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Critical behavior of the quantum Stirling heat engine
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We investigate the performance of a Stirling cycle with a working substance (WS) modeled as the quantum
Rabi model (QRM), exploring the impact of criticality on its efficiency. Our findings indicate that the criticality
of the QRM has a positive effect on improving the efficiency of the Stirling cycle when the WS parameters
are in the normal phase. Furthermore, we observe that the Carnot efficiency is asymptotically achievable as the
WS parameter approaches the critical point, even when both temperatures of the cold and hot reservoirs are
finite. Additionally, we derive the critical behavior for the efficiency of the Stirling cycle, demonstrating how the
efficiency asymptotically approaches the Carnot efficiency as the WS parameter approaches the critical point.
Our work deepens the understanding of the impact of criticality on the performance of a Stirling heat engine.
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I. INTRODUCTION

Recently, there has been a growing interest in exploring
the application of thermodynamics in the quantum regime,
facilitated by advancements in experimental control over var-
ious quantum systems [1,2]. While classical thermodynamics
traditionally focused on large systems governed by classical
physics, the emergence of quantum heat engines (QHEs) has
provided a valuable platform for testing the principles of
thermodynamics in the quantum realm. QHEs operate uti-
lizing quantum effects in either the reservoir or the working
substance (WS) to convert heat into work through a thermo-
dynamic cycle. Extensive research in the field of QHEs [3–7]
has demonstrated that quantum effects, such as quantum
coherence [8–12], quantum correlation [13,14], and energy
quantization [15], can be harnessed to enhance their perfor-
mance.

QHEs have been implemented in various experimental
platforms, including cold atoms [16,17], trapped ions [18–20],
optomechanical oscillators [21–25], quantum dots [26–29],
spins [9,14,30–34], and superconducting circuits [35–37],
among others. Recent studies suggest that the criticality may
substantially impact the performance of QHEs [38–54], with
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some research indicating that criticality could offer advan-
tages in improving efficiency. For instance, by modeling the
WS of a Stirling cycle as a Lipkin-Meshkov-Glick model and
exploiting its criticality, it is possible to approach the Carnot
efficiency in the low-temperature limit [38]. In Ref. [39] it
has been demonstrated that criticality can enable quantum
Otto engines to approach Carnot efficiency without sacrificing
power. Another study [40] proposed a thermodynamic cycle
with two interaction-driven Stokes using a one-dimensional
ultracold gas as the WS, revealing that the average work per
particle approaches a maximum at the critical point.

However, it is not yet fully understood how universality at
the critical point impacts the efficiency of QHEs. Resolving
this issue requires determining the asymptotic behavior of a
quantum heat engine as its parameters approach the critical
point. To this end, it would be beneficial to consider a model
with an analytical solution and a phase transition that can
be easily observed through experiments. Recent research has
demonstrated that a quantum phase transition (QPT) can occur
in a system of only two constituents: a two-level atom and a
bosonic mode [55,56]. This system, described by the quantum
Rabi model (QRM) and with an analytical solution, has been
experimentally observed to exhibit QPT using trapped ions
in a Pauli trap [57]. QHEs with WSs described by the QRM
or generalized QRM have been explored in several research
works [58,59].

In this paper we investigate the critical behavior of Stirling
engine efficiency based on WSs modeled as the QRM. Firstly,
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we analyze whether criticality is beneficial for improving the
efficiency of such QHE by using the analytical solution of
the QRM. Furthermore, we derive the asymptotic behavior
of efficiency as a control parameter approaches the critical
point, which illustrates a dependence on the critical expo-
nent. Additionally, we present numerical verifications that
support our findings. This result improves our understanding
of heat engines utilizing criticality. Furthermore, we observe
an extension of prior knowledge, where a Stirling cycle can
approach the Carnot efficiency at the critical point at finite
temperature.

