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Dissipative Dirac matrix spin model in two dimensions
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We generalize the recent work of Shibata and Katsura [Phys. Rev. B 99, 174303 (2019)], who considered a
S = 1

2 chain with alternating XX and YY couplings in the presence of dephasing, the dynamics of which are
described by the GKLS master equation. Their model is equivalent to a non-Hermitian system described by the
Kitaev formulation [Kitaev, Ann. Phys. 321, 2 (2006)] in terms of a single Majorana species hopping on a two-leg
ladder in the presence of a nondynamical Z2 gauge field. Our generalization involves Dirac gamma matrix “spin”
operators on the square lattice and maps onto a non-Hermitian square lattice bilayer which is also Kitaev solvable.
We describe the exponentially many nonequilibrium steady states in this model. We identify how the spin degrees
of freedom can be accounted for in the two-dimensional model in terms of the gauge-invariant quantities and
then proceed to study the Liouvillian spectrum. We use simulated annealing to estimate the Liouvillian gap and
the first decay modes for large system sizes. We observe a transition in the first decay modes, similar to that in the
work of Shibata and Katsura. The results we obtain are compared to the results we obtained from a perturbative
analysis for small and large values of the dissipation strength.
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I. INTRODUCTION

Open quantum systems afford us the opportunity to study
phenomena such as relaxational quantum dynamics for sys-
tems coupled to a bath [1]. Typically this involves “integrating
out” or eliminating in some way the bath degrees of freedom,
resulting in a dynamics for the system itself in terms of its
reduced density matrix: �̇ = L�, where L is the Liouvillian
operator. At long times, the system relaxes to a nonequi-
librium steady state (NESS); the existence of a NESS is
guaranteed by the dynamics, but under special circumstances
owing to, for example, extra conserved quantities, the NESS
may not be unique.

For noninteracting systems, hybridization with the bath
degrees of freedom still results in a solvable (quadratic) model
[2]. For interacting systems, solvable models are rare, and
numerical approaches are challenging. This is especially true
for density matrix evolution since one must keep track of not
just populations |α〉〈α| but also the coherences |α〉〈β| with
α �= β, effectively squaring the size of the problem vis-à-vis
the system’s Hilbert space dimension.

Recently, Shibata and Katsura (SK) [3] described a model
of open system dynamics based on the GKLS master equa-
tion [4] which, though interacting, is solvable in the sense
of Kitaev’s celebrated honeycomb lattice Hamiltonian model
[5]. That is, the evolution of �(t ) under the Liouvillian L
is effectively described by a noninteracting dynamics in the
presence of a static Z2 gauge field. Although in each gauge
sector the evolution is described by a quadratic, albeit non-
Hermitian, Hamiltonian, there are exponentially many gauge
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sectors to evaluate (which in general have no discrete space
group symmetries), and in this sense the general problem is
intractable. For the Hermitian Kitaev model, often the ground
state may be ascertained with help from a remarkable theorem
by Lieb [6], which provides valuable information regarding
much of the gauge-invariant content of the ground state, i.e.,
the Z2 plaquette fluxes. For the non-Hermitian case, however,
we know of no generalization of Lieb’s theorem which con-
strains the gauge-invariant content of, say, the longest-lived
decaying density matrix. Thus, in general one must resort to
numerics if one is interested in the complex spectrum of L.

The Shibata-Katsura construction involves a S = 1
2 chain

where each site is coupled to an environmental bath. Within
the GKLS formalism, this results in an effective two leg ladder
system, where one leg corresponds to the bra states and the
other to the ket states of the density matrix, and the rungs
of the ladder contribute non-Hermitian terms which result
from the effective elimination of the bath degrees of freedom.
The ladder is thus threefold coordinated, and the model is
constructed so that it satisfies the Kitaev solvability criteria
(Sec. II C). Our main goal is to introduce and analyze a gen-
eralization of the SK model to two space dimensions, based
on a 4 × 4 gamma matrix generalization of the Hamiltonian
Kitaev model [7,8]. As the dissipative SK model is described
by non-Hermitian Hamiltonian evolution on the ladder, our
model is described by such an evolution on a square lattice
bilayer. As we shall see, while our model is a direct analog of
the SK model, it also entails some important differences—in
particular, an extensive number of conserved quantities lead-
ing to exponentially many NESS [9].

We first discuss various preliminaries, including the
GLKS master equation, its vectorization and description in
terms of non-Hermitian Hamiltonian evolution on a prod-
uct Hilbert space, the Shibata-Katsura model, gamma matrix
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generalizations of the Kitaev honeycomb model, and finally
our extension of the SK model to a dissipative square lattice
model involving 4 × 4 Dirac matrix “spin” operators.

Recently, two analyses of a largely equivalent model ap-
peared [10,11]. These papers and our work discuss models
with different Hamiltonians and Lindblad operators, although
there are some features common to all three, such as the
behavior of the Liouvillian gap at small and large dissipa-
tion, various conserved quantities, steady states and some
approaches toward understanding other modes of the system.
Our model is solvable in the Kitaev sense in that it is equiva-
lent to a noninteracting non-Hermitian Majorana system in the
presence of a background Z2 gauge field. While the Hamilto-
nian may be diagonalized within each gauge sector, there are
exponentially many such sectors. We perform a limited search
of the gauge sectors using Monte Carlo methods in an effort to
obtain the smallest relaxation rate to the (highly degenerate)
block of nonequilibrium steady states, i.e., the Liouvillian gap.
Due to the local constraints imposed by the parton representa-
tion of the spin operators in terms of Majorana fermions, some
solutions are unphysical in that they violate these constraints.
As noted in Ref. [11], it is as yet unknown how to assess
which solutions are physical from the gauge-invariant data
alone. In the limits of small and large dissipation, we derive
analytical results which can be compared with the numerics.
In addition to the exponentially many gauge sectors, there are
also exponentially many NESS, and we identify all of them in
terms of conserved quantities.

II. PRELIMINARIES

A. The GKLS master equation

An open quantum system S is one which unitarily coe-
volves with an environment E under a Hamiltonian H = HS +
HE + Hint, where Hint couples S and E. The expectation of any
operator O restricted to S is given by 〈O(t )〉 = Tr (�S(t )O),
where �S(t ) is the time-dependent reduced density matrix
of S, i.e., �S(t ) = TrE �U(t ), where �U(t ) is the full density
matrix describing the “universe” U = S ∪ E. Under certain
assumptions, the dynamics of the system’s reduced density
matrix is described by the GKLS master equation [1,4],

d�

dt
= −i[H, �] +

∑
a

(
La � L†

a − 1

2
L†

aLa � − 1

2
� L†

aLa

)
.

(1)
Here and henceforth we drop the subscript S on �S. The {La}
are the Lindblad jump operators, which describe the effects of
the system-environment coupling on � after the environment
is traced out. H is the “Lamb shift Hamiltonian,” which com-
mutes with HS and includes renormalizations of the system’s
unperturbed energy levels resulting from the environmental
couplings. In the absence of all such couplings, we recover
the usual Liouville evolution �̇ = −i[HS, �].

The full GKLS evolution in Eq. (1) is of the form �̇ =
L�. Assuming L is time-independent, one may formally
write �(t ) = exp(Lt )�(0), which defines for each t a map
�t : �(0) �→ �(t ) which possesses the following salient prop-
erties: (i) linearity, (ii) trace-preserving, (iii) Hermiticity
preserving, and (iv) complete positivity [1]. Writing �(t ) =∑

j,k � jk (t ) | j〉〈k| in terms of basis states, we may write �̇ jk =

L jk,lm �lm, where L jk,lm is a supermatrix of dimension N2,
where N is the dimension of the single, i.e., not doubled basis,
and ( jk)/(lm) are composite indices. Generically L is not a
normal matrix, i.e., [L,L†] �= 0, and its eigenvalues �a may
be complex. However, since the evolution is trace preserving,
one has that δ jk is a left eigenvector of L with eigenvalue zero.

The corresponding right eigenvector is the NESS, �NESS
lm . Un-

der special circumstances there may be more than one NESS
[12]. Positivity entails that Re �a � 0 for each eigenvalue of
the Liouvillian L.

When each jump operator is normal (i.e., it commutes with
its Hermitian conjugate), then from Eq. (1) we have that the
infinite temperature state � ∝ 1 is a valid NESS. Furthermore,
if H as well as all the jump operators commute with a set
of independent projectors {Ps} with s ∈ {1, . . . , K}, then any
density matrix of the form

� = c0 1 +
K∑

s=1

cs Ps (2)

is also a valid NESS (subject to normalization). This shall be
the case for the model we investigate below. Thus we shall de-
scribe a system where there is relaxation to a degenerate block
of NESS. While such solutions to GKLS depend on the form
of H and the jump operators {La}, they are independent of the
various coupling constants (so long as they remain finite), and
we shall consider them all to be infinite temperature states.

B. Equivalent non-Hermitian Hamiltonian

Any density matrix � = ∑
m,n �mn | m 〉 〈 n | may be repre-

sented in vector form as

� −→ | � 〉 ≡
∑
m,n

�mn | m 〉 ⊗ | n 〉. (3)

Thus, the bra vector 〈 n | is replaced by the corresponding ket
vector | n 〉, i.e., | m 〉〈 n | → | m 〉 ⊗ | n 〉. If B is any operator,
then under vectorization, then we have

〈 n | B =
∑

k

〈 n | B | k 〉〈 k |

−→
∑

k

| k 〉〈 k | BT | n 〉 = BT | n 〉.
(4)

The GKLS master equation [Eq. (1)] then takes the vectorized
form

i
d

dt
| � 〉 = W | � 〉, (5)

where [13]

W = H ⊗ 1 − 1 ⊗ H T

+ i
∑

r

(
Lr ⊗ L∗

r − 1

2
L†

r Lr ⊗ 1 − 1 ⊗ 1

2
LT

r L∗
r

)
. (6)

Note that operators O acting on the | n 〉 component of the
product | m 〉 ⊗ | n 〉 appear as transposes OT, since they would
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FIG. 1. The Shibata-Katsura ladder (see text for description).

normally act to the left on 〈 n |. Equation (5) takes the form
of an effective Schrödinger equation, with | �(t ) 〉 evolving
according to the non-Hermitian effective Hamiltonian W act-
ing on a doubled Hilbert space. For any operator O, we may
compute the trace in the vectorized representation according
to

Tr(O�) = 〈 I |O ⊗ 1 | � 〉, (7)

where 〈 I | = ∑
n 〈 n | ⊗ 〈 n |. The eigenvalues of W , which we

denote by {Ea}, are related to those of the Liouvillian by Ea =
−i�a.

