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Scaling law for the size dependence of a finite-range quantum gas
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In a recent work [Reible et al., Phys. Rev. Res. 5, 023156 (2023)], it was shown that the mean particle-particle
interaction across an ideal surface that divides a system into two parts can be employed to estimate the size
dependence for the thermodynamic accuracy of the system. In this work we propose its application to systems
with finite-range interactions that model dense quantum gases and derive an approximate size-dependence
scaling law. In addition, we show that the application of the criterion is equivalent to the determination of a
free-energy response to a perturbation. The latter result confirms the complementarity of the criterion to other
estimates of finite-size effects based on direct simulations and empirical structure or energy convergence criteria.
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I. INTRODUCTION

Quantum gases represent a highly active field of research
due to their unusual physical properties and potential appli-
cations in science and technology, one such example being
ultracold quantum gases that can be used as quantum simu-
lators (see, e.g., Ref. [1] and the references therein). Properly
investigating the complexity of such systems often requires
an interplay between experimental and computational tech-
niques [2]. In doing so, the physical consistency of the
theoretical and computational models is a key issue that can
be controlled by the system size. In computer simulations,
there is always a trade-off between the physical and empir-
ical consistency—which requires a fairly large number of
particles—and the computational cost associated with simu-
lating a large system because many algorithms scale at least
polynomially (sometimes even exponentially) in the number
of degrees of freedom. Fortunately, many interesting systems
are rather dilute, so few particles in a relatively large box
are sufficient to properly reproduce thermodynamic (bulk)
properties [3].

The situation is different for dense quantum gases that are
per se a field of great interest across various disciplines, from
chemistry to mathematics [4–8] and even astrophysics [9].
Here using few particles when simulating bulk properties may
lead to inconsistent results, and thus, a priori estimates to
quantify finite-size effects are crucial to assess the accuracy
and reliability of simulation results [10].

The aim of this paper is to provide such estimates for
dense systems with finite-range interactions in order to quan-
tify finite-size effects related to the thermodynamic properties
of the system. The proposed approach relies on a recently
proved two-sided Bogoliubov inequality for classical [11]
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and quantum [12] systems. The theorem rigorously defines
upper and lower bounds of the free-energy cost for separating
a many-particle system into noninteracting and independent
subsystems and thus allows us to derive a criterion to assess
the accuracy of thermodynamic properties as a function of the
system size [13]. To apply the criterion, it is sufficient to cal-
culate the mean particle-particle interaction potential across
a dividing surface. Given a suitable reference energy scale,
the criterion provides an upper bound for the relative error
associated with separating a large system into subsystems that
can be simulated independently (at lower computational cost).

In many cases, evaluating the relative error boils down to
a numerical integration (i.e., quadrature or cubature) problem
in dimension 3 or 6 that involves a radial distribution function
that is typically available from either experimental data or
the relevant literature; for systems with a specific range of
interactions or correlations, systematic approximations can
even lead to analytical formulas. We will consider such a
situation here and derive a scaling law for the finite-size ef-
fects associated with the separation of a dense quantum gas
into two independent subsystems. In addition, we look at the
error criterion from a conceptual perspective and relate it to
thermodynamic response functions.

The outline of this paper is as follows: In Sec. II, we
review the two-sided Bogoliubov inequality for the interface
free energy and explain how to derive a computationally fea-
sible, semiempirical expression to measure the validity of a
simulation setup. In Sec. III, we derive a simple scaling law
for the relative error of a dense quantum gas with finite-range
interactions; Sec. IV is devoted to a discussion of the error
bounds for the interdomain energy in relation to certain ther-
modynamic response functions in a perturbative framework.
Conclusions are given in Sec. V. This paper contains two
Appendixes: In Appendix A we discuss certain properties of
the free energy as a function of the interdomain perturbation
parameter; Appendix B records some matrix identities used in
the linear oscillator example in Sec. IV C.
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II. A MATHEMATICALLY SOUND CRITERION
TO ESTIMATE THERMODYNAMIC ACCURACY

AS A FUNCTION OF THE SYSTEM SIZE

In this section, we formulate the mathematical setup and
briefly review the basic result that allows us to assess the
relevance of finite-size effects in a molecular simulation. To
this end, we consider a system of N interacting particles with
coordinates r1, . . . , rN ∈ � ⊂ Rd , d = 1, 2, 3, where � is
some bounded subset. The interactions are governed by the
Hamiltonian H : � → R, and we assume that the state of the
systems is described by a stationary probability density func-
tion f = f (r1, . . . , rN ) (or a density matrix in the quantum
case) that is of the form f ∝ exp(−βH ) for some β > 0.

Here we consider a situation in which the particles can
be divided into two noninteracting parts, with n particles
confined to a volume �1 ⊂ Rd and governed by a Hamilto-
nian H1 and the remaining m = N − n particles in �2 ⊂ Rd

with Hamiltonian H2. The state inside the two compartments
is assumed to be described by probability density functions
f1(r1, . . . , rn) and f2(rn+1, . . . , rN ) (density matrices in the
quantum case) of the form fi ∝ exp(−βHi ), i = 1, 2.