This paper is organized as follows. Section II introduces
the quantum Stirling heat engine and the QRM. In Sec. III
we explore the influence of criticality on the efficiency of a
quantum Stirling heat engine, including a discussion of the
efficiency’s asymptotic behavior in the vicinity of the critical
point. In Sec. IV numerical results are presented to support
the findings introduced in Sec. III. Lastly, Sec. V provides a
summary of the key findings.

II. THE QUANTUM STIRLING HEAT ENGINE

A. The quantum Rabi model

First we introduce the QRM, which is considered as the
WS in this work. The QRM Hamiltonian can be expressed as
(for simplicity, we set h̄ = 1 here and after)

HRabi = ω0a†a + �

2
σz − λ

(
a + a†

)
σx, (1)

where σx,z are Pauli matrices for a two-level system, a (a†)
is an annihilation (creation) operator for a cavity field, and
λ is the coupling strength. Introducing a dimensionless cou-
pling constant g = 2λ/

√
ω0�, in the limit ξ ≡ �/ω0 → ∞,

the Rabi model undergoes a second-order QPT at the critical
point g = gC ≡ 1 [55], which can be illustrated in a peda-
gogic way [60]. The position and momentum operators x =
(a† + a)/

√
2ξ , and p = i

√
ξ (a† − a)/

√
2. The Hamiltonian

in Eq. (1) becomes H ′
Rabi = HRabi/�, namely,

H ′
Rabi = σz

2
+ p2

2ξ 2
+ g2σz + 1

2
x2 − g4

4
σzx

4. (2)

Taking the limit ξ → ∞, the term of p2/(2ξ 2) should be
neglected and the low-energy effective potential is

ε0(x) = −1

2
+ 1 − g2

2
x2 + g4

4
x4 + · · · , (3)

which has the Landau form. One readily concludes that if
g < gC , ε0(x) has one minimum at x = 0, and if g > gC ,
there will be two nonzero minima, indicating a symmetry-
breaking phase. When g < gC , there is no photon number
expectation indicating a normal phase, and when g > gC , a
nonzero photon number expectation arises, which is known as
the superradiant phase.

Even though the H ′
Rabi reveals the mechanism of phase tran-

sition in the quantum model, it becomes classical by dropping
the p2 term. To obtain the energy spectra of the QRM in the
vicinity of the critical point, we apply an alternative way to
introduce the effective Hamiltonian following Ref. [55]. In
the normal phase, by applying a unitary transformation the

effective Hamiltonian can be obtained as

Heff = �†HRabi�, (4)

where

� = exp

[
λ

ω
(a + a†)(σ+ − σ−)

]
. (5)

The transformed Hamiltonian (4) decouples the spin subspace
H↓ and H↑, and by projecting it onto H↓, one gets the low-
energy effective Hamiltonian of the QRM in the normal phase:

Hnp = ω0a†a − ω0g2

4
(a + a†)2 − �

2
. (6)

Diagonalizing this Hamiltonian into Hnp = εnpb†b − �/2,
with the excitation energy

εnp = ω0

√
1 − g2. (7)

εnp is real only for g � gC and vanishes at g = gC . In the
superradiant phase, where g > 1, the low-energy effective
Hamiltonian reads

Hsp = ω0a†a − ω0

4g4
(a + a†)2 − �

4
(g2 + g−2), (8)

which is in a displaced frame of the bosonic mode. Due to its
strong coupling to the bosonic mode, the qubit ground state
rotates toward the x axis. The Hamiltonian (8) has a similar
form as (6), which can be diagonalized similarly, resulting in
Hsp = εspb†b − �(g2 + g−2)/4. The energy spectra in the su-
perradiant phase are twice degenerate with excitation energy

εsp = ω0

√
1 − g−4, (9)

which is real for g > gC .
In this work we mainly discuss the thermodynamics of the