C. Shibata-Katsura model

The SK model [3] describes a dissipative S = 1
2 chain. The

Hamiltonian is

H =
∑

n

(Jx X2n−1X2n + Jy Y2nY2n+1) (8)

and the jump operators are Ln = √
γ Zn, with γ > 0. Thus,

we have

W (γ ) =
Nc∑

n=1

(Jx X2n−1X2n + Jy Y2nY2n+1 − Jx X̃2n−1X̃2n

− Jy Ỹ2nỸ2n+1) + iγ
N∑

j=1

(ZjZ̃ j − 1), (9)

where the (X,Y, Z ) operators act on the first Hilbert space and
(X̃ , Ỹ , Z̃ ) act on the copy. The system is depicted in Fig. 1
and corresponds to a non-Hermitian two-leg ladder. Nc is the
number of unit cells, and there are N = 2Nc sites on each
leg of the ladder. Note that W∗(γ ) = W (−γ ), and that if we
define R as the reflection operator mapping one leg into the
other, i.e., (Xj,Yj, Zj ) ↔ (X̃ j, Ỹj, Z̃ j ) for all j, then

RW (γ )R = −W (−γ ) = −W∗(γ ). (10)

This establishes that the eigenvalues of W (γ ) come in pairs
�±

a = ±Ea + i	a. Total positivity requires that Im (	a) � 0.
Any NESS �NESS satisfies W (γ ) | �NESS 〉 = 0.

Introducing on each site four Majorana fermions θ0,1,2,3

and expressing the Pauli matrices therefrom,

Xj = iθ0
j θ

1
j , Yj = iθ0

j θ
2
j , Zj = iθ0

j θ
3
j , (11)

with corresponding expression for (X̃ j, Ỹj, Z̃ j ), one may ex-
press W (γ ) as

W (γ ) =
Nc∑

n=1

{
iJx

[
μx

2n−1θ
0
2n−1θ

0
2n − μ̃x

j θ̃
0
2n−1θ̃

0
2n

]
+ iJy

[
μ

y
2nθ

0
2nθ

0
2n+1 − μ̃

y
2nθ̃

0
2nθ̃

0
2n+1

]}
− γ

N∑
j=1

μz
jθ

0
j θ̃

0
j − 2iγ Nc, (12)

where

μx
2n−1 = −iθ1

2n−1θ
1
2n, μ̃x

2n−1 = iθ̃1
2n−1θ̃

1
2n,

μ
y
2n = −iθ2

2nθ
2
2n+1, μ̃

y
2n = −iθ̃2

2nθ̃
2
2n+1, μz

j = −iθ3
j θ̃

3
j ,

(13)

are Z2 gauge fields on the links of the two leg ladder in Fig. 1.
These gauge fields commute with each other and with the θ0

hopping terms, as well as with the constraints

� j ≡ θ0
j θ

1
j θ

2
j θ

3
j = +1, �̃ j ≡ θ̃0

j θ̃
1
j θ̃

2
j θ̃

3
j = +1, (14)

which must be imposed at each site in order to guaran-
tee XY = iZ . This is the magic of the Kitaev honeycomb
lattice model, where the link lattice is also tripartite: The
Hamiltonian corresponds to a single species (θ0) of Majo-
rana fermion hopping in the presence of a nondynamical Z2
gauge field. The gauge-invariant content of the theory is con-
tained in the plaquette fluxes �2n−1 = μx

2n−1μ
z
2nμ̃

x
2n−1μ

z
2n−1

and �2n = μ
y
2nμ

z
2n+1μ̃

y
2nμ

z
2n and in the Wilson phases Q =∏N

j=1 Zj and Q̃ = ∏N
j=1 Z̃ j . With periodic boundary condi-

tions, QQ̃ = ∏N
j=1 � j .

III. DIRAC MATRIX SK MODEL

A. Gamma matrix Kitaev models

A Clifford algebra is defined by the anticommutation
relations,

{	a, 	b} = 2δab a, b ∈ {1, . . . , n}. (15)

When n = 2k, a representation of the algebra can be con-
structed by tensor products of k Pauli matrices, viz.,

	1 = X ⊗ 1 ⊗ · · · ⊗ 1 	2k−1 = Z ⊗ Z ⊗ · · · ⊗ X

	2 = Y ⊗ 1 ⊗ · · · ⊗ 1 	2k = Z ⊗ Z ⊗ · · · ⊗ Y (16)

	3 = Z ⊗ X ⊗ · · · ⊗ 1 	2k+1 = Z ⊗ Z ⊗ · · · ⊗ Z.

The gamma matrices defined above are all Hermitian. In even
dimensions, we define

	2k+1 = (−i)k 	1 	2 · · · 	2k . (17)

Introducing 2k + 2 Majorana fermions θa with indices a ∈
{0, . . . , 2k + 1} satisfying {θa, θb} = 2δab, we define 	μ =
iθ0θμ with μ > 0. Analogously to the constraint θ0θ1θ2θ3 =
1 when k = 1, we demand

θ0 θ1 · · · θ2k+1 = ik−1. (18)

The case k = 1 yields the 2 × 2 Pauli matrices, with 	1 =
X , 	2 = Y , and 	3 = −i 	1	2 = Z . The case k = 2 yields
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FIG. 2. Square lattice Dirac matrix Shibata-Katsura model. See
description in Sec. III B.

the 4 × 4 Dirac matrices, with 	5 = −	1	2	3	4. For general
k this yields 2k + 1 matrices of rank 2k . One can then form
	μν = i	μ	ν = iθμθν of which there are

(2k+1
2

)
independent

representatives (take μ < ν), and next 	μνρ = −i	μ	ν	ρ =
θ0θμθνθρ and 	μ	ν	ρ	σ = θμθνθρθσ , which yield

(2k+1
3

)
and

(2k+1
4

)
independent terms, respectively. Proceeding thusly,

one obtains at level k a basis of 4k Hermitian matrices of rank
2k .

Analogs of Kitaev’s honeycomb lattice model using these
higher-level Clifford algebras have been considered, inter
alia in Refs. [7,8], with interactions 	

μ
i 	

μ
j along the links.

When the underlying lattice is such that each site lies at the
confluence of 2k + 1 distinctly labeled μ links, the “spin”
Hamiltonian is again expressible as a single species (θ0) Ma-
jorana fermion hopping in the presence of a static Z2 gauge
field. Other generalizations, in which multiple species of Ma-
joranas hop in the same Z2 static gauge field and hybridize as
well have also been constructed [7,14].

B. Dirac matrix SK model

We generalize the SK model to a dissipative 	-matrix
model defined on the square lattice, as depicted in Fig. 2. We
regard the square lattice as bipartite, with elementary direct
lattice vectors a1,2 = x̂ ± ŷ. Our Hamiltonian is

H =
∑

R

(
J1 	1

R 	1
R+x̂ + J2 	2

R 	2
R+ŷ

+ J3 	3
R 	3

R−x̂ + J4 	4
R 	4

R−ŷ

)
, (19)

where R = n1a1 + n2a2 with n1,2 ∈ Z are the A sublattice
sites, which are Nc in number. We use the symbol r to denote
a site which may be in either sublattice. Thus, on each site of

FIG. 3. At each A sublattice site in the bottom layer, the gauge
field uδ

R points along the nearest-neighbor vector δ toward a neigh-
boring B sublattice site. A corresponding convention pertains for the
ũδ

R gauge fields in the top layer.

the square lattice, a four-dimensional Hilbert space is acted
on by operators 1r, 	

μ
r , and 	

μν
r , where 	μ are 4 × 4 Dirac

matrices, with μ ∈ {1, . . . , 5}.
Following SK, we take the Lindblad jump operators to

be Lr = √
γ 	5

r at each site. The GKLS master equation can
then be written as a non-Hermitian Hamiltonian evolution of a
model on a square lattice bilayer, with each layer correspond-
ing to one copy of the Hilbert space. This Hamiltonian is

W ({Jδ}, γ ) =
∑
R∈A

4∑
δ=1

Jδ

(
iuδ

R θ0
R θ0

R+δ − iũδ
R θ̃0

R θ̃0
R+δ

)
− γ

∑
r∈A,B

u5
r θ0

r θ̃0
r − 2iγ Nc, (20)

where δ ∈ {x̂, ŷ,−x̂,−ŷ} for δ ∈ {1, 2, 3, 4}, respectively, and
where (see Fig. 3)

uδ
R = −iθδ

Rθδ
R+δ, ũδ

R = −iθ̃ δ
Rθ̃ δ

R+δ, u5
r = −iθ5

r θ̃5
r , (21)

are the nondynamical gauge fields in the bottom, top, and be-
tween layer regions. There are 5N such gauge fields, but as we
shall see the number of gauge-invariant quantities is 3N + 1,
i.e., there are 23N+1 gauge sectors, where N is the total number
of sites in either layer. Similar considerations which led to
Eq. (10) in the SK model hold for our model as well, hence the
eigenvalues of W (γ ) come in pairs �±

a = ±Ea + i	a, with
Im (	a) � 0.

1. Conserved quantities

For the original SK model, the product Q = Z1 · · · ZN is
conserved as it commutes with H and with each of the jump
operators

√
γ Zj . This means that both 1 and Q are annihilated
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by the Liouvillian L, and that both

�± = 2−N (1 ± Q) (22)

are thus valid NESS, for all γ [3].
For our model of Eq. (20), there are vastly more con-

served quantities. With periodic boundary conditions along
both axes, there are N + 1 gauge-invariant quantities, which
are the N plaquette fluxes (see Fig. 2),

�r ≡
{−	21

r 	14
r+x̂ 	43

r+x̂+ŷ 	32
r+ŷ if r ∈ A

−	43
r 	32

r+x̂ 	21
r+x̂+ŷ 	14

r+ŷ if r ∈ B
, (23)

where the Z2 flux in plaquette r is labeled by the lower left
site of the plaquette [15]. Note that the product

∏
r �r = 1,

and hence there are N − 1 independent Z2 plaquette fluxes.
In addition, we have the two Wilson phases,

Wx = −	13
1,1 	31

2,1 · · · 	13
Nx−1,1 	31

Nx,1

Wy = −	24
1,1 	42

1,2 · · · 	24
1,Ny−1 	42

1,Ny
,

(24)

where both Nx and Ny are taken to be even, and with the
total number of sites N ≡ NxNy. (Note that 	31 = −	13 and
	42 = −	23; we choose to write the Wilson phases as above
because the repetition of consecutive 	-matrix indices is a
useful mnemonic.) One can readily check that �r commutes
with both H and with all the jump operators. In addition,
the operator Q = ∏

r 	5
r also commutes with the Hamiltonian

and with all of the jump operators. However, if we examine
the product of the Z2 fluxes over the A plaquettes alone,
i.e., over those plaquettes with an A site in their lower left
corner, then from 	43	21 = −	1	2	3	4 = 	5, we conclude
that

∏
R∈A φR = ∏

r 	5
r = Q, and therefore Q is not an inde-

pendent conserved quantity. Finally, as the jump operators are
all normal, according to Eq. 2 we have a 2N+1-dimensional
subspace of T = ∞ nonequilibrium steady states, since there
are 2N+1 projectors,

�ηx,ηy,{ηr} ≡
(

1 + ηxWx

2

)(
1 + ηyWy

2

)∏
r

′
(

1 + ηrφr

2

)
,

(25)

labeled by ηx, ηy, and {ηr}, each taking the value ±1, which
commute with H and with all the jump operators Lr. The
prime on the product indicates that the final plaquette with
r = (Nx, Ny) is omitted. The total number of unnormalized
density matrices is (42)N = 16N . That is, any density matrix
of the form

� =
∑
ηx

∑
ηy

∑
{ηr}

Cηx,ηy,{ηr}�ηx,ηy,{ηr} (26)

with Tr � = ∑
ηx

∑
ηy

∑
{ηr} Cηx,ηy,{ηr} = 1 and each Cηx,ηy,{ηr}

� 0 is a valid NESS.

