉 ∈ H(−)

S ⊗
HE . Obviously, this will be the case only when n = mdE .
Otherwise, we cannot find any unitary U which leads to or-
thogonal supports for �S and �S .

Note that, in general, we have

D(ρ ′
S, σ

′
S ) = 1

2 Tr(|R′
S|) = Tr[PS (�S − �S )], (32)

where PS is some projector operator [1]. When n 
= mdE , the
supports of �S and �S overlap. Now there are two possible

cases: First, when Tr(PS�S ) = 0. So the projector PS does not
span the whole support of �S . Therefore

D(ρ ′
S, σ

′
S ) = Tr(PS�S ) < Tr(�S ) =

n∑

i=1

μ
(+)
i . (33)

Second, when Tr(PS�S ) > 0. So

D(ρ ′
S, σ

′
S ) = Tr[PS (�S − �S )]

< Tr(PS�S ) � Tr(�S ) =
n∑

i=1

μ
(+)
i . (34)

Consequently, when n 
= mdE , we never achieve the upper
bound given in Eq. (27).

In summary, we have proved the following Proposition:
Proposition 2. One can find a unitary evolution U , for the

whole system-environment, such that the equality sign holds
in inequality (9), if and only if the number of positive eigen-
values of R = ρS ⊗ ρE − ρSE is n = mdE for some integer
0 < m < dS .

If some eigenvalues of R are zero, we can add them appro-
priately to the sets {μ(+)

i } or {μ(−)
i } to achieve the condition

n = mdE . Note that since R is the difference of two density
operators, its eigenvalues fall into the interval [−1, 1]. In
addition, as N = dSdE increases, we expect that a greater
number of eigenvalues of a density operator become almost
zero, since the sum of the eigenvalues must add up to 1.
Thus, as N increases, we expect that more eigenvalues of R
become almost zero. Therefore, even if we cannot achieve
the condition n = mdE , we can add those members of {μ(−)

i }
which are almost zero to {μ(+)

i } such that we approach the
upper bound in Eq. (27).

As the final remark, note that we can readily improve the
applicability of Proposition 2. Consider two arbitrary initial
states of the system-environment ρSE and σSE . So using the
fact that the trace distance is contractive under the partial trace
[1], we have

D(ρ ′
S, σ

′
S ) � D(ρ ′

SE , σ ′
SE ) = D(ρSE , σSE ), (35)

where ρ ′
SE = UρSEU † and σ ′

SE = UσSEU † are the final states
of the system-environment, after the unitary evolution U . In
addition, ρ ′

S = TrE (ρ ′
SE ) and σ ′

S = TrE (σ ′
SE ) are the corre-

sponding final states of the system.
Now, instead of inequality (9), we can consider the general

inequality (35). Then we can follow a similar line of reasoning
as given in this section to show that inequality (35) can be
saturated if and only if the number of positive eigenvalues of
R = σSE − ρSE is n = mdE .

Therefore, when n = mdE , using an appropriate U , we
have D(ρ ′

S, σ
′
S ) = D(ρSE , σSE ), which can be interpreted as

the following: the entire initial distinguishability (informa-
tion) in the system-environment has been flowed into the
system.

VI. WHEN THE EVOLUTION IS GIVEN BY A
TIME-INDEPENDENT HAMILTONIAN

Until now our discussion was restricted to the discrete time
evolution case, where the unitary operator U maps the initial
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state to the final one, as given in Eq. (1). The simplest case
for which we can achieve results for all the times is when the
evolution is governed by a time-independent Hamiltonian.

So in this section we consider the case that the uni-
tary time evolution of the whole system-environment is U =
exp(−iHt ), where H is a time-independent Hamiltonian (a
Hermitian operator on HS ⊗ HE ), i = √−1, and t is the time.

Consider the Hermitian operator R in Eq. (13). Using the
Baker-Hausdorff formula, we can expand R′ = URU † as

R′ = e(−T )ReT = R + [R, T ] + 1

2!
[[R, T ], T ]

+ 1

3!
[[[R, T ], T ], T ] + · · · , (36)

where T = iHt . So we have

R′
S = TrE (R′) = TrE (R) + TrE ([R, T ])

+ 1

2!
TrE ([[R, T ], T ]) + · · · , (37)

which is a polynomial function of t . Since TrE (R) = 0, the
operator R′

S is zero at t = 0. Therefore, if for some t > 0 we
have R′

S 
= 0, we conclude that R′
S is nonzero for almost all

the times t . This is due to the fact that when a polynomial
is not a fixed function, it can be zero only in a discrete set
of times t j , j = 1, 2, . . . . Therefore if inequality (9) succeeds
to detect correlations in the initial ρSE at some time t , i.e., if
the corresponding R′

S is nonzero at this t , then inequality (9)
succeeds for almost all the other times too.

On the other hand, one may encounter cases for which
the correlation in the initial ρSE cannot be detected, by local
measurements on the system, at any time t . Such an exam-
ple is given in Ref. [27]. There we have considered a spin
(qubit) chain from spin 1 to spin N̄ . We have chosen spins
1 to n̄ − 1 as our system S, and spins n̄ to N̄ as the envi-
ronment E . In addition, we have chosen the Hamiltonian as
H = ∑N̄−1

j=1 Zj ⊗ Zj+1, where Zj is the third Pauli operator of
spin j.