We want to compare the free energy F of the full system
with Hamiltonian H with free energy F0 after the systems has
been divided into two noninteracting subsystems with Hamil-
tonians H1 and H2. We set H = H0 + U , with H0 = H1 + H2,
where U is the energy of the interdomain interaction across
the separating interface (e.g., a small tubular neighborhood
of the common boundary �1 ∩ �2 of �1 and �2), and we
consider the free-energy difference associated with adding or
removing the interaction term.

Definition 1. Interface free energy. The free-energy cost
associated with separating the total system with Hamiltonian
H into two independent subsystems with Hamiltonians H1 and
H2 is defined as

�F := F − F0 = −β−1ln

(
Z

Z0

)
, (1)

with

Z =
∫

�

e−βH (r) dr, Z0 =
∫

�

e−βH0(r) dr. (2)

In Refs. [11,12], the following upper and lower bounds of
the free-energy cost �F were proved and hold for partitioning
either a classical or a quantum system of particles into two (or
more) noninteracting subsystems.

Theorem 1. Two-sided Bogoliubov inequality. It holds that

E f [U ] � �F � E f1 f2 [U ],

where E f [·] and E f1 f2 [·] are the expectations with respect to
the probability density functions f and f1 f2, respectively.

It was further shown that for two-body potentials the crite-
rion of Theorem 1 can be reduced to the calculation of one-
and two-particle integrals (in dimensions d and 2d) [13]:

E f [U ] = ρ2
∫

�1

∫
�2

U (r − r′)g(r, r′)drdr′, (3)

with r ∈ �1 and r′ ∈ �2; g(r, r′) being the two-body (radial)
distribution function; and ρ = N

�
, and

E f1 f2 [U ] =
∫

�1

∫
�2

ρ1(r)ρ2(r′)U (r − r′)drdr′, (4)

with r ∈ �1 and r′ ∈ �2 and ρ1(r) and ρ2(r) being the
position-dependent average particle densities in each domain.
While the bounds in Theorem 1 require only mild assumptions
to guarantee that the upper and lower bounds are finite, the
aforementioned simplifications for two-body potentials rely
on further assumptions. In particular, the approach applies
to a system with a sufficient number of particles so that the
conditions of the isotropic system and the radial distribution
function are statistically well defined. Such a condition im-
plies that very dilute systems with a small number of particles
(e.g., N � 10), as in recent studies of dilute quantum gases
[14], cannot be described by Eqs. (3) and (4). Moreover, the
physical validity of the approach is only ensured for equilib-
rium systems, far from a (nonequilibrium) phase transition.
As we prove later, the creation of an interface is equivalent to
stimulating the system with a reversible (i.e., gradient-type)
perturbation; thus, one has to make sure that such a perturba-
tion occurs far from the condition of a phase transition which
may irreversibly destabilize the system.

A. Relative free-energy difference as a quality measure

Equations (3) and (4) can be used to define a criterion to
quantify the thermodynamic accuracy for a given system size.
In Ref. [13], the following quality parameter that measures
�F relative to some characteristic reference (free) energy of
the system was suggested:

q = |�F |
|Eref | , (5)

where Eref can be the free energy of the decoupled system or
the average total energy. Since �F is typically not available,
it is customary to replace q by the largest relative error, i.e.,

qmax = max{|E f [U ]|, |E f1 f2 [U ]|}
|Eref | . (6)

The parameter qmax is a convenient and easy-to-compute
measure of the thermodynamic accuracy of the model that
determines the system size required to represent the bulk
properties of a system within an order O(qmax).

In the particular case of an isotropic system with a uniform
stationary density, Eq. (4) can be simplified even further to
yield

E f1 f2 [U ] = ρ2
∫

�1

∫
�2

U (r − r′)drdr′. (7)

Assuming that either the radial distribution function g(r, r′)
or the uniform particle density ρ is known from experimental
data or the relevant literature (as is often the case), evaluating
the expectations in Eq. (3) or Eq. (7) reduces to a simple
numerical quadrature (or cubature) problem in dimensions d
or 2d , where d � 3. For simple systems it is even possible to
systematically approximate the corresponding expectations,
which then leads to approximate, but rather general, results
(e.g., scaling laws); in our previous work we applied this
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approach to the uniform interacting electron gas and derived a
basic finite-size scaling law [13].

Such a criterion is complementary to other criteria
that account for finite-size effects. The complementarity of
our approach lies in the fact that E f [U ] and E f1 f2 [U ] express
a thermodynamic response to the perturbation of building
an interface; hence, it carries key information regarding the
capability of the decoupled system to respond as would be
expected for the bulk of such a substance. Another advantage
lies in the fact that, even though the upper and lower bounds
of the interface free energy have a precise analytical form,
it is easily possible to derive semiempirical scaling laws that
can be compared or enriched with available empirical data;
even for quantum systems, for which evaluating expectations
that involve density matrices may be tedious, the resulting
cubature problems are relatively straightforward to implement
and solve.

We will discuss such an example in the next section by de-
riving a scaling law for a system with finite-range interactions
that model quantum gases.

