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Boundary criticality of Chern insulator in two-dimensional Su-Schrieffer-Heeger model
with next-nearest-neighbor hopping
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We investigate the properties of Chern insulator in a two-dimensional (2D) Su-Schrieffer-Heeger (SSH)
model with next-nearest-neighbor (NNN) hopping. We find that the Weyl points, serving as phase-transition
points, precisely coincide with high-symmetry points. In the phase diagram, there are two nontrivial phases with
different nonzero Chern numbers, one trivial phase with zero Chern number, and two different types of phase-
transition boundaries formed by the Weyl points. The system with a nonzero Chern number is topologically
nontrivial, with localized edge states at the top and bottom. Interestingly, the eigenmodes on the phase-transition
boundaries of two different nontrivial phases are localized at the bottom of the system, in contrast with the
extended eigenmodes observed on the trivial and nontrivial phase-transition boundaries. Our work provides
insights into exploring the correlation between edge state and phase transition boundary in Chern insulator based
on the 2D SSH model with NNN hopping.
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I. INTRODUCTION

The recent development of topological phases in con-
densed matter has attracted much interest in the research
community [1–7]. Many famous lattice models with novel
physical properties have been studied, such as the SSH
model [8–11], Kitaev model [12–14], Rice-Mele model
[15–17], Haldane model [18–20], and Qi-Wu-Zhang model
[21–23]. Among these famous topological models, the one-
dimensional (1D) SSH model, which has an extremely simple
form but rich topological properties, has far-reaching implica-
tions for the investigate of condensed-matter physics [24–27].
The 1D SSH model can be extended to a two-dimensional
(2D) model [28–30], often referred to as a 2D SSH model. The
2D SSH model is one of the simplest systems for exploring 2D
topological systems and has attracted considerable attention
in the search for novel topological phases [31–37]. Similar
to the 1D SSH model, the 2D SSH model comprises two
distinct sublattices within each unit cell. Nevertheless, the 2D
SSH model involves a greater number of hopping amplitudes
compared with the 1D SSH model. By skillfully manipulating
these hopping amplitudes, one can induce topological phase
transitions and topological edge states [38–41]. These edge
states are important for electron transport and the practical
applications of 2D topological insulators [42–47]. Besides, it
is crucial to consider the lattice structure and symmetry when
studying 2D topological insulators [48–53]. Based on their
symmetries, topological systems with and without gaps can be
classified [54,55]. One can find the corresponding topological
invariants according to the symmetry classification.
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The 2D SSH model with nearest-neighbor (NN) hop-
ping amplitudes has received considerable attention in both
theoretical and experimental studies [38,56]. However, the
influence of next-nearest-neighbor (NNN) hopping ampli-
tudes on the topological phases remains an open question,
with less attention given to the 2D SSH model with NNN
hopping amplitudes. Recently, topoelectric (TE) circuit net-
works have emerged as an alternative platform for studying
edge states and other topological phenomena [57–60]. The
Hamiltonian of these TE circuits can be engineered to emulate
the lattice Hamiltonian of condensed-matter systems [61–64].
Unlike material-based platforms, TE circuit networks offer
unparalleled control and flexibility in the precise tuning and
modulating of coupling coefficients. This is crucial because
the flexible selection of these couplings can help us investigate
systems with different lattice structure, such as the 2D SSH
model with NNN hopping amplitudes.

In this paper, we introduce a 2D SSH model with NN and
NNN hopping amplitudes. The primary focus is to investigate
the edge states at the topological phase-transition boundary
in the 2D SSH model with NN and NNN hopping ampli-
tudes. We propose to achieve the present model by means of
topoelectrical (TE) circuit lattice. We show the system under-
goes a topological phase transition when the absolute value
of the ratio between intracellular and intercellular hopping
amplitudes reaches two. By varying the hopping amplitudes,
the system undergoes a transition from a normal insulator
phase to a Chern insulator phase. The Chern number can serve
as the topological invariant that characterizes the topological
properties of the 2D SSH model, which becomes nonzero
when the intercellular hopping amplitudes are twice as large
as the intracellular ones.