C. Analysis

We define a complex fermion living along each link be-
tween planes of the bilayer, viz.,

cr = 1
2

(
θ0

r + iθ̃0
r

)
, c†

r = 1
2

(
θ0

r − iθ̃0
r

)
, (27)

and thus

θ0
r = c†

r + cr, θ̃0
r = i(c†

r − cr). (28)

FIG. 4. Associated with each A sublattice site in the bottom layer
are eight square plaquette fluxes: �±

R , �̃±
R (not shown), �±

R , and �±
R .

The non-Hermitian Hamiltonian of Eq. (20) is then expressed
in terms of these complex fermions as

W =
∑
R∈A

4∑
δ=1

{
iJδ

(
uδ

R − ũδ
R

)
(c†

RcR+δ
+ c†

R+δ
cR)

+ iJδ

(
uδ

R + ũδ
R

)
(c†

Rc†
R+δ

− cR+δ
cR)
}

+ iγ
∑

r∈A,B

u5
r (2c†

r cr − 1) − 2iNcγ . (29)

D. Counting degrees of freedom

Associated with each A sublattice site in the bottom layer
are eight square plaquette Z2 fluxes (see Fig. 4). These fall
into three groups. First are the fluxes through the (x, y) pla-
quettes. For the bottom layer we have

�+
R = u1

R u4
R+a2

u3
R+a2

u2
R = −	21

R 	14
R+x̂ 	43

R+a2
	32

R+ŷ

�−
R = u4

R u3
R+a1

u2
R+a1

u1
R = −	14

R 	43
R−ŷ 	32

R+a1
	21

R+x̂, (30)

with corresponding expressions involving �̃±
R , 	̃r, and ũδ

R in
the top layer. Next, the (x, z) plaquette fluxes �±

R ,

�+
R = u1

R u5
R+x̂ũ1

R u5
R = −	51

R 	15
R+x̂ 	̃51

R+x̂ 	̃15
R

�−
R = u5

R ũ3
R u5

R−x̂u3
R = −	35

R 	53
R 	̃35

R−x̂ 	̃53
R−x̂. (31)
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Finally, the (y, z) plaquette fluxes �±
R are given by

�+
R = u2

R u5
R+ŷũ2

R u5
R = −	52

R 	25
R+ŷ 	̃52

R+ŷ 	̃25
R

�−
R = u5

R ũ4
R u5

R−ŷu4
R = −	45

R 	̃54
R 	̃45

R−ŷ 	54
R−ŷ. (32)

There are also the Wilson phases,

Wx = u1
1,1

(− u3
3,1

)
u1

3,1

(− u3
5,1

) · · · u1
Nx−1,1

(− u3
1,1

)
= −	13

1,1 	31
2,1 · · · 	31

Nx,1

Wy = u2
1,1

(− u4
1,3

)
u2

1,3

(− u4
1,5

) · · · u2
1,Ny−1

(− u4
1,1

)
= 	24

1,1 	42
1,2 · · · 	42

1,Ny
,

(33)

again with corresponding expressions for W̃x and W̃y. At this
point it appears that we have 4N + 4 gauge-invariant Z2 de-
grees of freedom. However, the total flux through each of
the N cubes must be trivial, providing N constraints. There
is an additional constraint

∏
R �+

R �−
R = 1 due to periodic

boundary conditions; the corresponding expression in the top
layer does not yield new information given the condition on
each of the cubes. Finally, there are two constraints relating
the products of the Wilson phases in each of the layers to
the � and � plaquette fluxes [see Eq. (41) below]. Thus,
there are N + 3 independent constraints, and therefore 3N + 1
independent gauge-invariant configurations of the fluxes and
Wilson phases. We must also acknowledge the constraints
imposed by the projectors which enforce �r = �̃r = 1, with
�r = θ0

r θ1
r θ2

r θ3
r θ4

r θ5
r = −i. Taking the product over all sites,

we obtain [7]∏
r

iθ0
r θ̃0

r ×
∏
R,δ

uδ
Rũδ

R ×
∏

r

u5
r = 1. (34)

This expression includes a product over all the itinerant
fermion parities 2c†

r cr − 1 as well as over each of the 5NZ2
gauge fields which reside on the links of the bilayer structure.
It thereby constrains the parity of the c-fermions, which are
constructed from θ0 and θ̃0 on each of the interplane links.
Thus rather than N freedoms for the dynamical fermion states,
there are N − 1, and the total number of states in our doubled
Hilbert space is 23N+1 × 2N−1 = 16N , which is the correct
number of density matrices for an N-site system described by
4 × 4 gamma matrices [16].

E. Choosing a gauge

Given the 3N + 1 independent plaquette fluxes and Wilson
phases, how can we pick a gauge? Let us first consider the
planar fluxes �±

R in the bottom layer and the sketch in Fig. 5.
The coordinates of the A sublattice site in the lower left corner
are r = (x, y) = (1, 1). The Wilson phase fluxes are defined to
be u1

1,1 ≡ Wx and u4
1,1 ≡ −Wy. We then define the remaining

unassigned gauge fields as follows:

u3
2,2 = �+

1,1 u1
1,1 u1

2,2 = �−
2,2

u1
1,3 = �−

1,3 u3
2,2 u3

3,3 = �+
2,2 u1

2,2 . . .

u1
1,Ny−1 = �−

1,Ny−1 u3
2,Ny−2 u3

3,Ny−1 = �+
2,Ny−2 u1

2,Ny−2

u3
2,Ny

= �+
1,Ny−1 u1

1,Ny−1 u1
2,N1

= �−
2,Ny

u3
3,Ny−1

u2
2,Ny

= �−
1,1 u4

1,1 u3
2,Ny

u4
3,1 = �−

2,Ny
u1

2,Ny
u2

2,Ny

FIG. 5. Labels of the unit cells �±
R . The black arrows indicate

uδ
R = +1 in the direction of the arrow. There are N + 1 colored

arrows, which are determined by the N − 1 independent plaquette
fluxes and the two Wilson loops. A corresponding assignment per-
tains to the upper layer with fluxes �̃±

R and gauge fields ũδ
R. Dotted

lines indicate periodicity boundaries.

and

u3
4,2 = �+

3,1 u1
Nx,2 = �−

Nx,2

u1
3,3 = �−

3,3 u3
4,2 u3

1,3 = �+
Nx,2

u1
Nx,2

u3
4,4 = �+

3,3 u1
3,3 u1

Nx,4 = �−
Nx,4

u3
1,3 . . .

u1
3,Ny−1 = �−

3,Ny−1 u3
4,Ny−2 u3

1,Ny−1 = �+
Nx,Ny−2 u1

Nx,Ny−2

u3
4,Ny

= �+
3,Ny−1 u1

3,Ny−1 u1
Nx,Ny

= �−
Nx,Ny

u3
1,Ny−1

u4
3,1 = �+

2,Ny
u3

2,Ny
u1

2,Ny
u4

1,1 = −Wy. (35)

Thus, we can iteratively obtain all the unassigned Z2 gauge
fields uδ

R from the plaquette phases and the Wilson phases.
Again, corresponding expressions hold in the upper layer for
the quantities {ũδ

R,�±
R ,W̃x,W̃y}.

Next, we consider the u5
R gauge fields and the plaquette

fluxes {�±
R ,�±

R }. From Eq. (30) we may iteratively determine
the values of the u5

m,k for odd values of k given the value u5
1,k ≡

1:

u5
2,k = u1

1,k ũ1
1,k �+

1,k · u5
1,k

u5
3,k = u3

3,k ũ3
3,k �−

3,k · u5
2,k

u5
4,k = u1

3,k ũ1
3,k �+

3,k · u5
3,k . . .

u5
Nx,k = u1

Nx−1,k ũ1
Nx−1,k �+

Nx−1,k · u5
Nx−1,k

u5
1,k = u1

1,k ũ1
1,k �−

1,k · u5
Nx,k . (36)
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For even values of k, we have

u5
2,k = u3

2,k ũ3
2,k �−

2,k · u5
1,k

u5
3,k = u1

2,k ũ1
2,k �+

2,k · u5
2,k

u5
4,k = u3

4,k ũ3
4,k �−

4,k · u5
3,k . . .

u5
Nx,k = u3

Nx,k ũ3
Nx,k �−

Nx,k
· u5

Nx−1,k

u5
1,k = u1

Nx,k ũ1
Nx,k �+

Nx,k
· u5

Nx,k . (37)

To obtain u5
1,k+1 from u5

1,k , we use the relations

u5
1,2n = u2

1,2n−1 ũ2
1,2n−1 �+

1,2n−1 · u5
1,2n−1

u5
1,2n+1 = u4

1,2n ũ4
1,2n �−

1,2n+1 · u5
1,2n.

(38)

Equations (36), (37), and (38) entail the relations

Nx∏
j=1

(k odd)

�−
j,k �+

j,k =
Nx/2∏
m=1

u1
2m−1,k u3

2m−1,k ũ1
2m−1,k ũ3

2m−1,k

Nx∏
j=1

(k even)

�−
j,k �+

j,k =
Nx/2∏
m=1

u1
2m,k u3

2m,k ũ1
2m,k ũ3

2m,k, (39)

for k odd and even, respectively, as well as

Ny∏
k=1

( j odd)

�−
j,k �+

j,k =
Ny/2∏
n=1

u2
j,2n−1 u4

j,2n−1 ũ2
j,2n−1 ũ4

j,2n−1

Ny∏
k=1

( j even)

�−
j,k �+

j,k =
Ny/2∏
n=1

u2
j,2n u4

j,2n ũ2
j,2n ũ4

j,2n, (40)

for j odd and even, respectively. Restricting to the cases j = 1
and k = 1, we can relate these products to the Wilson phases
in Eq. (33), viz.,

Ny∏
k=1

�−
1,k �+

1,k = WxW̃x

Nx∏
j=1

�−
j,1 �+

j,1 = WyW̃y.