III. QUANTUM GAS WITH FINITE-RANGE POTENTIAL

We consider a model of a dense quantum gas with finite-
range interactions in dimension d = 3. The most practical
model for analytical calculations is a finite potential well (see,
e.g., Ref. [2]):

Veff (r) =
{−V0, r � R0,

0, r > R0.
(8)

Applying formulas (3) and (4) readily yields

E f [U ] = −ρ2V0

∫
�1

∫
�2

1{|r−r′|�R0} g(r, r′) drdr′ (9)

and

E f1 f2 [U ] = −ρ2V0

∫
�1

∫
�2

1{|r−r′|�R0} drdr′. (10)

The total potential energy of the system can be taken as the
reference quantity Eref , which is

Eref = |E f [Utot]| = ρ2V0

∣∣∣∣
∫

�

∫
�

1{|r−r′|�R0} g(r, r′) drdr′
∣∣∣∣.
(11)

Specific data about particle density and radial distribution
functions are often available in the literature (see, e.g.,
Ref. [2]); thus, an accurate determination of the total energy
and of E f [U ] and E f1 f2 [U ] can be done numerically for each
specific choice of physical parameters and size of the system
on a three-dimensional grid by discretizing the integrals using
an appropriate cubature formula. However, independent of the
availability of the radial distribution function of the system,
the condition that V (r) is finite range as in Eq. (8) allows for
estimating an approximation to the quality parameter q in the
form of a scaling law. Specifically, q can be estimated in terms
of the number of effective interdomain interactions in relation
to the total number of effective interactions over the whole
domain, as explained in the next section.

In the next section, we will derive a simple scaling law to
estimate the interdomain energy and the quality parameter q.

This scaling law will provide a rough, but computationally
cheap, estimate of the magnitude of the finite-range interac-
tions that provides a general trend regarding the relevance of
the size effects. It does not depend on the details of the radial
distribution function; in particular, it does not rely on any
specifics regarding particle-particle interactions or particle ex-
clusion (anti)symmetry. In order to take care of, for example,
fermionic or bosonic properties one must use the explicit
formulas (3) and (4) with the respective radial distribution
function, which, being a two-body reduced density matrix,
would describe the particle symmetries as well. Clearly, finite-
size effects in quantum systems may be present even in the
absence of particle-particle interactions as, for example, in
an ideal Fermi gas under confinement [15]; our approach is
beneficial when particle-particle interactions play a dominant
role in the physics of the system.

A. Simple scaling law

Let us consider Etot, which is the absolute value of the total
energy of the N particles in a box of size L3. Since we deal
with an isotropic system with uniform particle density, the
domain of interaction of each particle will be the surrounding
sphere of radius R0, where R0 is the interaction cutoff radius,
i.e., V (r) = 0 for r > R0.

Using the uniform-particle-density assumption and ig-
noring that particles can overlap, the average number of
interactions for each particle is roughly given by (N − 1)�,
where � = 4π/3(R0/L)3 is the ratio between the maximum
interaction volume and the box volume. Taking into account
the symmetry of the particle-particle interactions (i.e., remov-
ing double counting), it therefore follows that the total number
of interactions (called “bulk interactions” in the following) is
given by

ntot = N (N − 1)

2

4π

3

(
R0

L

)3

≈ N2 2π

3

(
R0

L

)3

. (12)

Recalling that ρ = N/L3 is the uniform particle density in-
side the simulation box, the preceding equation states that
the average of the total number of interactions is essentially
proportional to Nρ.

Next, we consider the interface that divides the simulation
box into two subsystems. The interface is assumed to be
aligned with the yz plane and to have a thickness R0 in the x di-
rection, where we assume that R0 	 L. Clearly, for values of
R0 smaller than the mean particle-particle distance, the region
within which particles on one side of the interface can interact
with those on the other side has volume � = L2R0. Assuming
that the particle density is uniform across the interface, the
number of particles in this domain is N� = L2R0ρ = NR0/L.
As a consequence, the average number of interdomain inter-
actions is equal to

1

2

N� (N� − 1)

2

4πR3
0

3L2R0
≈ N2

�

π

3

(
R0

L

)2

= N2 π

3

(
R0

L

)4

.

The factor of 1/2 in front of the leftmost expression is due to
the fact that, on average, only half of the particles are on one
side of the interface; they interact with the other half of the
particles on the other side of the interface, provided that they
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are within a distance of at most R0. We set

n� := N2 π

3

(
R0

L

)4

and call

E tot
i = Etot

ntot
(13)

the energy per interaction. Under the above assumptions the
interface free energy �F can be estimated by the energy per
interaction multiplied by the average number of interdomain
interactions n� . We call this quantity the average interdomain
energy and denote it by Eintd. Then

Eintd = Etot
n�

ntot
. (14)

If we let N, L → ∞ such that N/L3 = ρ is kept fixed, it is
plausible to assume that the difference between the upper and
lower bounds in Theorem 1 will be negligible compared to the
reference energy Eref provided that R0 grows at most linearly
in L with R0/L → δ for some sufficiently small δ > 0.

Assumption 1. We suppose that

lim
N→∞

|E f1 f2 [U ] − E f [U ]|
Eref

= 0.