QRM in the normal phase and require all the thermodynamic
processes to be quasistatic. The equilibrium state of the QRM
can be described by the Gibbs state ρ = exp(−Hnp/T )/Z ,
where Z = Tr[exp(−Hnp/T )] is the partition function and T
is the temperature (we set the Boltzmann constant kB = 1 here
and after). With straightforward calculation, we can obtain
the internal energy U = T 2∂ lnZ/∂T and the entropy S =
U/T + lnZ as

U = εnp

exp(εnp/T ) − 1
− �

2
, (10)

S = εnp/T

exp(εnp/T ) − 1
− ln[1 − exp(−εnp/T )]. (11)

B. The quantum Stirling cycle

The QRM Stirling heat engine cycle comprises four qua-
sistatic thermodynamic processes, as illustrated in the Fig. 1.
This cycle involves two isothermal processes, A → B and
C → D, and two isochoric processes, B → C and D → A.
In the isothermal process A → B (C → D), the control pa-
rameter g increases from g1 to g2 (decreases from g2 to g1)
while maintaining thermal contact between the system and a
heat bath at high (low) temperature Th (Tc). In practical terms,
the QRM could be realized using a single atom in a single-
mode cavity field, and the heat bath could be modeled by the
environmental multimode electromagnetic fields. To ensure
that the working substance remains in thermal equilibrium
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FIG. 1. Entropy-coupling diagram (S − g) of the Stirling cycle
(clockwise or anticlockwise, depending on the work output), which
consists of two isothermal processes and two isochoric processes.
Here g is the only tunable parameter in completing the Stirling
cycle; g1 and g2 are the corresponding parameters in the two iso-
choric processes D → A and B → C, respectively; and Th and Tc are
the corresponding temperatures of hot (A → B) and cold (C → D)
isothermal processes, respectively.

with the heat bath, we assume that the change of eigenenergy
spectra is much slower than the system relaxation. The details
of the system-bath coupling do not affect the conclusions of
this work. During the isochoric processes, the control param-
eter g is fixed at g2 for B → C and g1 for D → A. To ensure
that the isochoric process proceeds quasistatically, we assume
that the system is in contact with a heat bath that slowly
changes its temperature from Th to Tc for B → C and from
Tc to Th for D → A.

In this study we adopt a convention where the work done
to the outside and heat absorbed by the system are considered
positive, and vice versa. We define heat and entropy variation
during the process X → Y as QXY and SXY, respectively,
where X(Y) represents the state of A, B, C, or D. As entropy
is a state function, we have SXY = SY − SX. In one cycle, the
total heat absorbed by the quantum Stirling heat engine reads

Qin = QAB + QDA, (12)

and the total output work is

W = QAB + QBC + QCD + QDA. (13)

In the quasistatic isothermal processes, the heat exchanges
can be calculated by QAB = ThSAB and QCD = TcSCD, re-
spectively. While in the isochoric processes, because the
work done is zero, the heat exchanges can be obtained from
the variation of internal energy, QDA = UA − UD and QBC =
UC − UB.

Therefore the efficiency of the quantum Stirling heat en-
gine defined by η = W/Qin can be expressed as

η = ηC + �1 + �2

1 + �2
, (14)

where ηC = 1 − Tc/Th is the Carnot efficiency and

�1 = [QBC − Tc(SDA + SBC)]/QAB, (15)

�2 = QDA/QAB. (16)

We emphasize that the derivation of Eq. (14) is independent
of the WS.

The Carnot cycle comprises two isothermal processes and
two adiabatic processes, with its efficiency ηC establishing an
upper limit for the efficiency of any classical thermodynamic
cycle. The Stirling cycle is obtained by substituting the two
adiabatic processes in the Carnot cycle with two isochoric pro-
cesses, and its efficiency is given in Eq. (14). The difference
between Eq. (14) and the Carnot efficiency stems from �1

and �2, which arises due to the irreversibility of the isochoric
processes. In the subsequent section we will illustrate that by
employing the criticality of the QRM; the difference between
the Stirling efficiency given in Eq. (14) and the Carnot effi-
ciency can be asymptotically eliminated.