(41)

We showed previously in Sec. III D that, considering all
the Z2 gauge degrees of freedom, we have a total of 3N + 1
independent plaquette fluxes and Wilson phases. In each layer,
there are N + 1 free gauge fields uδ

R, as depicted in Fig. 5.
Between the layers, there are N − 1 free gauge fields u5

r , with
u5

1,1 ≡ 1. Thus, our gauge assignment accounts for all the
independent gauge-invariant quantities.

F. Counting the NESS

Referring to Eq. (29), in order to obtain an eigenvalue of
zero, we must have each u5

r = +1 and c†
r cr = 1. [The case

u5
r = −1 for all r is impossible since we have, without loss of

generality (i.e., up to a gauge transformation), set u5
1,1 ≡ 1.]

We then must eliminate the BCS pairing terms, which would
allow for the simultaneous annihilation of two neighboring
c-fermions. This is accomplished by setting uδ

R + ũδ
R = 0 for

all R and δ. While this may seem inconsistent with the assign-
ment of the fixed gauge fields (black arrows) in the two layers
as depicted in Fig. 5, in fact we are free to redefine ũδ

R → −ũδ
R

for the purposes of counting the NESS. Thus, there are a total
of N + 1 independent values of the planar (δ ∈ {1, 2, 3, 4})
gauge fields associated with the NESS block, and therefore
2N+1 degenerate NESS.

It can be seen that for these NESS �+
R = �̃+

R and �−
R =

�̃−
R , as well as �+

R = �−
R = −1 and �+

R = �−
R = −1, for all

R. Since
∏

R �+
R �−

R = 1, this accounts for N − 1 freedoms
associated with the plaquette fluxes. The Wilson phases Wx

and Wy are also free [but W̃x and W̃y are then fixed by Eq. (41)],
and so again we see that there are 2N+1 NESS.

We numerically verified this counting for the case Nx =
Ny = 2 (N = 4) by choosing the Jδ couplings to be all dif-
ferent. However, when J1 = J2 = J3 = J4 there is an enlarged
translational symmetry, and we find a degeneracy of 162
(see Appendix A for details on constraints and our under-
standing of their implementations in the calculations) rather
than 2N+1 = 32. We also find that these additional degener-
ate states do not satisfy the flux conditions described in the
previous paragraph.

IV. COMPUTATIONAL RESULTS

To calculate the spectrum within a given gauge sector,
we use Prosen’s method for complex antisymmetric matri-
ces [2]. Implementing the field assignments mentioned in
section III E, we calculate the Liouvillian gap g to the small-
est relaxation rate, i.e., the negative of the real part of the
eigenvalues of L, by searching over all the sectors of the L
corresponding to the different plaquette flux and Wilson phase
configurations, for the case Nx = Ny = 2. For this system
there are N = 4 sites and thus 216 (unnormalized) density
matrices. We perform calculations to identify two classes
of gaps—one corresponding to an even sum of occupation
numbers and one corresponding to an odd sum of occupation
numbers in Prosen’s Bogoliubov transformation, which we
henceforth refer to as f parity (see Appendix A). We find
that the gap corresponding to the even sum is smaller than the
gap corresponding to the odd sum. We observe a transition
in the first decay modes for the case with the even sum. The
plot showing g as a function of γ for J1 = J2 = J3 = J4 = 1 is
shown in Fig. 6 (even sum) and Fig. 7 (odd sum). The gauge-
invariant quantities corresponding to the first decay modes for
the even sum calculation are shown in Figs. 8 and 9.

The results obtained from Nx = Ny = 2 system could be
subject to finite-size effects. Hence we proceed to estimate the
gap for higher system sizes, using other methods to optimize
for the gap since it is computationally intensive to examine all
23N+1 of the gauge sectors. We first tried looking at all con-
figurations with a fixed number Nv of Z2 defects—plaquettes
and Wilson phases whose values are reversed relative to a
given NESS configuration. (A reversed-flux plaquette is a Z2
vortex.) There being Ng = 3N + 1 gauge degrees of freedom,

the number of such configurations
(Ng

Nv

)
rapidly becomes com-

putationally unwieldy with growing Ng and Nv . We searched
exhaustively for the smallest nonzero relaxation rates for up
to Nv = 4 total Z2 defects for Nx = Ny = 4 and only up to
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FIG. 6. Liouvillian gap g versus dissipator strength γ in the
two-dimensional generalized SK model with periodic boundary con-
ditions for Nx = Ny = 2 and all Jδ = 1. The f parity is fixed to be
even. There is a transition in the first decay modes at the cusp seen at
γ = γc(2, 2), depicted by the blue vertical line.

Nv = 2 for Nx = Ny = 6 relative to a particular NESS (one
with all gauge-invariant Z2 data set to −1). We also performed
Monte Carlo searches using both simulated annealing (SA)
and a genetic algorithm (GA) capable of finding states with
arbitrary numbers of defects. These both yielded similar re-
sults, and below we show data only for simulated annealing
computations when comparing with the Nv-limited searches.

Some details regarding SA and the GA are provided in
Sec. C below. We found the results obtained from SA to
be satisfactory both in terms of convergence of the longest
nonzero relaxation rate g as well as the computational run
time for systems up to size 6 × 6 (2144 density matrices). We
cannot estimate the full spectrum of first decay modes through
this method, i.e., enumerating all their degeneracies as in the
2 × 2 case, or claim that it is definitively the first decay mode,
however. The results obtained by taking the minimum value

FIG. 7. Liouvillian gap g versus dissipator strength γ in the
two-dimensional generalized SK model with periodic boundary con-
ditions for Nx = Ny = 2 and all Jδ = 1. The f parity is fixed to be
odd. We observe a change in the number of first decay modes at the
following values of γ : 1.31, 1.61, 2.66, and 3.26.

FIG. 8. A first decay mode of the two-dimensional generalized
SK model with periodic boundary conditions for Nx = Ny = 2 and
J1 = J2 = J3 = J4 = 1 corresponding to the “phase” where γ �
γc(2, 2). For the mode shown in this figure, we have Wx = 1, Wy =
−1, W̃x = −1, W̃y = −1. There are 15 other configurations of the flux
plaquettes and Wilson phases corresponding to the same eigenvalue
as the first decay mode shown here.

from different runs (see Sec. C) of SA are shown in Fig. 10
and Fig. 11. The result for Nx = Ny = 6 is subject to more
error since we used a fewer number of runs than in the 4 × 4
case. This estimate can be improved by using the decay modes
obtained from SA.

To obtain better estimates, we collect the best config-
urations (i.e., those with the lowest relaxation rates) from

FIG. 9. A first decay mode of the two-dimensional generalized
SK model with periodic boundary conditions for Nx = Ny = 2 and
J1 = J2 = J3 = J4 = 1 corresponding to the “phase” where γ �
γc(2, 2). For the mode shown in this figure, we have Wx = 1, Wy =
−1, W̃x = 1, W̃y = −1. There are 79 other configurations of the flux
plaquettes and Wilson phases corresponding to the same eigenvalue
as the first decay mode shown here.

022212-8



DISSIPATIVE DIRAC MATRIX SPIN MODEL IN … PHYSICAL REVIEW A 109, 022212 (2024)

FIG. 10. Liouvillian gap, g, versus γ obtained over different runs
of simulated annealing (all Jδ = 1) for 4 × 4 and 6 × 6 system sizes
and even f parity. We used α = 10, T0 = 100 and a cycle consisted
of 20 time steps. The number of runs was 10 for 4 × 4 and 5 for
6 × 6. Some data points that are present at greater values of g are not
shown in this cropped plot to focus on the features near the cusps in
the plot.

different SA runs, and for different values of γ . We then use
this set of field configurations as our pool to be tried for each
value of γ in order to obtain an estimate of the minimum
gap, g, by optimizing the relaxation rate gap with respect to
allowed configurations. This yields the curves in Figs. 12–14.
We do this only for even f -parity states, where the behavior
corresponds to our analytical results from Sec. B at small and
large γ . For the system sizes we have examined, the g(γ )
curves all exhibit a linear behavior at small γ , crossing over
to a 1/γ behavior at large γ , as found by SK for their model
[3]. While the gauge configurations obtained in this manner
can vary from one γ value to the next, we found that the
curves are largely unchanged by partitioning the γ line into
three regimes, each of which is governed by a particular con-
figuration of the gauge-invariant quantities [17] Note also the
relatively small difference between the 4 × 4 and 6 × 6 results
[18]. Among the configurations obtained in the different runs

FIG. 11. Liouvillian gap, g, versus γ obtained over different runs
of simulated annealing (all Jδ = 1) for 4 × 4 and 6 × 6 system sizes
and odd f parity. We used α = 10, T0 = 100 and a cycle consisted of
20 time steps. The number of runs was 10 for 4 × 4 and 5 for 6 × 6.

FIG. 12. Simulated annealing results for all Jδ = 1 and even f
parity (see text for fuller description).

of simulated annealing, we tried to locate configurations that
were closest to the predictions of the perturbative analysis in
Appendix B. We used those modes to generate the correspond-
ing behavior (i.e., the gap) at small and large γ . The results are
shown in Fig. 15 and Fig. 16. These or some other degenerate
modes could correspond to the eigenvalues obtained in the
perturbative analysis.

SK found a sharp transition in the first decay modes
between two regimes of dissipation strength, regardless of
system size. (SK examined their model with open boundaries,
but we have confirmed this result when periodic boundary
conditions are applied to their model as well.) We cannot
conclude whether or not this is the case for our model, but
the intermediate regime we find could result from a failure
of simulated annealing to reach the block of true first decay
modes. We then try to investigate the gaps by fixing the
number of vortices. This is addressed in Appendix E.

From simulated annealing, the optimal flux configurations
for the lowest nonzero decay typically contain many defects.
We list some of these configurations in the Appendix Sec. D
below. For example, for the 4 × 4 system with all Jδ = 1, the
optimal excited state we obtained had 11 defects relative to
the fiducial NESS with all Z2 data set to −1. However, since

FIG. 13. Behavior at small γ for the largest system size we used
in our calculations (6 × 6), with all Jδ = 1. We obtained this curve
by using the first decay modes we used to explain the small γ regime
in Fig. 12.
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FIG. 14. Behavior at large γ for the largest system size we used
in our calculations (6 × 6), with all Jδ = 1. We obtained this curve
by using the first decay modes we used to explain the large γ regime
in Fig. 12.

we start the SA from a configuration of random Z2 data, it
may well be that a configuration with 11 defects with respect
to a particular NESS might be described by fewer defects
with respect to a different state in the 23N+1-fold block of
NESS. Our understanding of the minimal defect content of
the degenerate excited states is very limited. An attempt to
identify trends in this regard is shown in Appendix E where
we study how the gap changes with number of vortices.