Setting Eref = Etot, an estimate of the quality factor
q ≈ Eintd

Eref
, which measures the strength of the finite-size effect,

is then, in such a case, asymptotically equal to qmax defined by
(6) since

0 = |E f [U ] − E f [U ]|
|Eref | � lim

N→∞
|�F − E f [U ]|

|Eref |
� lim

N→∞
|E f1 f2 [U ] − E f [U ]|

|Eref | = 0

and

0 = |E f1 f2 [U ] − E f1 f2 [U ]|
|Eref | � lim

N→∞
|E f1 f2 [U ] − �F |

|Eref |
� lim

N→∞
|E f1 f2 [U ] − E f [U ]|

|Eref | = 0.

As a consequence, the relative error of the model satisfies the
following scaling law:

lim
N→∞

qmax = lim
N→∞

n�

ntot
= δ

2
, (15)

with δ ≈ R0/L for sufficiently large N . Such a scaling law can
be a practical tool for a quick estimate of the required minimal
size of the system for which the corresponding thermody-
namic accuracy is within a given threshold. The only relevant
quantity is the characteristic spatial scale of the potential,
while the sign of the potential, for example, does not enter
into the game. Overall, the simplicity of the criterion can only
provide rough estimates and trends. The approach may be,
nevertheless, useful beyond the field of computational calcula-
tions in which, usually, one starts from a small system size and
then upgrades it, depending on the computational resources
available. In fact, the criterion may be used to estimate a priori
how small a system can be to ensure a bulk response and thus
to employ, if possible, smaller samples than the ones currently
used.

In the regime of dilute gases discussed in Ref. [2], with
ρ = N

L3 = 10−6

R3
o

(i.e., the average particle-particle distance is
much larger than the interaction range), the criterion above
is not really needed. In fact, a few particles in a very large
volume are sufficient to describe the essence of the bulk
properties. However, for medium- and high-density gases,
e.g., N

L3 = 10−α

R3
o

, α � 3, the physical relevance of finite-size
effects, measured in terms of Eq. (15), may be sizable and
therefore has to be controlled by the computational setup.
For example, for a density of ρ = 1

103R3
0

for N = 150 one has
q ≈ 1%; however, at the same density for N = 10 one has
q ≈ 2%. This means that regarding the statistical consistency
of representing the bulk, a small system is sufficient.

The extreme case is a gas at high density, e.g., with α = 1,
where for N = 150 one has only q ≈ 5%; thus, even N = 150
can no longer be considered fully satisfactory.

Above we have discussed the physical representability of
bulk properties within a statistical mechanics framework. We
will now ask the question of whether it is possible to relate
the accuracy measure q to other macroscopic thermodynamic
quantities. More specifically, we will shed some light on the
interpretation of the interface energy bounds as thermody-
namic response functions under the perturbation due to adding
or removing an interface.

IV. INTERDOMAIN ENERGY AS A THERMODYNAMIC
RESPONSE FUNCTION

In this section we will elaborate on our interpretation of
the interdomain energy as a thermodynamic response to the
perturbation of building a separating interface.

A. Particle insertion: Eintd and the chemical potential

The free-energy difference �F in Theorem 1 is essentially
the change in the free energy of the system as the number
of interactions changes when the system is separated into
different noninteracting subsystems since the number of in-
teractions diminishes exactly by the number of interdomain
interactions when the interaction potential U is added or
removed.

Let us assume that prior to separation, the total number of
interactions ni of the system is a certain function h = h(N )
of the number of particles N . After the system has been
separated into noninteracting subsystems, a certain number of
interactions are no longer present. Recalling that n� denotes
the number of interdomain interactions, the change in the
number of interactions ni is given by �ni = n� .

Now let us consider the variation of the free energy with
respect to the variation of the number of interactions; i.e., we
consider �F

�ni
. Assuming that we can pass to the limit,

�F

�ni
≈ ∂F

∂ni
= 1

h′(N )

∂F

∂N
= 1

h′(N )
μ, (16)

with μ being the chemical potential of the system.
On the other hand, if we approximate �F by its upper or

lower bound, i.e., �F ≈ E f [U ] or �F ≈ E f1 f2 [U ], then

1

h′(N )
μ ≈ E f ∗ [U ]

n�

, (17)
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where E f ∗ [U ] denotes the mean interdomain energy with
respect to either f or f0 = f1 f2 or some suitable interpolant
between f and f0 that provides an even better (computable)
approximation of �F . (Note that by Theorem 1 and the
intermediate-value theorem, such an interpolant exists, e.g.,
f ∗ = λ∗ f0 + (1 − λ∗) f for some λ∗ ∈ [0, 1].) Since N is
fixed, Eq. (17) states that the average interdomain energy
needed to separate the system in two subsystems is approx-
imately proportional to the chemical potential of the system.

We can say more about the relation between the chemi-
cal potential and the average interdomain energy: Since the
chemical potential can be decomposed into μ = μid + μex,
where μid is the ideal-gas part of the chemical potential, which
depends only on the density of the system and therefore is
the same for the total system and for the separated systems,
and μex is the excess chemical potential that is directly linked
to the interactions in the system, it is the latter that counts
here. In other words, μex is what emerges upon building a
separating interface.