The paper is organized as follows: In Sec. II, the 2D SSH
model is introduced and the corresponding real-space and
Bloch Hamiltonians are given. In Sec. III, we discuss the
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FIG. 1. (a) Schematic diagram of the 2D SSH model with NNN
hopping amplitudes. The unit cell is shaded in blue and consisted of
sublattice A (purple solid circle) and sublattice B (green solid circle).
m (n) represents coordinate in the x (y) direction. The solid red lines
represent the intracellular NN hopping amplitudes iη, solid black
lines represent the intercellular NN hopping amplitudes iμ, and black
dotted lines represent the intercellular NNN hopping amplitudes iγ .
(b) The first Brillouin zone of the 2D SSH model, where the solid red
points represent the high-symmetry points �, X , Y , and M.

stripe dispersion relations and topological characterization of
the 2D SSH model, and give the spatial distribution of edge
states, particularly at the transition boundaries of two different
nontrivial phases. In Sec. IV, we discuss the experimental
feasibility about 2D SSH model with NN and NNN hopping
amplitudes. Finally, a conclusion is given in Sec. V.

II. MODEL AND HAMILTONIAN

The 2D SSH model with NN and NNN hopping amplitudes
is shown in Fig. 1(a), where each unit cell is shaded in blue
and consists of sublattice A and sublattice B. In real space, the
Hamiltonian of the current system is written as

H =
∑
〈m,n〉

(iηa†
m,nbm,n + iμa†

m+1,nbm,n

+ iμb†
m,n+1am,n + iγ a†

m+1,nam,n

+ iγ b†
m,n+1bm,n + H.c.), (1)

where am,n and bm,n (a†
m,n and b†

m,n) are the annihilation (cre-
ation) operators at the 〈m, n〉th unit cell. The summation of
〈m, n〉 runs over the unit-cell index. Note that the model
includes the intracellular hopping amplitudes iη, the intercel-

lular NN hopping amplitudes iμ, and the intercellular NNN
hopping amplitudes iγ .

Next, we apply the Fourier transformation qm,n =
1√
LxLy

∑
kx,ky

ei(kxmt+kynt )qkx,ky with q = a, b. For simplicity, we

take the lattice constant t = 1 hereafter. The kx and ky are
wave vectors defined in the Brillouin region Lx × Ly of the
2D SSH model. By applying the Fourier transformation, we
obtain the Bloch Hamiltonian as

H (k) =
∑

k

ψ
†
kH(k)ψk, (2)

where ψ
†
k = [a†

k, b†
k] and

H(k) =
(

2γ sin kx �

�∗ 2γ sin ky

)
, (3)

with � = i(η + μe−ikx − μeiky ). It can be deduced from
H†(k) = H(k) that the H(k) is Hermitian. The Bloch
Hamiltonian H(k) has particle-hole symmetry ĈH(k)Ĉ−1 =
−H(−k) with Ĉ = σ0K , where σ0 is the unit matrix and K
is the complex conjugation. The Bloch Hamiltonian H(k)
belongs to class D in the tenfold way of Altland-Zirnbauer
classification [22,55].

Considering that, in practical systems, the intercellular
nearest-neighbor interactions are stronger than the intercel-
lular next-nearest-neighbor interactions, we set μ = 2γ for
convenience. By diagonalizing Eq. (3), the energy dispersion
can be obtained as

E (k) = 1
2μ(sin kx + sin ky) ± 1

2 [8ημ(cos kx − cos ky)

+ 4η2 + μ2(8 + 6 sin kx sin ky + 8 cos ky cos kx

+ sin2 kx + sin2 ky)]
1
2 . (4)

The zero-energy condition can be derived from the disper-
sion relation, allowing one to locate the Weyl points. In this
system, there are two bands that exhibit double degeneracy
at the Weyl points. The first Brillouin zone (FBZ) of the 2D
SSH model is square shaped, whose parameter space is kx ∈
[−π, π ) and ky ∈ [0, 2π ), as shown in Fig. 1(b). Four high-
symmetry points in the FBZ are � = (0, π ), X = (π, π ), Y =
(0, 2π ), and M = (π, 2π ). Through numerical calculations, it
is observed that the Weyl points are positioned at the points
�, X (Y ), and M when η/μ = −2, 0, and 2, respectively, as
shown in Fig. 2. It is noteworthy that the Weyl points that
emerge in the BZ correspond to topological phase-transition
points. We first examine the condition for the closing of the
energy gap, i.e., E (k) = 0. The positions of the Weyl points
in the dispersion relation can be determined by the following
relations:

0 = ±i(sin2 kx + sin2 ky + sin kx sin ky)
1
2

+ cos ky − cos kx − η

μ
. (5)

From Eq. (5), we can obtain η/μ = −2 when kx = 0 and ky =
π , indicating the Weyl points located at the high-symmetry
points �, as shown in Figs. 2(a) and 2(b). For η/μ = 0 with
kx = π and ky = π , we observe the Weyl points at the high-
symmetry points X , as depicted in Figs. 2(c) and 2(d). When
η/μ = 2 with kx = π and ky = 2π , Weyl points emerge at the
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FIG. 2. The bulk dispersion relation of the 2D SSH model for
various values of η/μ, with (a) η/μ = −2, (c) η/μ = 0, (e) η/μ =
2. In panels (a), (c), and (e), the bulk gap closes at Weyl points. Band
structures along high-symmetry lines of the Hamiltonian H(k) when
(b) η/μ = −2, (d) η/μ = 0, (f) η/μ = 2. In panels (b), (d), and (f),
the Weyl points are located at the high-symmetry points M, X , and
�, respectively.

high-symmetry points M, as shown in Figs. 2(e) and 2(f). Be-
sides, one can find η/μ = 0 can also be satisfied when kx = π

and ky = π , i.e., the Weyl point lies at the high-symmetry
point Y . This means there are two Weyl points in the FBZ
when η/μ = 0, which appear in X and Y points, respectively.
But when η/μ = 2 (or −2), there is only one Weyl point in
the FBZ, which appears in M (or �) point. Note that η/μ =
−2 and η/μ = 2 represent the phase-transition boundaries
between the topologically trivial and topologically nontrivial
phases, whereas η/μ = 0 represents the transition boundary
between two different topologically nontrivial phases. The
band gap closes at the phase transition boundary. For other
cases, the two energy bands are gapped. To illustrate more
intuitively, we present two gapped cases for η/μ = −1 and
η/μ = 1, as shown in Figs. 3(a) and 3(b), respectively. The
topological properties of these two gapped cases will be dis-
cussed in detail below.

III. EDGE STATES AND TOPOLOGICAL
PHASE TRANSITION

To explore the edge states and the topological phase transi-
tion of the system, we investigate the energy-band structures
of the strip sample. These band structures can be obtained by
solving the Hamiltonian H with open boundary conditions
(OBCs) along the y direction and periodic boundary condi-

FIG. 3. The bulk dispersion relation of the 2D SSH model for
various values of η/μ, with (a) η/μ = −1, (b) η/μ = 1. Both cases
exhibit band gaps in their bulk dispersion relations.

tions (PBCs) along the x direction. The original Hamiltonian
H can be decomposed into a set of 1D lattice Hamiltonians
H (kx ) indexed by a continuous parameter kx, where kx rep-
resents the wave number along the x direction. The resulting
kx-dependent Hamiltonian is given by

H (kx ) =
∑
〈n〉

[iγ e−ikx a†
nan + (iη + iμe−ikx )a†

nbn

+ iμb†
n+1an + iγ b†

n+1bn + H.c.]. (6)

The inverse participation ratio (IPR) has been widely em-
ployed to quantify the localization of states [65], which can be
expressed as follows:

IPR(ψ ( j) ) =
∑2Ly

n=1

∣∣ψ ( j)
n

∣∣4

( ∑2Ly

n=1

∣∣ψ ( j)
n

∣∣2)2 , (7)

where ψ
( j)
n represents the jth eigenstate, and n denotes the

lattice site. For the extended states ψ ( j), the IPR → 0, while
for the localized states, the IPR → 1. In this context, we
introduce the directional IPR (DIPR), as below [66],