III. THE CRITICAL BEHAVIOR OF QRM
STIRLING ENGINE

A. Heat engine efficiency near critical point

In this section we consider a Stirling cycle with the WS
modeled as the QRM, and we employ the g as the only tunable
parameter. We will demonstrate that when the thermodynamic
cycle introduced in the previous section satisfies the condition
g1 < g2 → gC , the corresponding efficiency approaches the
Carnot limit. To validate this conclusion, we first show that as
g2 approaches the critical point gC , both �1 and �2, defined
in Eqs. (15) and (16), converge to zero. To demonstrate this
we will prove that the quantities in the numerators (QDA,
QBC, SDA, and SBC) are finite. More importantly, we will
subsequently show that QAB in the denominator diverges as
g2 approaches gC .

The output work is zero in the quantum isochoric process
at g1. As a result, the heat absorbed from the bath QDA equals
the change of internal energy, which can be calculated by

QDA =
∫ Th

Tc

∂U (T, g1)

∂T
dT ≡

∫ Th

Tc

C[εnp(g1)/T ]dT . (17)

Here, we defined the isochoric capacity C[εnp(g1)/T ],
which can be expressed by the function C(x) =
(x/2)2csch2(x/2) (see Appendix A for details). When
x ∈ (0,∞), it can be proved that C(x) is a finite monotonic
decreasing function, with limits

lim
x→0

C(x) = 1 and lim
x→∞ C(x) = 0. (18)

With the above properties of C(x), it is straightforward to show
that QDA is finite with bounds

0 < QDA < (Th − Tc)C[εnp(g1)/Th]. (19)

By the same logic, the heat release QBC in the isochoric
process at g2 is bounded by

−(Th − Tc)C[εnp(g2)/Th] < QBC < 0. (20)

The change of entropy during the isochoric process D → A
can be written as

SDA =
∫ Th

Tc

∂S(T, g1)

∂T
dT =

∫ Th

Tc

1

T
C[εnp(g1)/T ]dT, (21)

where we have used Eqs. (10) and (11) in deriving the last
step. According to the monotonicity of C(x), it can be found
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that

0 < SDA <
Th − Tc

Tc
C[εnp(g1)/Th]. (22)

Similarly, we can also obtain

−Th − Tc

Tc
C[εnp(g2)/Th] < SBC < 0. (23)

Now we have shown that the numerators of �1 and �2 are
finite for nonzero Carnot efficiency (Th 
= Tc). Whether η can
approach ηC depends on whether QAB = ThSAB is divergent
or not. In the isochoric process B → C, the energy spectra
tend to degenerate, εnp(g2) → 0 when g2 → gC . According
to Eq. (11), the entropy SB can be approximated as

SB ≈ − ln[εnp(g2)/Th] (24)

when εnp(g2)/Th � 1. Hence, the entropy SB is divergent near
the critical point (note that SC is also divergent, but SBC is
finite due to the finite capacity). On the other hand, in the
isochoric process D → A, the entropy SA is finite because the
energy gap εnp(g1)/Th is finite. As a result,

lim
g2→gC

QAB ≡ Th(SB − SA) → +∞. (25)

The above facts imply

lim
g2→gC

�1 = �2 = 0. (26)

Therefore we have proved that under the condition
(g1<)g2 → gC , the efficiency of the QRM Stirling engine can
approach the Carnot limit.

It must be emphasized that the aforementioned conclu-
sion is specifically applicable to finite temperatures. When
approaching the critical point in the low-temperature limit,
two different orders of the limits, limT →0 limg2→gC and
limg2→gC limT →0, are not equivalent. The former one is
proper in the low-temperature limit. As in this case, the
population will be uniformly distributed over all the degen-
erate states, resulting in the divergence of the entropy, i.e.,
SB, SD → ∞. Moreover, we also require εnp/T to be finite
even when T → 0. Therefore, the heat engine in the low-
temperature limit has the same thermodynamic behavior as
the finite-temperature case. On the other hand, if the order
limg2→gC limT →0 is adopted, all the populations will leave in
the nondegenerate ground state when the energy gap εnp is
finite, resulting in a zero entropy in the low-temperature limit.