In simulations of liquids or gases, for example, μex can
be calculated as the average work of adding or removing
a particle from the system, i.e., the energetic response to a
perturbation due to insertion or removal of a particle. In this
case, the excess chemical potential can be computed using
the Widom insertion method (see, e.g., Refs. [16–18]). In our
situation, E f [U ] and E f1 f2 [U ] are the upper and lower bounds
of the cost of adding or removing a surface that divides the
system into two smaller fractions, which is the energetic re-
sponse to the addition or removal of interdomain interactions
and can be easily computed by taking ergodic averages of the
interaction potential.

B. Alchemical transformation:
Free-energy perturbation method

Another argument in favor of the interpretation of E f [U ]
or E f1 f2 [U ] as a thermodynamic response can be found
by considering Zwanzig’s free-energy perturbation formula
for the free-energy difference under an alchemical trans-
formation from H0 and H = H1. Letting μ0 and μ1 de-
note the corresponding Boltzmann distributions and setting
Uε = ε(H1 − H0), we consider the following homotopy (or
alchemical transformation) between the Hamiltonians H0 and
H1:

Hε = (1 − ε)H0 + εH1 = H0 + Uε, ε ∈ [0, 1]. (18)

The free-energy difference �F (ε) between a system in ther-
mal equilibrium with Hamiltonian Hε, ε ∈ [0, 1], and H0 can
now be expressed as [19]

�F (ε) = −β−1lnEμ0 [e−βUε ], (19)

where we use the shorthand Eμε
[·] to denote the expectation

with respect to με for any ε ∈ [0, 1], i.e.,

Eμε
[g] = 1

Zε

∫
�

g(r)e−βHε (r) dr, Zε =
∫

�

e−βHε (r)dr, (20)

where g : � → R is any integrable function. Note that for
ε = 1 the free-energy difference (19) agrees with the inter-
face free energy (1) if we identify the interaction potential
U with U1 = H1 − H0 and bear in mind that μ1 and μ0

correspond to the former Boltzmann distributions with densi-
ties f ∝ exp(−βH1) and f1 f2 ∝ exp(−βH0). Theorem 1 now
immediately implies that

Eμε
[Uε] � �F (ε) � Eμ0 [Uε], ε ∈ [0, 1]. (21)

Moreover, by Hölder’s inequality, �F (ε) is a concave func-
tion of ε (see Lemma 1 in Appendix A for details), which
implies the following uniform bound for the free-energy
difference.

Theorem 2. Let �F < ∞ for all ε ∈ [0, 1]. Then

min{Eμ1 [H1 − H0], 0}
� �F (ε) � max{Eμ0 [H1 − H0], 0}, ε ∈ [0, 1]. (22)

Moreover, �F is differentiable in (0,1), with

Eμ1 [H1 − H0] � �F ′(ε) � Eμ0 [H1 − H0]. (23)

Proof. The upper bound in (22) is a direct consequence
of (21). To prove the corresponding lower bound, note that
Lemma 2 implies that �F is differentiable. Moreover, for a
differentiable function, concavity is equivalent to its derivative
being decreasing. By Lemma 2,

�F ′(ε) = Eμε

[
∂Uε

∂ε

]
= Eμε

[H1 − H0]. (24)

The lower bound in (22) is now implied by (21) and the
fact that �F ′ is a decreasing function. Inequality (23) for the
derivative follows analogously. �

While Theorem 2 can serve as a first step to estimate free-
energy differences, more precise estimates may be obtained
by combining (21) with subgradient estimates, exploiting the
fact that any convex function can be lower bounded by affine
functions. Specifically, using the fact that −�F is convex, it
follows that

�F (ε) � �F (ε0) + �F ′(ε0)(ε − ε0), ε, ε0 ∈ [0, 1],
(25)

which together with (24) implies that

εEμ1 (H1 − H0) � �F (ε) � εEμ0 (H1 − H0), ε ∈ [0, 1].
(26)

While the last equation is still only a rough estimate, it can
be used to extrapolate or interpolate free-energy profiles in a
controlled way in situations in which thermodynamic integra-
tion is computationally not feasible. By a similar calculation,
one can show that the second derivative, �F ′′(ε), exists and
is equal to the variance of the interaction potential under the
probability distribution με, which can be exploited to further
refine the bounds for �F .

A side aspect of Theorem 2 is that it shows that the mean
interdomain energy is the derivative of the free energy with
respect to the perturbation parameter ε, which by definition is
a response function with respect to an ε perturbation of the
interaction potential.

C. An illustrative calculation using Gaussians

For the sake of argument, we assume that �1 = Rn and
�2 = Rm, m = N − n, are unbounded, and we consider two
assemblies of linear oscillators that are weakly coupled
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through an interface. We let ε ∈ [0, 1] and define the family
of Hamiltonians

Hε : Rn+m → R, r �→ 1

2
rT Kεr,

Kε =
(

A Cε

CT
ε B

)
∈ R(n+m)×(n+m), (27)

where the off-diagonal block

Cε =

⎛
⎜⎝0 . . . 0

...
. . .

...