DIPR(ψ ( j) ) = sgn

⎡
⎣ 2Ly∑

n=1

(n − Ly − δ)
∣∣ψ ( j)

n

∣∣
⎤
⎦ IPR(ψ ( j) ), (8)

where δ is a positive value and is normally set to be 0 <

δ < 0.5. For simplicity, we set δ = 0.03. The function sgn(x)
returns 1 for positive arguments x > 0, −1 for negative ar-
guments x < 0, and 0 for argument x = 0. Compared with
the IPR, the DIPR can determine whether the eigenstate is
localized at the top or bottom boundary of the lattice for
systems with the OPC along the y direction and the PBC along
the x direction. The DIPR takes a positive value when ψ ( j)

is localized at the top, while it becomes negative when ψ ( j)

is localized at the bottom. If DIPR → 0, it indicates that the
state is extended.

Based on the above analysis, it is worth noting that the edge
states connecting the lower and upper bands cross the bulk
gap, as shown in Fig. 4. These edge states are characterized
by a nonzero DIPR value and are prominently highlighted
by the color bar. A pair of edge states emerge at different
values of kx, with their DIPR values approaching +1 and −1.
This phenomenon is observed in two different topologically
nontrivial phases when η/μ = −1 and η/μ = 1, as depicted
in Figs. 4(a) and 4(c). For the phase-transition boundary
between two different topologically nontrivial phases, i.e.,
η/μ = 0, the edge states still exist, and the DIPR → −0.5,
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FIG. 4. Stripe dispersion relations of the 2D SSH model along
x direction with the stripe width Ly = 10 for (a) η/μ = −1,
(b) η/μ = 0, (c) η/μ = 1, (d) η/μ = 2. The color bar indicates
the values of the DIPR. For the topologically nontrivial phase, edge
states naturally appear with the DIPR �= 0. The edge states exist in
panels (a)–(c), and no edge states are found in panel (d).

as shown in Fig. 4(b). This implies that the eigenmodes at the
phase-transition boundary between two topologically nontriv-
ial phases with different Chern numbers become localized.
However, there are no edge states for the phase-transition
boundary between the topologically trivial and topologically
nontrivial phases, i.e., η/μ = ±2, as shown in Fig. 4(d).
Hence, the eigenmodes at the phase-transition boundary be-
tween the topologically trivial and topologically nontrivial
phases remain extended. Note that the result of our discussion
is equally applicable to OBCs along the x direction and PBCs
along the y direction.

Next, we investigate the spatial distribution of edge states
under different parameter conditions. The energy spectra of
the finite system are shown in Figs. 5(a) and 5(c), and the
eigenvalues of the edge states in the energy spectra are marked
by the dotted red ellipses. The spatial distributions of these
edge states are depicted in Figs. 5(b) and 5(d). The highest
values of the spatial distributions are observed around the top
(n = N) and bottom (n = 1), which corresponds to the edge
state. These edge states with zero energy are distributed at the
top and bottom of the system when η/μ = 1 and kx = π , as
shown in Fig. 5(b). However, when η/μ = 0 and kx = π/2,
these edge states deviate from zero energy and are only lo-
cated at the bottom of the system, as shown in Fig. 5(d).

To characterize the topological properties of the system,
we proceed to discuss the topological invariants. In Fig. 3,
each band is separated from the other bands by an energy gap.
Therefore, the Chern number can serves as the topological
invariant that characterizes the topological properties of the
2D SSH system [22,67]. For the two energy bands, the upper
and lower bands are denoted by the subscripts + and −,
respectively. The energy bands and their corresponding wave
functions can be obtained from the Bloch Hamiltonian H(k),
satisfying the Schrödinger equation

H(k)|ψ±(k)〉 = E±(k)|ψ±(k)〉. (9)

1 100 200

-1

0

1

(a)

1 100 200
-1
0
1
2
3

(c)

FIG. 5. Energy spectra of the finite system with 10 × 10 unit
cells, where (a) η/μ = 1 and kx = π , (c) η/μ = 0 and kx = π/2.
The eigenvalues of the edge states are marked by the dotted red el-
lipses. The spatial distribution of the edge states, where (b) η/μ = 1
and kx = π , (d) η/μ = 0 and kx = π/2.