We try fitting the g(γ ) curves to identify their behavior
for small and large values of the dissipation strength γ (see
Figs. 13 and 14). The shape of the g(γ ) curves is similar to that
found by Shibata and Katsura [3], rising linearly from zero at
small γ and decaying as 1/γ for large γ . In the Appendix B,
we provide analytical support for these behaviors.

We also investigate the behavior of the gap for the case
(J1, J2, J3, J4) = (3, 4, 1, 2), which breaks certain discrete
translation and rotation symmetries present in the model when

FIG. 15. Choosing a mode that behaves like g ≈ 4γ at small
γ for the largest system size we used in our calculations (6 × 6),
with all Jδ = 1. We depict the flux configuration corresponding to
this mode by mentioning, relative to the NESS (in which all gauge-
invariant Z2 data is −1), where the +1 “defects” (i.e., gauge invariant
quantities) exist: �+

3,1, �+
5,1, �−

6,2, �−
1,3, �−

3,3, �+
4,2, �−

5,3, �+
3,3, �−

4,4,
�−

6,4, �−
1,5, �−

3,5, �+
4,4, �−

5,5, �+
3,5, �−

1,1, �−
3,1, �+

6,6, �+
1,1, �+

5,3, �−
5,5,

�−
1,1, �+

1,1, �−
1,1, �+

4,4, �−
6,4, Wx , and Wy.

FIG. 16. Choosing a mode that behaves like g ≈ 2/γ at large
γ for the largest system size we used in our calculations (6 × 6),
with all Jδ = 1. We depict the flux configuration corresponding to
this mode by mentioning, relative to the NESS (in which all gauge-
invariant Z2 data is −1), where the +1 “defects” (i.e., gauge invariant
quantities) exist: �+

1,1, �−
2,2, �+

3,1, �−
4,2, �−

6,2, �−
3,3, �+

4,2, �−
5,3, �+

1,3,
�−

2,4, �+
3,3, �−

4,4, �+
5,3, �−

6,4, �+
4,4, �+

1,5, �−
2,6, �−

4,6, �−
1,1, �+

4,6, �−
5,1,

�+
6,6, �+

6,4, �−
6,4, Wx , and Wy.

all Jδ are equal. The results are shown in Figs. 17 and 18 for a
2 × 2 system. The study of this for larger system sizes and a
comparison to the Jδ = 1 case is provided in Appendix E.

V. CONCLUSIONS

In this paper we have described a two-dimensional square
lattice model of interacting gamma matrix “spins” coupled
to a dissipative environment. The density matrix evolution is
described by the GKLS master equation �̇ = L�, where L is
the Liouvillian, which in general has complex eigenvalues �a.
This description is equivalent to Schrödinger evolution under
a non-Hermitian Hamiltonian W on a square lattice bilayer,
whose eigenvalues are Ea = −i�a. Our model is inspired by,
and a generalization of, the dissipative one-dimensional Pauli
matrix spin model of Shibata and Katsura [3]. It is in the

FIG. 17. Liouvillian gap g as a function of γ for our model with
periodic boundary conditions for Nx = Ny = 2 and (J1, J2, J3, J4) =
(3, 4, 1, 2), and with even f parity. There is a transition in the first
decay modes at the cusp seen at γ = γc(2, 2), depicted by the blue
vertical line. We see a transition in the first decay modes. We have
two first decay modes for γ < γc(2, 2) and eight first decay modes
for γ � γc(2, 2).
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FIG. 18. Liouvillian gap g as a function of γ for our model with
periodic boundary conditions for Nx = Ny = 2 and (J1, J2, J3, J4) =
(3, 4, 1, 2), and with odd f parity. Unlike the even f -parity case,
there is no cusp in the plot. We observe changes in the number of
first decay modes at several values of γ .

“solvable” class of models exemplified by Kitaev’s celebrated
honeycomb lattice model [5], equivalent to a single species of
Majorana fermion hopping in a nondynamical Z2 background
gauge field. It is solvable in the sense that for any given con-
figuration of the gauge-invariant plaquette fluxes and Wilson
phases, the non-Hermitian Hamiltonian W is quadratic and
solvable by Prosen’s method [2]. However, there are expo-
nentially many such configurations, and when the gauge field
structure is not translationally invariant, the Hamiltonian must
be diagonalized numerically. Furthermore, there is no analog
of Lieb’s theorem [6] to assist us in identifying the longest
lived decaying eigenmodes.

In the infinite time limit, the system approaches one of an
exponentially large number of nonequilibrium steady states,
with a spectrum {−Im Ea} of relaxation rates. The minimum
relaxation rate g(γ ) is typically achieved for different Z2 flux
configurations in the small and large γ limits, a feature also
observed by Shibata and Katsura.

Other than in Fig. 19, we have not indicated in our plots
the spectrum {Re Ea} of the real parts of the eigenvalues of

FIG. 19. Imaginary (g) and real parts of the lowest decay modes
as a function of γ for 4 × 4 and 6 × 6 lattices, with (J1, J2, J3, J4) =
(1, 1, 1, 1). Re Ea = 0 for the case shown.

W . This is because in almost all cases studied we have found
Re Ea = 0 for the first decay mode [19]. When all J ′s are
different, we find Re Ea = 0 for the lowest decay modes, for
all γ and all sizes.

Our model can further be generalized to other lattices. The
Kitaev solvability of the SK model is associated with the fact
that their model is equivalent to non-Hermitian Hamiltonian
evolution on a two leg ladder, where each site lies at the
confluence of three distinct classes of links. For the dimen-
sion k Clifford algebra, we have 2k + 1 gamma matrices of
dimension 2k , and a Kitaev Hamiltonian (Hermitian or not)
can be constructed on any lattice where each site lies at the
confluence of (2k + 1) distinct classes of links [8]. Thus, for
k = 2, our square lattice bilayer is fivefold coordinated. A
corresponding model could thus be constructed on the kagome
lattice, leading to a non-Hermitian Dirac matrix Hamiltonian
W on the kagome bilayer. (Further generalizations of this
construction can result in multiple species of hopping and
hybridizing Majoranas in the presence of a background non-
dynamical gauge field, as in Refs. [7,14].) Thus, proceeding to
k = 3 with its seven 8 × 8 gamma matrices, a corresponding
model can be constructed on a cubic lattice (bipartite NaCl
structure) with 	δ

R 	δ
R+δ interactions on each class δ link with

δ ∈ {1, . . . , 6} and Lindblad jump operators
√

γ 	7
r at each

site. Again, there will be an exponentially large block of NESS
density matrices owing to the conserved plaquette fluxes.

Note added. Recently, an analysis of two largely equivalent
models appeared on the arXiv [10,11].
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APPENDIX A: FERMION PARITY

Equation (34) describes the condition on the parity of the
c-fermions for a state to belong to the physical subspace. The
non-Hermitian Hamiltonian in Eq. (20) may be written as

W = i

4
θi Ai j θ j + W0, (A1)

where A is a d × d complex antisymmetric, here with d = 2N ,
whose elements depend on the static Z2 gauge configuration
G ≡ {uα

R, ũα
R, u5

r }, and where θ0
j+N = θ̃0

j , and W0 = −2iγ Nc is
a constant. We follow the method of Prosen [2] to diagonalize
the matrix A.

To diagonalize the matrix A we use the method of Prosen
[2]. We define V as the matrix of right (column) eigenvectors
of A. Assuming there are no zero eigenvalues, which means d
is even, we may write A = V �V T with

� =
(

0 λ1−λ1 0

)
⊕ . . . ⊕

(
0 λn

−λn 0

)
(A2)
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and

X ≡ V TV =
(

0 1
1 0

)
⊕ . . . ⊕

(
0 1
1 0

)
, (A3)

where n = d/2. The {±λa}, with a ∈ {1, . . . , n}, are the
eigenvalues of A. When there are zero eigenvalues (there is
always at least one zero eigenvalue when d is odd), then
2n < d and the above expression for � is appended by taking
its direct sum with a d − 2n-dimensional block of zeros, while
X is appended with a d − 2n identity matrix. Here we take
d = 2N even and for simplicity assume no zero eigenvalues.
We may then take Re λN � Re λn−1 � · · · � Re λ1 > 0.

Defining the operators ζa ≡ θi Via, one has {ζa, ζb} = 2Xab.
One can go on to define

f ‡
p ≡ 1√

2
ζ2p−1, fp ≡ 1√

2
ζ2p, (A4)

with p ∈ {1, . . . , N}. These operators satisfy the anticommu-
tation relations of complex fermions,

{ fp, fq} = { f ‡
p , f ‡

q } = 0, { fp, f ‡
q } = δpq, (A5)

but with the important distinction that f ‡
p �= f †

p , which is due

to the fact that ζ †
a = θi V ∗

ia �= ζa.

W = i
n∑

p=1

λp

(
f ‡

p fp − 1

2

)
+ W0. (A6)

The f parity of a state is defined to be the parity of the
occupation number sum

∑N
p=1 f ‡

p fp in that state.
We can break the matrix A into four N × N blocks with b

(bottom layer) and superindices t (top layer), viz.,

W − W0 = i

4

N∑
r,s=1

(
θ0

r θ̃0
r

)(Abb
rs Abt

rs

Atb
rs Att

rs

)(
θ0

s

θ̃0
s

)
, (A7)

where

Abb
rs = Ar,s, Abt

rs = Ar,s+N , Atb
rs = Ar+N,s,

Att
rs = Ar+N,s+N . (A8)

Antisymmetry of A then implies

Att
rs = −Att

sr, Abb
rs = −Abb

sr , Atb
rs = −Abt

sr, (A9)

i.e., (Abb)T = −Abb, (Att )T = −Att , and (Atb)T = −Abt , all in
GL(N,C). From Eq. (27), one then has

W = i

4
(c† c)

(
Abb + Att + iAbt − iAtb Abb − Att − iAbt − iAtb

Abb − Att + iAbt + iAtb Abb + Att − iAtb + iAtb

)(
c
c†

)
+ W0, (A10)

The condition that there are no pairing terms c†
r c†

s or cr cs is
then Att = Abb and Atb = −Abt . These two conditions guar-
antee that the upper right and lower left blocks of the above
2N × 2N matrix A are all zeros. Under these circumstances,
we have

W = 1

2
(c† c)

(
iAbb − Abt 0

0 iAbb + Abt

)(
c
c†

)
+ W0

= c†
r Mrs cs + W0 + �W0, (A11)

where

Mrs = − 1
2

(
Abt

rs + Abt
sr

)+ iAbb
rs , �W0 = 1

2 Tr Abt . (A12)

Note that, in general, M ∈ GL(n,C) has both symmetric and
antisymmetric components, i.e., it is a general complex N × N
matrix.