ε . . . 0

⎞
⎟⎠ ∈ Rn×m (28)

represents the bilinear coupling between the nth particle of
subsystem 1 and the first particle of subsystem 2. We assume
that Kε is symmetric positive definite (SPD) for any ε ∈ [0, 1],
which requires that both A and B are SPD. Our choice entails
pairwise intradomain interactions, such as

H0(r) = 1

2

n−1∑
i=1

ki‖ri+1 − ri‖2 + 1

2

N−1∑
j=n

k j‖r j+1 − r j‖2 (29)

for ki, k j � 0. Note that the fact that Hε is quadratic and
strictly convex for all ε ∈ [0, 1] implies that με is Gaussian.
We let ρε denote the associated Gaussian density, so that in
the notation employed in the previous sections, ρ1 = f and
ρ0 = f1 f2 correspond to the Boltzmann distributions of the
fully coupled and decoupled systems. Specifically,

ρε(r) =
√

det Kε

(2π )N
exp[−βHε(r)] (30)

is the density of a Gaussian with mean zero and covariance
�ε = β−1K−1

ε . We set Uε = Hε − H0, which boils down to

Uε = εrnrn+1. (31)

In what follows, we will focus on two aspects: (1) We will
explicitly compute upper and lower bounds to the interface
free energy �F . (2) We will discuss the asymptotic behavior
of qref in the limit n, m → ∞.

To address the first point, we compute the expectation of
the interaction potential Uε under the Gaussian equilibrium
distribution με. As shown in Appendix B, the upper bound is
given by

Eμ0 [U ] = 0 (32)

since rn and rn+1 are uncorrelated, whereas the lower bound is
strictly negative and thus expresses an anticorrelation between
rn and rn+1:

Eμε
[U ] = −ε2a�

nnb�
11 + O(ε4). (33)

Here a�
i j and b�

i j denote the entries of the inverse matrices A−1

and B−1. As a consequence, assuming ε is sufficiently small
and ignoring the O(ε4) term, we have

−ε2a�
nnb�

11 � �F (ε) � 0. (34)

This easily computed and physically intuitive result
should be compared with the exact interface free energy

0.1 0.2 0.3 0.4 0.5

-0.4

-0.3

-0.2

-0.1

0

lower bd
upper bd

 F( )

FIG. 1. Interface free energy and its upper and lower bounds for
two weakly coupled linear oscillator chains, each of which consists
of n = m = 100 particles. Here ε is the coupling parameter that
models the strength of the bilinear interactions between the 100th
particle and the 101st particle (the energy is in a.u.).

(see Appendix B):

�F (ε) = (2β )−1ln
det BS

det B
, (35)

with the Schur complement of B,

BS = B − CT
ε A−1Cε =

⎛
⎜⎝b11 − ε2a�

nn . . . b1m
...

. . .
...

bm1 . . . bmm

⎞
⎟⎠, (36)

being a rank-1 perturbation of B of order ε2.
Figure 1 shows �F (ε) for β = 1 together with its up-

per and lower bounds for two homogeneous linear oscillator
chains of n = m = 100 particles with nearest-neighbor inter-
actions, such that H0 is of the form (29) with ki = k j = 1. In
this case,

A = B =

⎛
⎜⎜⎜⎜⎜⎝

2 −1 0 . . . 0
−1 2 −1 . . . 0

0 . . .
. . .

. . . 0
...

...
. . .

. . . −1
0 . . . 0 −1 2

⎞
⎟⎟⎟⎟⎟⎠ ∈ Rn×n (37)

is the negative discrete Laplacians equipped with
Dirichlet boundary conditions. In contrast to the upper and
lower bounds for �F , which can be shown to be a sufficiently
accurate approximation in many cases, expressions like (35)
are, in general, not easy to evaluate exactly (even though there
is a simple formula here); using asymptotic approximations of
�F (ε) for small ε is often no better than using the available
upper and lower bounds that are asymptotically sharp as
ε → 0.

Before we conclude this section, a final remark is in order.
In Sec. II we discussed a criterion to check whether finite-size
effects play a role in a molecular simulation. Considering our
Gaussian example for simplicity, we argue that while it is
crucial to look at the relative error qmax defined in (6) rather
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than just the smallness of the interface free energy, the relative
error is relatively robust with respect to the choice of the
reference energy scale Eref .

As a reference energy, we define the free energy of the
decoupled system, Eref = −β−1lnZ0. (Note that −β−1lnZ0 >

−β−1lnZε since �F (ε) < 0 for all ε ∈ (0, 1], but since we
assume ε is sufficiently small, the absolute difference is
negligible.) Whether or not qmax is small depends on the
interactions within the two compartments. For example, in
the linear-oscillator-chain case, with A = B being negative
discrete Laplacians, Theorem 1.1 of Ref. [20] implies that

lim
N→∞

1

N
ln det K0 = c (38)

for some constant c > 0, where N = 2n. As a consequence,

qmax = |Eμε
[U ]|

Eref
= O

(
ε2

N

)
, (39)

which gives a rational criterion to check whether a simulation
is large enough to ignore finite-size effects (assuming that the
corresponding prefactors can be estimated).