It is noteworthy that in this work a discussion of the
high-temperature limit is precluded due to the following ratio-
nale: To address the critical behavior, we use the low-energy
effective Hamiltonian of the QRM. Thus, thermodynamics
involves high-energy spectra in the high-temperature limit,
and our approach will lead to inaccurate results.

The high efficiency of the QRM Stirling heat engine re-
lies on the divergence of the entropy variation SAB during
the isothermal process, which is a consequence of the en-
ergy spectra degenerating at the critical point. Despite the
irreversibility of the two isochoric processes, the entropy pro-
duction during these processes can be considered negligible
in comparison to SAB. It is noteworthy that the classical Stir-
ling heat engine can also approach the Carnot limit, but the
mechanism differs significantly from its quantum counterpart

discussed here. In the classical Stirling cycle, heat exchanges
in the two isochoric processes are facilitated by a component
called a regenerator [61], ensuring that the heat absorbed and
released from the bath precisely cancel each other. Conse-
quently, the classical Stirling heat engine can approach the
Carnot efficiency. However, in our quantum Stirling heat en-
gine case, achieving Carnot efficiency through the regenerator
is impossible due to the different heat capacities at g1 and g2.
Therefore the heat exchanges in the two isochoric processes
no longer cancel each other.

In practice, it is crucial to emphasize that reaching or cross-
ing the critical point via a quantum isothermal process in finite
time is unattainable in the infinity ξ limit. Instead, our focus
is on the critical behavior of a quasistatic thermodynamic
cycle by tuning g2 asymptotically approaching gC without
referring to the relaxation dynamics of the QRM. In such a
quasistatic cycle, once the control protocol of g is fixed, the
QRM can only serve as a heat engine (Qin > 0, Qout < 0, and
W > 0). This conclusion is based on the following reasons:
Eqs. (20) and (25) imply Qin = QDA + QAB > 0. By the same
approach, it can be demonstrated that Qout = QBC + QCD < 0.
Moreover, the efficiency is positive as η → ηC , and then W =
ηQin is also positive. However, in the case of a finite-time
cycle, the quantum heat engine could also operate in other
modes, as suggested in Refs. [57,62].

At the end of this section we will establish that the effi-
ciency converges to the Carnot efficiency as g2 crosses the
critical point in the low-temperature limit. This assertion is
made under the assumption that Tc/Th is a finite constant. In
the low-temperature limit, the system resides in the ground
state as Th → 0. In the normal phase, the ground state is
nondegenerate, resulting in limTh→0 SA = SD → 0. However,
when g2 > gC , the ground state exhibits a twofold degeneracy
(as mentioned in Sec. II A). In the low-temperature limit,
the system is evenly distributed between these two degener-
ate ground states, leading to limTh→0 SAB = SB → ln 2. Next,
we aim to demonstrate that limTh→0 QBC/QAB → 0. In the
case of g2 > gC , the stroke B → C operates in the superra-
diant phase, and we can derive two inequalities similar to
Eqs. (20) and (23) in the normal phase, by only substituting
the excitation energy in the normal phase εnp with the one in
the superradiant phase εsp (see Appendix A for details):

−(Th − Tc)C[εsp(g2)/Th] < QBC < 0, (27)

−Th − Tc

Tc
C[εsp(g2)/Th] < SBC < 0. (28)

Furthermore, by dividing the inequality (27) by QAB and using
the result limT →0 C(εsp/T ) → 0 of Eq. (18), we have

lim
Th→0

QBC/QAB → 0. (29)