Consider the case that the initial state of the spin chain is

ρSE = ρSẼ ⊗ ρn̄, (38)

where ρSẼ is an arbitrary state on HS ⊗ HẼ (Ẽ denotes all
the spins in the environment E , except spin n̄, and HẼ is the
corresponding Hilbert space), and ρn̄ is an arbitrary state of
spin n̄, in the xy plane of the Bloch sphere [1]:

ρn̄ = 1
2 (In̄ + rxXn̄ + ryYn̄), (39)

where rx and ry are real coefficients. In addition, In̄, Xn̄, and
Yn̄ denote the identity operator, the first, and the second Pauli
operators on spin n̄, respectively.

Therefore the Hermitian traceless operator R = ρS ⊗ ρE −
ρSE can be decomposed as

R = R(0) ⊗ In̄ + R(1) ⊗ Xn̄ + R(2) ⊗ Yn̄, (40)

where R(ν) are Hermitian operators on HS ⊗ HẼ such that
TrẼ (R(0) ) = 0, since TrE (R) = 0.

Assuming that the experimenter has access only to the
system and not to the environment, we can construct the

state σSE = FS ⊗ idE (ρSE ), performing some quantum oper-
ation FS on the system. So, using Eq. (38), we have σSE =
σSẼ ⊗ ρn̄, where σSẼ is a state on HS ⊗ HẼ . Therefore, for
the Hermitian traceless operator R̄ = σS ⊗ σE − σSE , we sim-
ilarly have

R̄ = R̄(0) ⊗ In̄ + R̄(1) ⊗ Xn̄ + R̄(2) ⊗ Yn̄, (41)

where R̄(ν) are Hermitian operators on HS ⊗ HẼ , such that
TrẼ (R̄(0) ) = 0.

Using Lemma 2 of Ref. [27], we can show that for the
operators R and R̄ in Eqs. (40) and (41), respectively, we
have R′

S = TrE (URU †) = 0 and R̄′
S = TrE (UR̄U †) = 0, for

all the times t . Thus, using inequality (24), we conclude that
inequality (7), or inequality (9), which is a special case of
inequality (7), can never detect correlations in the initial state
ρSE in Eq. (38).

Note that there is a trivial case for which initial correlation
cannot be detected, for any time t : When the time evolution
operator is factorized as U = US ⊗ UE , where US and UE are
unitary operators on HS and HE , respectively, and so the left-
hand side of inequality (7) is always zero. In our case, because
of the term Zn̄−1 ⊗ Zn̄ in the Hamiltonian, U = exp(−iHt ) is
not factorized. Even so, correlations in the initial state ρSE in
Eq. (38) always remain undetectable, at least using the trace
distance method.

VII. SUMMARY

Various methods have been introduced to detect correla-
tions between the system and the environment, in the initial
state ρSE , by performing local measurements only on the
system. Maybe the simplest and the best one is that introduced
in Ref. [13], which is based on using inequalities (7) and (9).

In this paper showed that this method always succeeds: In
Sec. III, using Proposition 1 we showed that one can always
find a unitary U such that inequality (9) can detect correlations
in the initial state ρSE . As another application of Proposition 1,
we discussed how the presence of initial correlation can affect
the quantum process tomography.

In Sec. IV we proved the necessary (and sufficient) con-
ditions for applicability of inequalities (7) and (10) to detect
correlations. In particular, we showed that one can always find
a unitary U such that inequality (10) can detect correlation in
the environment.

Next, in Proposition 2 the necessary and sufficient condi-
tion to saturate inequality (9) was given. In fact, Proposition
2 can be applied to the general case, i.e., inequality (35),
and determines when we can achieve the whole initial dis-
tinguishability.

Finally, in Sec. VI we considered the case that the sys-
tem and the environment interact through a time-independent
Hamiltonian. We saw that for this case, if inequality (9)
succeeds to detect initial correlations at some time t , it can
succeed for almost all the other times too. On the other hand,
we discussed an example for which choosing the Hamiltonian
H and the initial state ρSE appropriately and using inequality
(24) results in inequalities (7) and (9) never detecting correla-
tions, even though U = exp(−iHt ) is not factorized.

022213-6



INITIAL CORRELATIONS IN OPEN QUANTUM SYSTEMS … PHYSICAL REVIEW A 109, 022213 (2024)

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press, Cam-
bridge, England, 2000).

[2] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2002).

[3] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini,
Colloquium: Non-Markovian dynamics in open quantum sys-
tems, Rev. Mod. Phys. 88, 021002 (2016).

[4] H.-P. Breuer, E.-M. Laine, and J. Piilo, Measure for
the degree of non-Markovian behavior of quantum pro-
cesses in open systems, Phys. Rev. Lett. 103, 210401
(2009).

[5] Á. Rivas, S. F. Huelga, and M. B. Plenio, Entanglement and
non-Markovianity of quantum evolutions, Phys. Rev. Lett. 105,
050403 (2010).

[6] M. J. W. Hall, J. D. Cresser, L. Li, and E. Andersson,
Canonical form of master equations and characterization
of non-Markovianity, Phys. Rev. A 89, 042120
(2014).
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