We emphasize that the denominator in qmax may display
a similar behavior even if the interactions inside the com-
partments are weak (or absent); the reason is that Eref is an
extensive quantity. As an extreme example, we consider the
case A = B = In×n, which gives

Eref = −β−1lnZ0 = (2β )−1ln
det A det B

(2π )N
= O(N ). (40)

The same scaling behavior is achieved when the average po-
tential energy instead of the free energy is considered (which
amounts to computing the trace of the covariance matrix
rather than the logarithm of its determinant), and which ref-
erence energy scale is chosen is merely a matter of taste or
computational convenience; the bottom line is that the relative
error criterion is expected to be relatively robust with respect
to the choice of the reference energy. Nevertheless, when it
comes to tuning the system size, the prefactor in the O(N )
term becomes important because it determines how large N
or n must be to achieve the desired thermodynamic accuracy
exactly.

V. CONCLUSIONS

We derived a scaling law for the relative error of certain
thermodynamic bulk properties induced by finite-size effects
in a dense quantum gas. In previous works, the relative error
criterion was applied to the simulation of thermodynamic bulk
properties of many-particle systems, including an interacting
uniform electron gas, which is often used in quantum Monte
Carlo simulations of cold quantum gases.

The approach is based on a two-sided Bogoliubov inequal-
ity for the interface free energy that measures the free-energy
difference when an interaction potential for the particles in
two otherwise noninteracting subsystems is added. We stress
that there is a trade-off between an accurate estimate of the
interface free energy in terms of its upper and lower bounds
(which may be computationally costly to evaluate) and a
scaling law that can be applied without doing any (or very
few) numerical computations but gives only the correct order

of magnitude of the required system size; when it comes to
optimizing the size of the simulation box (i.e., the number of
particles), the prefactors clearly matter.

Finally, in order to understand how the relative error is
related to thermodynamic bulk properties, we discussed the
interpretation of the free-energy error bounds as approximate
thermodynamic response functions. We admit that this part
is merely conceptual, and therefore, future work ought to
address how finite-size effects affect the relevant thermo-
dynamic response functions, such as isothermic or isobaric
compressibilities.
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APPENDIX A: CONCAVITY AND DIFFERENTIABILITY
OF THE INTERFACE FREE ENERGY

In this Appendix, we collect a few properties of the
free-energy difference under an alchemical transformation be-
tween the Hamiltonians H0 and H1,

�F (ε) = −β−1lnEμ0 [e−βUε ], ε ∈ [0, 1], (A1)

where Uε = ε(H1 − H0) and we use the shorthand Eμ0 [·] to
denote the expectation with respect to the measure μ0 with
density ρ0 ∝ exp(−βH0); since μ0 is independent of ε, we
will drop the subscript μ0 in the following.

The properties of the free-energy difference are standard
(see, e.g., Sec. 2 in Ref. [21]) and essentially follow from
the properties of its close relative, the cumulant-generating
function of a random variable (also called logarithmic
moment-generating functions). For the ease of notation, we
switch from free energies—which involve parameters β and
the like—to cumulant-generating functions.

Definition 2. Cumulant-generating function. Letting W be
any real-valued random variable (i.e., observable) on �; its
cumulant-generating function (CGF) is defined as

γ : R → (−∞,∞], s �→ lnE[esW ] =: γ (s), (A2)

where the value γ (s) = ∞ is allowed.
If we set W = −β(H1 − H0), then the free energy is recov-

ered by �F (ε) = −β−1γ (ε), ε ∈ [0, 1]. In particular, �F is
concave if and only if −�F is convex, which is exactly the
case if γ is convex on the domain [0,1].

Lemma 1. The function γ is convex.
Proof. We remind the reader of Hölder’s inequality:

For any two random variables X and Y on � and
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q, p ∈ [1,∞] with 1
p + 1

q = 1, it holds that E[|XY |] �
(E[|X |p])

1
p (E[|Y |q])

1
q .

Now letting s, t ∈ R and λ ∈ [0, 1], Hölder’s inequality for
p = 1

λ
and q = 1

1−λ
with the convention 1

0 = ∞ and 1
∞ = 0

implies that

γ [λs + (1 − λ)t] = lnE[eλsW e(1−λ)tW ]

= ln{E[(esW )λ(etW )1−λ]}
� ln{(E[esW ])λ(E[etW ])1−λ}
= λγ (s) + (1 − λ)γ (t ).

Hence, γ is convex. �
As a consequence of Lemma 1, the interface free energy

�F (ε) is a concave function of ε. The next lemma addresses
the differentiability of the CGF and free energy.

Lemma 2. Let D := {s ∈ R : γ (s) < ∞}. Then γ is differ-
entiable in the interior of D, with

γ ′(s) = E[WesW ]

E[esW ]
= E[WesW −γ (s)] =: Eμs [W ], s ∈ D◦.

(A3)

Proof. It suffices to show that the moment-generating
function ϕ(s) = E[esW ] is differentiable in D◦. Clearly, 0 ∈ D,
so D �= ∅. We further assume that its interior D◦ is nonempty.
It is easy to see that D must be an interval since δ ∈ D for
some δ > 0 implies that [0, δ] ∈ D. To see the latter, notice
that for any s ∈ [0, δ], the following inequality holds:

E[esW ] = E[esW 1{W�0}] + E[esW 1{W <0}] � E[eδW ] + 1.

By the same argument, −δ ∈ D for some δ > 0 implies that
[−δ, 0] ∈ D.