Assuming there are no Jordan blocks, the matrix M may
then be decomposed in terms of its right and left eigenvectors
as

Mrs =
n∑

p=1

εp Rp
r Lp

s , (A13)

or in braket notation M = ∑
p εp |Rp〉〈Lp|. With no Jordan

blocks, the eigenvectors span, in which case

n∑
p=1

Rp
r Lp

s = δrs,

n∑
r=1

Rp
r Lβ

r = δpβ, (A14)

which are the completeness and orthogonality relations, re-
spectively. We define the operators

gp = 〈 Lp | c 〉 =
n∑

r=1

Lp
r cr, g‡

p = 〈 c† | Rp 〉 =
n∑

r=1

Rp
r c†

r .

(A15)
We then have {gp, g‡

q} = δpq. We then have

W =
n∑

p=1

εp g‡
p gp + W0 + �W0. (A16)

Furthermore,
n∑

p=1

g‡
p gp =

n∑
p=1

〈 c† | Rp 〉〈 Lp | c 〉 = 〈 c† | c 〉 =
n∑

r=1

c†
r cr

(A17)

and N̂g = N̂c. Note that the diagonalized W in Eq. (A6) is
given by

W =
n∑

p=1

iλp f ‡
p fp − 1

2

n∑
p=1

iλp + W0. (A18)

Thus in the absence of pairing terms we apparently may iden-
tify

gp ≡ fp, g‡
p ≡ f ‡

p , εp ≡ iλp, �W0 = −1

2

n∑
p=1

εp.

(A19)
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From Eq. (18), the local constraint at each site r in each
layer is

θ0
r θ1

r θ2
r θ3

r θ4
r θ5

r = i, θ̃0
r θ̃1

r θ̃2
r θ̃3

r θ̃rθ̃
5
r = i, (A20)

Now take the product over all sites r in each layer. One obtains
the relation∏

R

�+
R ·
∏

R

�̃+
R ·
∏

r

u5
r ·
∏

r

iθ0
r θ̃0

r = 1, (A21)

where the products of �+
R and �+

R in each layer are over
half the square plaquettes, i.e., the “white chessboard squares”
only. In the language of Ref. [7], which describes a (Hermi-
tian) square lattice Dirac matrix spin model, the θ0

r and θ5
r

Majoranas combine to yield a complex fermion at each site
r. The fermion parity is then fixed by the gauge-invariant
plaquette fluxes due to the projection onto the physical sec-
tor. In our model, there are two layers, and the θ5

r and θ̃5
r

Majoranas combine to form the gauge fields u5
r on each link

connecting the planes, while the θ0
r and θ̃0

r fermions combine
to form the complex (cr, c†

r ) fermions as described in Eq. (28).
Thus the constraint as expressed in Eq. (A21) involves the
gauge-invariant fluxes {�+

R , �̃+
R }. the fermion occupations

iθ0
r θ̃0

r = 2c†
r cr − 1, and the gauge-dependent quantities {u5

r }.
Apparently, then, there is no way to identify the physical
fermion parity based on gauge-invariant data alone. The prob-
lem is particularly acute when there are pairing terms in W .
Nevertheless, as described in Sec. IV above, we find it use-
ful to classify the eigenstates of W by their f parity, with
Nf ≡ ∑

p f ‡
p fp even (typically 0 or 2), or Nf odd (typically

1).

APPENDIX B: PERTURBATION THEORY FOR LARGE
AND SMALL VALUES OF γ

Can et al. [20] considered a model of a random Hermitian
Hamiltonian H in the presence of a single Hermitian jump
operator

√
γ L, with both H and L random and chosen from

the Gaussian unitary ensemble. They showed how the spec-
trum of relaxation times could be computed perturbatively in
the small and large γ limits, by perturbing in the dissipa-
tor LD = 1

2γ [ L, [ •, L ] ] or in the nondissipative Liouvillian
LH = −i [ H, • ], respectively. Thus, at small γ , the smallest
nonzero relaxation rate τ−1 is proportional to γ , while at large
γ it is proportional to γ −1. In this Appendix we perform a
related analysis for our model.

1. γ � 1

For γ � 1 we write the GKLS equation as a classical
master equation for the projectors Pα = | α 〉〈α |, where α is
an eigenstate of the Hamiltonian H [20]. This classical master
equation is written

d Pα

dt
= γMαβ Pβ, (B1)

with

Mαβ =
∑

r

(∣∣〈α | 	5
r | β 〉∣∣2 − Nδαβ

)
. (B2)

Clearly this analysis will lead in this limit to real eigenvalues
proportional to γ . What is the coefficient for the smallest such
eigenvalue?

To analyze this, we start with our Hamiltonian,

H = i
∑
R∈A

4∑
δ=1

Jδ uδ
R θ0

R θ0
R+δ ≡ i

2

∑
r,r′

Jr,r′ θ
0
r θ0

r′ , (B3)

where Jr,r′ is a real antisymmetric matrix with JR,R+δ = Jδ uδ
R.

The θ5
r Majoranas are cyclic in H and lead to an exponential

degeneracy ∼2Nc for each energy level. Including the N − 1
plaquette fluxes and the two Wilson phases, and accounting
for the constraint ∏

r

iθ0
r θ1

r θ2
r θ3

r θ4
r θ5

r = 1, (B4)

which constrains the combined parity of the a = 0 and a = 5
species fermions given the gauge fields urr′ , we have a total of
4N projectors: 2N+1 from plaquette fluxes and Wilson phases
(see Fig. 5), and 2N−1 for the parity-constrained a = 0, 5
fermions. This is a subset of the 16N (unnormalized) density
matrices.

Every real antisymmetric matrix can be diagonalized by an
orthogonal transformation. For each gauge field configuration,
the corresponding real antisymmetric matrix Jrr′ is brought to
block diagonal form by a real orthogonal matrix Qr,s, such that

QTJ Q =
(

0 ε1−ε1 0

)
⊕ . . . ⊕

(
0 εNc−εNc

0

)
, (B5)

where {εS} are the singular values of J [21]. We define a new
set of Majoranas ξs = θ0

r Qr,s , and we may associate each s
with a site on the Nx × Ny square lattice, exactly as is the case
for the r sites. Thus, the s values are divided into A and B
sublattices, and writing S ∈ A we have S + x̂ ∈ B. Each of
the 2 × 2 blocks in Eq. (B5) is then associated with s = S and
s′ = S + x̂, for some S. We now define

cS = 1
2 (ξS − iξS+x̂), c†

S = 1
2 (ξS + iξS+x̂),

dR = 1
2

(
θ5

R − iθ5
R+x̂

)
, d†

R = 1
2

(
θ5

R + iθ5
R+x̂

)
, (B6)

which entail

ξS = c†
S + cS, ξS+x̂ = i(c†

S − cS),

θ5
R = d†

R + dR, θ5
R+x̂ = i(d†

R − dR). (B7)

The Hamiltonian is then H = ∑
S εS (2 c†

ScS − 1). We may
now write

	5
R =

∑
S

{
i QAA

S,R (c†
S + cS)(d†

R + dR)

+ QBA
S,R (cS − c†

S)(d†
R + dR)

}
	5

R+x̂ =
∑

S

{
QAB

S,R (c†
S + cS)(dR − d†

R)

− i QBB
S,R (cS − c†

S)(dR − d†
R)
}
, (B8)
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where

QAA
S,R = QS,R, QAB

S,R = QS,R+x̂, QBA
S,R = QS+x̂,R,

QBB
S,R = QS+x̂,R+x̂. (B9)

Now consider the matrix elements 〈 m, n | 	5
R | m′, n′ 〉 and

〈 m, n | 	5
R+x̂ | m′, n′ 〉, where

| m, n 〉 ≡
∏

S

(c†
S)mS

∏
R

(d†
R)nR | 0 〉, (B10)

where | 0 〉 is the vacuum for c and d fermions. Then∑
r

∣∣〈 m, n | 	5
r | m′, n′ 〉∣∣2

=
∑
R1

∑
S1

[(
QAA

S1,R1

)2 + (
QAB

S1,R1

)2 + (
QBA

S1,R1

)2 + (
QBB

S1,R1

)2]
× δ̃m,m′,S1

δ̃n,n′,R1
, (B11)

where we have defined the symbol

δ̃m,m′,S1
= δm′

S1
,1−mS1

×
∏

S �=S1

δm′
S,mS

. (B12)

In other words, δ̃m,m′,S1
= 1 when m′

S = mS for all S other than
S1, where the two occupations are complementary.

When the gauge fields have the periodicity of the lattice,
i.e., when uδ

R = uδ
R′ for all R and R′, translational invariance

allows us to simplify Eq. (B11), in which case

Mmn,m′n′ = 4

N
δd (m,m′ ),1 δd (n,n′ ),1 − Nδm,m′ δn,n′ , (B13)

where d (m, m′) is the number of locations where the occupa-
tion ms differs from m′

s. The eigenvalues of M are then given
by

�(σ,μ) = 4

N
(σ1 + . . . + σNc

)(μ1 + . . . + μNc
) − N,

(B14)
where each σS and μR are either +1 or −1. When all σS and
μR are +1 or all are −1, the eigenvalue is zero, corresponding
to a NESS. When one of the σ or μ values has a reversed sign,
we obtain � = −4, corresponding to a Liouvillian eigenvalue
of −4γ . Numerically, we find that the slope of the smallest
nonzero decay rate −Re �(γ ) is 2 rather than 4. It may be that
for sectors of M corresponding to nontranslationally invariant
flux configurations, where the Q matrices do not reflect such
a symmetry, that the coefficient for the lowest decay rate is
smaller, but we do not understand how to arrive at a slope of 1.
Another possibility we have not explored is the dynamics of a
restricted class of coherences | α 〉〈β |, where | α 〉 = | m, n1 〉
and | β 〉 = | m, n2 〉. There are 25N/2 such coherences, all of
which commute with H , arranged into 2N blocks of size 23N/2.
The generalization of the matrix M in each block is then

Mm,n1,n2,M,N1,N2

=
∑

r

(〈 M, N1 | 	5
r | m, n1 〉〈 m, n2 | 	5

r | M, N2 〉

− NδM,m δM1,n1
δM2,n2

)
. (B15)

While the the matrix element products

〈 N1 | d†
R ± dR | n1 〉〈 n2 | d†

R ± dR | N2 〉 (B16)

are nonzero only if N1 and n1 have complementary occupan-
cies in the same location R as do N2 and n2, the presence
of occupation number dependent sign factors complicates the
analysis.