The Chern numbers of the two energy bands are given by

C± = 1

2π

∫
BZ

dkxdky

(
∂A(±)

y

∂kx
− ∂A(±)

x

∂ky

)
, (10)

where the Berry connection is defined as

A(±)
j (k) = −i〈ψ±(k)|∂k j |ψ±(k)〉, j = x, y. (11)

The Chern numbers of the two energy bands satisfy C+ +
C− = 0, where we denote C = (C+ − C−)/2 for convenience.
In the general case, the Chern numbers appear as C = 0, ±1.
The nonzero Chern number indicates that the system holds a
topologically nontrivial phase with two edge states localized
at the boundary of the system. The system with a zero Chern
number has a topologically trivial phase, implying that no
edge states exist in the system.

The Chern numbers C of the 2D SSH model with NNN
hopping as a function of η/|μ|, as shown in Fig. 6(a), which

-4 -2 0 2 4
-1

0

1(a)

FIG. 6. (a) Chern number C as a function of η/|μ|. (b) The phase
diagram of C on the μ-η plane. The cyan regions represent the trivial
phase with C = 0, while the red and black regions represent the topo-
logically nontrivial phase with C = +1 and C = −1, respectively.
The boundaries of different regions are marked by gold and green
lines, respectively. The color bar indicates the values of the Chern
number.
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can be expressed as

η

|μ| < −2 : C = 0,

−2 <
η

|μ| < 0 : C = +1,

0 <
η

|μ| < 2 : C = −1,

2 <
η

|μ| : C = 0. (12)

The phase diagram of Chern number C as a function of η

and μ is shown in Fig. 6(b). The Chern number C = +1 and
C = −1 are located in the red and black regions, respectively.
The Chern number C = 0 is located in the cyan regions. The
phase-transition boundaries η/|μ| = ±2 between the topolog-
ically trivial phases with C = 0 and topologically nontrivial
phases with C = ±1 are marked by the gold solid lines. Ad-
ditionally, the phase-transition boundary η/μ = 0 between
two different topologically nontrivial phases with C = +1 and
C = −1 is marked by the green solid line.

IV. EXPERIMENTAL IMPLEMENTATION

Before the conclusion, we now give a brief discussion
about the experimental feasibility. The TE circuits have been
extensively investigated both theoretically and experimentally
due to their inherent flexibility and tunability, form an ideal
platform for implementing various emerging fields such as
Chern insulators [63,68], Weyl semimetals [57,58,62], and
three-dimensional topological systems [69,70]. Especially the
2D TE Chern circuit that breaks reciprocity via a negative
impedance converter (NIC) [63]. Hence, the 2D SSH model
with NN and NNN hopping amplitudes shown in Fig. 1(a)
can be mapped using TE circuit composed of capacitors and
operational amplifiers (op-amps), as shown in Fig. 7(a). The
nodes in our TE model is connected with op-amps and capac-
itance. The grounding mechanism for each electrical node is
shown in Fig. 7(b), where all nodes are connected to ground
by a capacitance C1 and common capacitance C. The op-
amps are used to obtain nonreciprocal directional coupling
between the nodes. The nonreciprocal couplings in the two
opposite hopping directions have the same magnitude but a
phase difference of π between them. This can be readily im-
plemented by using op-amp-based NIC with current inversion,
as shown in Fig. 7(c). This NIC would realize a directional an-
tiphase (π phase difference) coupling between two nodes, i.e.,
Cp,q = −Cq,p.

Now we show the detailed derivation of Eq. (1). The
voltages at the nodes in an electrical network are related
by Kirchhoff’s current law, which states that the net current
flowing in or out of a node is zero. At the A and B node at unit
cell 〈m, n〉, we have

IA
m,n = −C3

d

dt

(
V A

m,n − V A
m+1,n

) + C3
d

dt

(
V A

m,n − V A
m−1,n

)
+C1

d

dt

(
V A

m,n − V B
m,n

) − C2
d

dt

(
V A

m,n − V B
m,n+1

)
+C2

d

dt

(
V A

m,n − V B
m−1,n

) + (C − C1)
d

dt
V A

m,n = 0,

FIG. 7. (a) Illustration of the TE circuit realization. (b) Ground-
ing mechanism of electrical nodes. The common capacitance C plays
the role of the TB eigenenergy in the TE equivalent of the Hamilto-
nian. (c) The elementary unit consisting of op-amp that gives rise to
the π -phase difference directional coupling via negative impedance
converter with current inversion. The op-amp has a unity gain factor
with virtually shorted positive (v+) and negative (v−) input terminals.
No current flows between v+ and v−, so Cp,q = C2 and Cq,p = −C2.