Another property of the moment-generating function that is
finite on an interval concerns the existence of moments; here
we are only interested in the mean: If s ∈ D◦ is any interior
point, then

E[|W |esW ] < ∞.

The assertion follows from choosing a δ > 0 that is suffi-
ciently small that (s − δ, s + δ) ⊂ D because

|W |esW � eδ|W |esW � e(s−δ)W + e(s+δ)W , (A4)

where the right-hand side is integrable.
Now, to prove that ϕ is differentiable in D◦, we consider

s, t ∈ D◦ and note that

ϕ(t ) − ϕ(s)

t − s
− E[WesW ] = E

[
etW − esW

t − s
− WesW

]

= E
[

esW

(
e(t−s)W − 1 − (t − s)W

t − s

)]
.

(A5)

If |t − s| < δ, then∣∣∣∣esW

(
e(t−s)W − 1 − (t − s)W

t − s

)∣∣∣∣
=

∣∣∣∣∣∣esW
∑
k�2

(t − s)k−1W k

k!

∣∣∣∣∣∣

� |W |esW
∑
k�2

|δW |k−1

(k − 1)!

� |W |(e(s−δ)W + e(s+δ)W ).

By iterating (A4), bearing in mind that s ± δ ∈ D◦, the last ex-
pression is integrable, so Lebesgue’s dominated convergence
theorem applied to (A5) yields the desired result:

lim
t→s

∣∣∣∣ϕ(t ) − ϕ(s)

t − s
− E[WesW ]

∣∣∣∣ = 0.

As a consequence, γ ′(s) = d
ds lnϕ(s) = E[WesW −γ (s)]. �

Lemma 2 can be readily translated to the free-energy
framework: If we set W = −β(H1 − H0), then �F (ε) =
−β−1lnϕ(ε). Assuming that �F (ε) is finite for all ε ∈ [0, 1],
it follows that

�F ′(ε) = Eμε
[H1 − H0]. (A6)

APPENDIX B: MATRIX CALCULATIONS

We explain the calculations that lead to the result (34) in the
linear oscillator example in Sec. IV C. To this end recall, that
με = N (0, �ε ), with �ε = β−1K−1

ε . To compute the inverse
of the stiffness matrix Kε, we define the Schur complements
of matrices A and B:

AS = A − CεB−1CT
ε , BS = B − CT

ε A−1Cε. (B1)

By the properties of Schur complements, both AS and BS are
SPD, and hence invertible, which allows us to express the
covariance matrix in the form

�ε = β−1

(
A−1

S −A−1CεB−1
S

−B−1
S CT

ε A−1 B−1
S

)
. (B2)

Since Cε is a rank-1 matrix, so is the off-diagonal block. To
compute it, we denote by ai j and bi j the entries of matrices A
and B and by a�

i j and b�
i j the corresponding entries of A−1 and

B−1. Since

CT
ε A−1Cε =

⎛
⎜⎝ε2a�

nn . . . 0
...

. . .
...

0 . . . 0

⎞
⎟⎠,

CεB−1CT
ε =

⎛
⎜⎝

0 . . . 0
...

. . .
...

0 . . . ε2b�
11

⎞
⎟⎠, (B3)

we can recast the Schur complements of A and B as

AS = A − uuT , u = (0, . . . , 0, ε

√
b�

11)T (B4)

and

BS = B − vvT , v = (ε
√

a�
nn, 0, . . . , 0)T , (B5)

where the real square roots of a�
nn and b�

11 are well defined
since both A−1 and B−1 are SPD, which implies that their
diagonal entries are positive.

To compute the lower bound of the interface free en-
ergy, we need to compute the covariance between rn and
rn+1, which depends on the off-diagonal entry of �ε. The
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inverse of the Schur complements can be computed using the
Woodbury identity for rank-1 perturbations of invertible ma-
trices (also known as the Sherman-Morrison formula; see
Ref. [22]), which yields

A−1
S = A−1 − A−1uuT A−1

1 + uT A−1u
, B−1

S = B−1 − B−1vvT B−1

1 + vT B−1v
.

(B6)

Putting everything together and ignoring terms of order 4 in
ε, we obtain the free-energy bound (34):

−ε2a�
nnb�

11 � �F (ε) � 0. (B7)

In order to compute the exact interface free energy �F (ε),
we have to compute the determinant of the block matrix Kε,
which we factorize as follows:(

A Cε

CT
ε B

)
=

(
I 0

CT
ε A−1 I

)

×
(

A 0
0 B − CT

ε A−1Cε

)(
I A−1Cε

0 I

)
,

(B8)

with B − CT
ε A−1Cε being equal to the Schur complement BS .

Since the two outer triangular matrices in the matrix product

on the right-hand side have a unit determinant, it follows that

det Kε = det A det BS. (B9)

Specifically, for ε = 0, we have

det K0 = det A det B, (B10)

which yields (35):

�F (ε) = −β−1ln
Zε

Z0

= −β−1ln

√
det K0

det Kε

= (2β )−1ln
det BS

det B
,

(B11)

where the Schur complement of B can easily be computed
using (B5):

BS =

⎛
⎜⎝b11 − ε2a�

nn . . . b1m
...

. . .
...

bm1 . . . bmm

⎞
⎟⎠. (B12)
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