2. γ � 1

We start with the Dirac matrices,

	1 = X ⊗ 1 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎠

	2 = Y ⊗ 1 =

⎛⎜⎜⎝
0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

⎞⎟⎟⎠

	3 = Z ⊗ X =

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞⎟⎟⎠ (B17)

	4 = Z ⊗ Y =

⎛⎜⎜⎝
0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

⎞⎟⎟⎠

	5 = Z ⊗ Z =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞⎟⎟⎠.

We label the eigenstates of 	5 by an index μ ∈ {1, 2, 3, 4},
with eigenvectors ψ

(μ)
i = δi,μ and with eigenvalues ζμ =

{1,−1,−1, 1}, respectively. Since LD � = γ
∑

r (	5
r � 	5

r −
�), any operator | μ 〉〈 ν | is annihilated by LD provided it is
an eigenoperator under the action of 	5

r from either the left or
the right, at every site r. There are 8N such operators, since
we can freely choose each of the μr so long as νr = μr or
νr = 5 − μr. In general, the eigenoperators of LD are arranged
into sectors ϒk , where | μ 〉〈 ν | ∈ ϒk provided ζμr

�= ζνr
at k

locations r. The eigenvalue under LD for any operator in sector
ϒk is then −2kγ .

We label the 8N operators in the ϒ0 sector as Ap = | μ 〉〈 ν |,
with pr = μr if νr = μr and pr = μr + 4 if νr = 5 − μr at
each site r. We also define the 2N × 8N operators

Bl
p = i | μ 〉〈 ν | Hl − i Hl | μ 〉〈 ν |, (B18)

where l denotes one of the 2N links (R, R + δ) and where
Hl = Jδ 	δ

R 	δ
R+δ. For simplicity we shall assume Jδ = 1 for

each of the four types of links, although our method described
below can easily be applied to the more general case. Since
each of the matrices 	1,2,3,4 anticommutes with 	5, its appli-
cation reverses the 	5 eigenvalue, and thus Bl

p ∈ ϒ2 for all p
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and links l . We then have

LH Ap =
∑

l

Bl
p. (B19)

We wish to analyze the Liouvillian L = LH + LD when re-
stricted to the subspace ϒ0 ∪ ϒ ′

2, where ϒ ′
2 ⊂ ϒ2 includes

operators | μ 〉〈 ν | where there are differences in the 	5 eigen-
values of the bra and ket states at two sites from the same link.
In other words, we restrict the action of L to the subspace of
operators spanned by the Ap and the Bl

p. The total dimension

of this operator space is then (2N + 1) · 8N , since there are 2N
values of l .

We now need to evaluate LH Bl
p. We have

LH Bl
p = 2 Al

p − 2 Ap + . . . , (B20)

where Al
p ≡ Hl | μ 〉〈 ν | Hl , which also this lives in sector ϒ0

provided | μ 〉〈 ν | ∈ ϒ0. The remaining terms include oper-
ators in other sectors ϒk>2 and operators in ϒ2 where the
differences in the 	5

r eigenvalues of the bra and ket states
are at two sites not connected by a link, thus requiring two
applications of LH to reach from ϒ0. In this basis, the matrix
form of the projected Liouvillian L̃ is

L̃ =

⎛⎜⎜⎜⎜⎜⎜⎝

0 −2R1 −2R2 · · · −2RM

1 −4γ 1 0 − 0

1 0 −4γ 1 − 0
... − − . . .

...

1 0 · · · −4γ 1

⎞⎟⎟⎟⎟⎟⎟⎠ ⇒ ω − L̃ =

⎛⎜⎜⎜⎜⎜⎜⎝

ω 1 2R1 2R2 · · · 2RM

−1 (ω + 4γ )1 0 0

−1 0 (ω + 4γ )1 0
... − − . . .

...

−1 0 · · · (ω + 4γ )1

⎞⎟⎟⎟⎟⎟⎟⎠, (B21)

where M = 2N is the number of links in the square lattice (with periodic boundary conditions) and {R1, . . . , RM} are 8N × 8N
matrices. We can now perform row and column reduction on the matrix ω − L̃ to obtain

ω − L̃ �−→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω 2SM 2SM−1 · · · − 2S1

−1 (ω + 4γ )1 0 − 0

0 0 (ω + 4γ )1 0

0 0 0 0
... − − . . . − ...

− − − (ω + 4γ )1 0

0 · · · − 0 (ω + 4γ )1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B22)

where Sk = ∑k
l=1 Rl , and the characteristic polynomial is

P(ω) = (ω + 4γ )(M−1)D det(ω2 + 4γω + 2S ), (B23)

where D = 8N and where we define S ≡ SM . Thus there
are (M − 1)D degenerate eigenvalues with ω = −4γ and 2D
eigenvalues,

ω j,± = −2γ ±
√

4γ 2 − 2s j, (B24)

where {s j} are the D eigenvalues of the matrix S . In the limit
γ � s j we then have ω−, j = −s j/2γ + O(γ −2). Regarding

the row and column reduction of ω − L̃, starting with the
expression for ω − L̃ in Eq. (B21), subtract the penultimate
(Mth) block row from the final [(M + 1)th] one. Then add
the last block column from the penultimate block column.
These two operations have the effect of eliminating the left-
most −1 block in the (M + 1)th block row and replacing
RM−1 with RM−1 + RM at the top of the Mth block column.
Iterate this process until obtaining the matrix in Eq. (B22).

To find the spectrum of S , we note that

S (p′ | p) = Mδμμ′δνν′ −
M∑

l=1

〈μ′ | Hl | μ 〉〈 ν | Hl | ν′ 〉, (B25)

where each pr = p(μr, νr) ∈ {1, . . . , 8} is a composite index,
as described above. We find

	δAp 	δ =
∑

p′
�δ

p,p′ Ap′ (B26)

with

�1,2 = 	1 ⊕ ±	1, �3,4 = 	54 ⊕ ∓	54. (B27)

FIG. 20. Finite lifetime modes of the Liouvillian L, with sites
labeled by their qr labels. (a) A configuration with s = 4, and (b) a
string defect with s = 4. In both cases, ω = −2/γ as γ → ∞ is the
relaxation rate.
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FIG. 21. Different runs of simulated annealing and the genetic algorithm for γ = 0.11, Nx = Ny = 6, and all Jδ = 1 corresponding to an
even sum of occupation numbers in Prosen’s generalized Bogoliubov transformation: (a) Simulated annealing (SA) versus the (b) genetic
algorithm (GA). Each color depicts a run with a (a) randomly chosen initial configuration for SA, (b) randomly chosen initial population for
GA. Parameters used: (a) α = 10, T0 = 100, 20 time steps in a cycle. (b) Population size was 100. (gmin refers to the minimum value of the
gap encountered in that particular run.)

For example,

	1A1 	1 = 	1 | 1 〉〈 1 | 	1 = +| 3 〉〈 3 | = +A3

	2A5 	2 = 	2 | 1 〉〈 4 | 	2 = −| 3 〉〈 2 | = +A7

	3A6 	3 = 	3 | 2 〉〈 3 | 	3 = −| 1 〉〈 4 | = −A5

	4A3 	4 = 	4 | 3 〉〈 3 | 	4 = +| 4 〉〈 4 | = −A4.

(B28)

Note that 	54 = 1 ⊗ X . Since 	1 and 	54 commute, we may
find a common basis:

ϕ1 =

⎛⎜⎝1
1
1
1

⎞⎟⎠, ϕ2 =

⎛⎜⎝ 1
−1
1

−1

⎞⎟⎠, ϕ3 =

⎛⎜⎝ 1
1

−1
−1

⎞⎟⎠, ϕ4 =

⎛⎜⎝ 1
−1
−1
1

⎞⎟⎠.

(B29)

In this basis, we have

�̃1 = diag(+,+,−,−,+,+,−,−)

�̃2 = diag(+,+,−,−,−,−,+,+)

�̃3 = diag(+,−,+,−,−,+,−,+)

�̃4 = diag(+,−,+,−,+,−,+,−).

(B30)

The eigenvalues of S are thus given by

s(q1, . . . , qN ) =
∑

R

4∑
δ=1

(1 − �̃δ (qR) �̃δ (qR+δ)), (B31)

where each qr ∈ {1, . . . , 8} and the values �̃δ (q) are given
in Eq. (B30). The q values label the linear combinations of

FIG. 22. Different runs of simulated annealing and the genetic algorithm for γ = 4.06, Nx = Ny = 6 and all Jδ = 1 corresponding to an
even sum of occupation numbers in Prosen’s generalized Bogoliubov transformation: (a) Simulated annealing (SA) versus the (b) genetic
algorithm (GA). Each color depicts a run with a (a) randomly chosen initial configuration for SA, (b) randomly chosen initial population for
GA. Parameters used: (a) α = 10, T0 = 100, 20 time steps in a cycle. (b) Population size was 100. (gmin refers to the minimum value of the
gap encountered in that particular run.)
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FIG. 23. Liouvillian gap, g, versus γ obtained over different runs
of simulated annealing with (J1, J2, J3, J4) = (3, 4, 1, 2) for system
sizes 4 × 4 and 6 × 6 and even f parity. We used α = 10, T0 = 100
and a cycle consisted of 20 time steps. The number of runs was 10
for 4 × 4 and 5 for 6 × 6. Some data points that are present at greater
values of g are not shown in this cropped plot to focus on the features
near the cusps in the plot.

single-site density matrices associated with the eight common

eigenvectors of the matrices �δ , i.e.,
(

ϕη

0

)
and

(
0
ϕη

)
, with

index η ∈ {1, 2, 3, 4}.
Clearly any configuration with all qr equal will be a

NESS, with S eigenvalue s = 0. In Fig. 20 we sketch the
configurations for two excited (i.e., decaying) modes, with
nonzero eigenvalues of S . Figure 20(a) depicts a configuration
with a single site defect, an isolated q = 2 state in a sea of
q = 1. According to the rules derived here, Fig. 20(a) has
“bad” bonds (labeled with an X) for which �̃δ (q) �̃δ (q′) =
−1, resulting in an eigenvalue s = 4. Figure 20(b) features

FIG. 24. Liouvillian gap, g, versus γ obtained over different runs
of simulated annealing with (J1, J2, J3, J4) = (3, 4, 1, 2) for system
sizes 4 × 4 and 6 × 6 and odd f parity. We used α = 10, T0 = 100
and a cycle consisted of 20 time steps. The number of runs was 10
for 4 × 4 and 5 for 6 × 6.