In the same manner, it can be proven that the follow-
ing ratios QDA/QAB, SDA/SAB, SBC/SAB all approach to zero
when Th → 0. Combining these results with Eqs. (14), (15),
and (16), we arrive at limTh→0 η → ηC . In summary, for a
Stirling heat engine with the WS modeled as the QRM, in the
limit as ξ → ∞, when g1 < gC and g2 > gC , the efficiency
tends towards the Carnot efficiency in the low-temperature
limit.
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B. The critical behavior of the efficiency

In this section we will discuss the critical behavior of
efficiency, focusing on how η approaches ηC as g2 → gC .
When g2 is sufficiently close to gC , from Eq. (26) we see that
�1, �2 � 1. To the first order of �1 and �2, Eq. (14) can be
approximated as

η − ηC ≈ �1 + (1 − ηC )�2 ≈ − α

SAB
, (30)

where the term

α ≡ (1 − ηC )

(
QDA

Th
+ QBC

Tc
− SDA − SBC

)
(31)

is finite according to Eqs. (19), (20), (22), and (23). On the
other hand, we can prove

lim
|g2−gC |→0

SAB → − ln[εnp(g2)/Th], (32)

based on the fact of Eq. (24) and SB is finite. Therefore, con-
sidering the normal phase energy spectral εnp = ω0

√
1 − g2

given by Eq. (7), we obtain the critical behavior of the heat
engine efficiency as

lim
|g2−gC |→0

ηC − η → α

ln[εnp(g2)/Th]
∝ α

ln (gC − g2)zν , (33)

where zν = 1/2 is the dynamical critical exponent. We can
readily further conclude that Eq. (33) is valid for any WSs
with homogeneous energy-level spacing εnp(sp)(g) ∝ |gC −
g|zν in the vicinity of the critical point and undergoes a
thermodynamic cycle depicted in Sec. II. From Eq. (33) we
readily know that the efficiency η approaches the Carnot
efficiency ηC when the g2 → gC , which means that by ap-
proaching the critical coupling point, the efficiency of the heat
engine can be greatly improved by approaching the Carnot
efficiency. Furthermore, Eq. (33) describes the asymptotic
behavior of a quantum heat engine when approaching the
critical point and illustrates how the efficiency depends on the
critical exponent. This asymptotic behavior is characterized
by a logarithmic divergence in the denominator of Eq. (33).

IV. NUMERICAL RESULTS

This section presents numerical demonstrations to support
the conclusions drawn in the previous section. In deriving the
numerical results, we first perform numerical diagonalization
on the Hamiltonian of the QRM in Eq. (1) (see Appendix B for
details). Denoting the eigenvalues as {Ek|k = 1, 2, . . . , N},
for a Gibbs state of temperature T , the kth energy population
reads Pk (T, g) = exp[−Ek (g)/T ]/Z (T, g), and the partition
function is given by Z (T, g) = ∑

l exp[−El (g)/T ]. The
entropy and internal energy are computed by the following
expressions:

S(T, g) = −
∑

k

Pk (T, g) ln Pk (T, g), (34)

U (T, g) = −
∑

k

Pk (T, g)Ek (g). (35)

The entropies (internal energies) Si(Ui ), i = A,B,C,D can be
calculated with the associated T and g according to the Stir-
ling protocol shown in Fig. 1. The heat exchanges during

(a)

(b)

FIG. 2. Numerical evidence for critical Stirling engine of satu-
rating to the Carnot efficiency in the low-temperature limit. (a) The
efficiency vs g2 for different temperatures, we set ξ = 400. (b) The
efficiency vs g2 for different ξ , the temperature of the cold reservoir is
set to be Tc/ω0 = 2×10−2. The vertical gray solid line represents the
critical point gC = 1, while the horizontal gray solid line represents
the Carnot efficiency. Other parameters: the temperature of the hot
reservoir, Th = 1.1Tc.

the four strokes in Eqs. (12) and (13) are QAB = ThSAB,
QCD = TcSCD, QBC = UC − UB, QDA = UA − UD. Further, we
can obtain Qin and W and the efficiency η = W/Qin. In
the simulation, we chose g1 = 0.2, ω0 = 2π×0.2 kHz, � =
2π×(20, 40, 80) kHz, ξ = 100, 200, 400, and 0.2 � g2 �
1.8. Those parameters are roughly consistent with those in
a recent theoretic proposal [63] and experimental realiza-
tion [64] of observing QRM QPT in a trapped-ion system.
It should be noted that although reaching or crossing the
critical point via a quantum isothermal process in finite time is
unattainable in the infinite ξ limit, it is allowed in the finite-ξ
case, as we considered in our numerical calculations.