IB
m,n = −C3

d

dt

(
V B

m,n − V B
m,n+1

) + C3
d

dt

(
V B

m,n − V B
m,n−1

)

−C1
d

dt

(
V B

m,n − V A
m,n

) − C2
d

dt

(
V B

m,n − V A
m+1,n

)

+C2
d

dt

(
V B

m,n − V A
m,n−1

) + (C + C1)
d

dt
V B

m,n = 0,

(13)

where C is the common grounding capacitance, and V A and
V B are the node voltages at the A and B nodes, respectively.
Assume an alternating current flow with an exp(iωt ) time
dependence. Equation (13) can be cast into the form of

iCV A
m,n = iC1V

B
m,n − iC2

(
V B

m,n+1 − V B
m−1,n

)
− iC3

(
V A

m+1,n − V A
m−1,n

)
,

iCV B
m,n = −iC1V

A
m,n + iC2

(
V A

m,n−1 − V A
m+1,n

)
− iC3

(
V B

m,n+1 − V B
m,n−1

)
. (14)

Applying Eq. (14) at all the voltage nodes, the resulting set of
equations can be written as

iCV = HV, (15)

where V = [V A
1,1,V B

1,1,V A
1,2, . . . ,V B

m,n−1,V A
m,n,V B

m,n]T is the
column vector of the node voltages, and H is the matrix
formed by the elements on the right-hand side of Eq. (15),
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which can be written as

H =
∑
〈m,n〉

(
iC1V

A†
m,nV

B
m,n − iC1V

A
m,nV

B†
m,n

− iC2V
A†

m,nV
B

m,n+1 + iC2V
A

m,n−1V
B†

m,n

+ iC2V
B

m−1,nV
A†

m,n − iC2V
B†

m,nV
A

m+1,n

− iC3V
A†

m,nV
A

m+1,n + iC3V
A†

m,nV
A

m−1,n

− iC3V
B†

m,nV
B

m,n+1 + iC3V
B†

m,nV
B

m,n−1

)
. (16)

We can find Eq. (15) is the TE equivalent of the Schrödinger
equation Eψ = Hψ , where iC and V play the roles of the
energy eigenvalue E and eigenfunction ψ , respectively. After-
ward, the Eq. (16) can be mapped to the tight-binding lattice
Hamiltonian H as follows:

H =
∑
〈m,n〉

(iC1am,nb†
m,n − iC2a†

m,nbm,n+1

− iC2b†
m,nam+1,n − iC3a†

m,nam+1,n

− iC3b†
m,nbm,n+1 + H.c.). (17)

For simplicity, we set C1 = η, C2 = μ, and C3 = γ , then we
can get the final effective Hamiltonian (1). Using the above
methods, we can use TE circuit to investigate the 2D SSH
model with NN and NNN hopping and find novel topological
properties at the phase-transition boundary.

V. CONCLUSIONS

In conclusion, we have investigated the criticality of phase-
transition boundary in a 2D SSH model with NNN hopping.
The system exhibits a topologically nontrivial phase with
zero-energy edge states located at the top and bottom of the
system, and has nonzero Chern number. Notably, the Weyl
points occur exactly at the high-symmetry points, forming
phase-transition boundaries, and have zero Chern number.
Our work reveals the criticality of the phase-transition bound-
ary. In contrast with the absence of edge states at the transition
boundary of trivial and nontrivial phases, edge states are
present at the transition boundary of two different topologi-
cally nontrivial phases. Unlike the zero-energy edge states that
are located at both ends of the system which exist in topologi-
cally nontrivial phases, the edge states on the phase-transition
boundary of the two different nontrivial phases deviate from
zero energy and are exclusively located at the bottom end of
the system. Furthermore, we also discuss the possible way
of implementing the present model in 2D nonreciprocal TE
circuit lattice.
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