FIG. 25. SA and the phases are described in the text. Here
(J1, J2, J3, J4) = (3, 4, 1, 2) and the f parity is even. The four
regimes for 4 × 4 are separated by γ ∗

1 = 0.71, γ ∗
2 = 0.81, and γ ∗

3 =
1.26, and the four regimes for 6 × 6 are separated by γ ∗

1 = 0.11,
γ ∗

2 = 1.06, and γ ∗
3 = 1.26.

two parallel diagonal line defects, there are also two bad
bonds, but with a string connecting them, again giving s = 4.
Both these configurations are highly degenerate. In the case
of open boundary conditions, the string can run to a boundary,
and one has a defect state with s = 2. Numerically, though, we
find s = 2 to be the lowest eigenvalue of S even with periodic
boundary conditions (Fig. 14).

In summary, we have analytical arguments for ω ∝ γ as
γ → 0 and ω ∝ γ −1 as γ → ∞ based on perturbation the-
ory, but the analytical value of the coefficient is twice that
obtained from the numerical analysis. For γ → 0, this might
be because the actual first decay mode corresponds to a gauge
field configuration that is not translationally invariant. In both
limits, the discrepancy could also be because the vacuum
state corresponding to the Bogoliubov particles is a linear
combination of both even c-particle parity and odd c-particle
parity states which complicates the implementation of the
parity-related constraint.

APPENDIX C: COMPUTATIONAL PROCEDURE

In our computations, we try to optimize the Liouvillian gap
(corresponding to a given field configuration) g over the space
of all possible field configurations, G = {uδ

R, u5
r }. We do this to

obtain an estimate of the Liouvillian gap, g = minG gG . Sim-
ulated annealing and the genetic algorithm are two commonly
used optimization techniques.

In simulated annealing, we pick an initial configuration,
G, randomly and in each step, we change the sign of a ran-
domly chosen gauge field. We then accept the change with
the probability e−[g(t+1)−(g(t ))]/T where T is a temperature that
we keep annealing as given by a cooling function, say once
every 20 steps. After every cycle of 20 steps, we anneal
the temperature as given by the following cooling function:
T = T0/(1 + α ncyc) where T0 is the initial temperature, α is
a parameter that we can control to set the cooling function
and ncycle is the cycle number [22]. We start with a different
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intial configuration for each run and pick the minimum
value of the gap obtained over different runs as our esti-
mate of the Liouvillian gap. Increasing the number of steps
and adjusting the cooling rate could help reduce the spread
of data.

On the other hand, the genetic algorithm that we use to esti-
mate the was as follows. For a given gauge field configuration
G = {uδ

R, u5
r } we find the smallest relaxation rate gap gF by

solving for the spectrum of W using Prosen’s method [2]. In
the genetic algorithm, the fitness function is given by the gap
gG and we try to further minimize this by varying over G. We
start with a population of randomly chosen individuals (field
configurations). We find individuals with low values of gap
perform crossovers and mutate by flipping the sign at some
places. We then calculate the gaps for the individuals in the
new population and repeat the same process.

We again do this over different runs, i.e., by starting
with different randomly chosen initial populations. We pick
the minimum g value obtained over different runs to be
the estimate of the gap. Increasing the population size,
letting the simulation run for a larger number of genera-
tions, etc. can be used to reduce the spread of data over
different runs.

We see from a few trials that simulated annealing and
the genetic algorithm give similar results for the even parity
calculation. The runs for a few cases are shown in Fig. 21 and
Fig. 22.

APPENDIX D: SOME FLUX CONFIGURATIONS
FROM SIMULATED ANNEALING

Here we list some flux configurations for first decay modes
obtained from simulated annealing. Relative to the NESS
where all the gauge-invariant Z2 data are set to −1, we list
all the +1 defects (i.e., plaquette fluxes and Wilson phases).
As noted in the text, it may be that each of the states listed
here may be describable as having fewer defects with respect
to others among the exponentially many (23N+1) states in the
NESS block.

For Nx = Ny = 4, J1 = J2 = J3 = J4 = 1:
(1) γ < 0.36: �−

2,2, �+
4,2, �+

1,3, �−
1,1, �+

2,4, �+
4,4, �+

1,3,
�−

1,1, �−
2,4, �+

4,4, Wy

(2) 0.36 � γ < 1.86:�+
1,1, �−

2,2, �+
2,2, �−

3,3, �−
1,1, �+

2,4,
�−

4,2

(3) γ � 1.86: �+
1,1, �+

3,1, �−
1,3, �−

3,3, �+
3,3, �+

2,4, �−
3,1,

�+
4,4, �−

2,2
For Nx = Ny = 6, J1 = J2 = J3 = J4 = 1:
(1) γ < 0.41: �+

1,1, �−
4,2, �−

3,3, �−
5,3, �+

1,3, �−
4,4, �−

6,4,
�−

1,5, �−
3,5, �+

4,4, �+
3,5, �−

4,6, �−
6,6, �−

1,1, �−
3,1, �+

6,6, �+
4,2, �−

4,4,
�+

3,3, �−
5,3, Wx

(2) 0.41 � γ < 1.66: �+
1,1, �+

3,1, �−
6,2, �+

1,3, �−
2,4, �+

3,3,
�−

6,4, �+
2,4, �−

3,5, �+
1,5, �+

3,5, �−
4,6, �−

1,1, �+
2,6, �−

5,1, �+
6,6, �−

6,2,
Wx

(3) γ � 1.66: �+
1,1, �−

2,2, �+
3,1, �+

5,1, �−
3,3, �−

2,4, �−
4,4,

�−
6,4, �+

1,5, �−
2,6, �+

3,5, �−
6,6, �+

2,6, �−
3,1, �+

1,1
For Nx = Ny = 4, (J1, J2, J3, J4) = (3, 4, 1, 2):
(1) γ < 0.71: �+

3,1, �−
3,3, �+

4,2, �+
1,3, �−

4,4, �−
1,1, �−

3,1,
�−

1,3, Wx, Wy

FIG. 26. The SA curve and the curves obtained by considering
configurations with a given number of vortices Nv , as described in
the text. Here all Jδ = 1 and the system size is 4 × 4.

(2) 0.71 � γ < 0.81: �+
1,1, �−

2,2, �+
3,1, �−

1,3, �+
2,2, �+

3,3,
�−

4,4, �−
1,1, �+

2,4, �−
3,1, �−

1,3, Wx

(3) 0.81 � γ < 1.26: �+
3,1, �−

4,2, �+
2,2, �−

3,3, �+
1,3, �+

3,3,
�−

4,4, �−
1,1, �−

3,1, �+
4,4, �−

1,3, Wx

(4) 1.26 � γ : �+
1,1, �−

2,2, �−
4,2, �+

2,2, �−
3,3, �+

4,2, �−
2,4,

�+
3,3, �−

4,4, �−
1,1, �+

2,4, �−
3,1, �−

2,4, Wx, Wy

For Nx = Ny = 6, (J1, J2, J3, J4) = (3, 4, 1, 2):
(1) γ < 0.11: �−

2,2, �+
3,1, �−

4,2, �+
5,1, �−

6,2, �+
2,2, �−

3,3,
�+

4,2, �−
5,3, �+

6,2, �+
1,3, �−

4,4, �+
5,3, �+

4,4, �−
5,5, �+

1,5, �+
3,5, �−

4,6,
�+

2,6, �+
6,6, �+

3,3, �−
3,5, �+

2,4, �−
4,4

(2) 0.11 � γ < 0.81: �+
1,1, �−

2,2, �+
3,1, �+

2,2, �+
4,2, �+

1,3,
�−

2,4, �−
4,4, �+

5,3, �−
6,4, �−

1,5, �+
2,4, �−

3,5, �+
4,4, �+

1,5, �−
2,6, �+

3,5,
�+

5,5, �−
6,6, �−

1,1, �+
2,6, �+

4,6, �−
2,2

(3) 0.81 � γ < 1.26: �−
2,2, �+

3,1, �−
1,3, �+

2,2, �−
3,3, �+

4,2,
�+

6,2, �+
3,3, �−

6,4, �−
3,5, �+

4,4, �−
5,5, �+

6,4, �+
1,5, �+

3,5, �−
3,1, �+

4,6,
�+

6,6, �−
3,1, Wx, Wy

(4) 1.26 � γ : �+
1,1, �+

3,1, �−
4,2, �−

6,2, �+
2,2, �+

4,2, �−
5,3,

�+
6,2, �−

2,4, �+
5,3, �−

3,5, �−
2,6, �+

3,5, �+
5,5, �+

2,6, �+
4,6, �−

4,6

FIG. 27. The SA curve and the curves obtained by considering
configurations with a given number of vortices Nv , as described in the
text. Here (J1, J2, J3, J4) = (3, 4, 1, 2) and the system size is 4 × 4.
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FIG. 28. The SA curve and the curves obtained by considering
configurations with a given number of vortices Nv , as described in
the text. Here all Jδ = 1 and the system size is 6 × 6.

APPENDIX E: OTHER COMPUTATIONAL RESULTS

This section contains results for larger system sizes for
(J1, J2, J3, J4) = (3, 4, 1, 2) and an investigation of the spec-
trum by fixing the number of vortices. Figures 23–29 show the
Liouvillian gap as a function of the dissipation strength γ . The
smallest relaxation rates are shown in Figs. 23 and 24. Figure
25 is obtained from Fig. 23 in the same manner as Fig. 12 was
obtained from Fig. 10, namely the gauge configurations with
the lowest relaxation rates are collected and used as a pool to
obtain an estimate of g(γ ). Figures 26–29 examine g(γ ) for
cases with a fixed number of plaquette vortices.

The Nv-limited data for the case with all Jδ = 1 and size
4 × 4 is shown in Fig. 26. (See also Fig. 27 for the case
when all the Jδ are different.) Note that the Nv = 4 results
are in good agreement with the SA results. For the 6 × 6

FIG. 29. The SA curve and the curves obtained by considering
configurations with a given number of vortices Nv , as described in
the text. Here all (J1, J2, J3, J4) = (3, 4, 1, 2) and the system size is
6 × 6.

case, the Nv = 1, 2 results in Fig. 28 are quite far from the
SA curve.

The behavior of the gap for the case (J1, J2, J3, J4) =
(3, 4, 1, 2) for larger system sizes (obtained from SA) are
shown in Figs. 23 and 24. SA and the phases are obtained
as described before. While the shape of the curves is similar,
we find two significant differences. First, from Fig. 25 it
appears that SA has not found the lowest decay mode in the
small γ regime, where the 4 × 4 and 6 × 6 SA results differ
substantially. Second, as shown in Fig. 27, the Nv � 4 sector
does not yield a good approximation to the SA results, as it
did for the case with all Jδ = 1. We can also see from Fig. 29
that for the 6 × 6 case with (J1, J2, J3, J4) = (1, 2, 3, 4), the
Nv � 2 curves are quite far from the SA curve just as we saw
in Fig. 28 for the case with all Jδ = 1.
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