One of the key conclusions from this study is that as g2

approaches the critical point, the efficiency of the HE dis-
cussed in Sec. II B tends to approach the Carnot efficiency.
Additionally, we explore the scenario when g2 crosses the crit-
ical point in the low-temperature limit and demonstrate that
the efficiency converges to the Carnot efficiency at g2 = gC .
These conclusions find strong support in the numerical results
depicted in Figs. 2 and 3.

Figure 2(a) illustrates how the efficiency behaves as the
temperature approaches the low-temperature limit. Consis-
tent with theoretical predictions in Sec. III A, the efficiency
saturates to the Carnot efficiency at a specific point in the low-
temperature cases. We denote this point as gconv, i.e., for g2 �
gconv, ηC − η = 0. Unlike theoretical predictions, however,
gconv 
= gC , attributed to the finite nature of ξ in numeri-
cal simulations compared to the theoretical limit of ξ → ∞.
Figure 2(b) demonstrates how the efficiency curve evolves
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(a)

(b)

FIG. 3. Efficiency of the critical Stirling engine in finite-
temperature cases. (a) The efficiency vs g2 for Tc/ω0 = 1 and ξ =
400. This curve exhibits a maximum value. (b) The efficiency vs g2

for different ξ , the cold reservoir temperature is set to be Tc/ω0 = 1.
The vertical gray solid line represents the critical point gC = 1, and
the temperature of the hot reservoir Th = 1.1Tc.

with changing ξ . It is noteworthy that gconv approaches gC

with increasing ξ .
Figure 3 shows how the efficiency changes with g2 when

the temperature and ξ are both finite. As depicted in Fig. 3(a),
the efficiency reaches a maximum. We define gm as the value
of g2 at maximum efficiency for finite ξ , expressed as

gm := argmax[η(g2)], for finite ξ . (36)

Figure 3(b) illustrates how the efficiency at finite temperatures
changes with ξ . It is clear that as ξ increases, gm values ap-
proach gC , and the efficiencies approach the Carnot efficiency
ηC . These results indicate that gm and η will achieve gC and
ηC , respectively, as ξ → ∞. As introduced in Sec. II A, in the
limit ξ → ∞, the energy gaps for the normal and superra-
diant phases are given by Eqs. (7) and (9). Accordingly, the
system exhibits infinite degeneracy at g = gC . This infinite
degeneracy is a crucial factor leading to the finite-temperature
heat engine efficiency approaching the Carnot efficiency as
g2 → gC . In Fig. 4 we present the lowest eight energy levels
of the QRM. It is evident that in the case of finite ξ , the
energy levels of the QRM also exhibit degeneracy. Moreover,
unlike the ξ → ∞ scenario, the degeneracy points differ for
distinct pairs of degenerate energy levels, with higher energy
levels corresponding to larger values of g at which degeneracy
occurs. However, as depicted in the figure, with increasing
ξ , all degeneracy points approach gC . Simultaneously, the
spacing between different degenerate energy levels decreases
with increasing ξ . These trends in the energy spectrum imply

(a) (b)

(c) (d)

(e) (f)

FIG. 4. The lowest eight energies of the QRM vs g with different
transition frequencies: (a) ξ = 100, (c) ξ = 200, and (e) ξ = 400.
The corresponding lowest two energies are shown in the right col-
umn. The vertical gray solid line locates the critical point. In each
plot we encompass all degeneracy points with a black dashed circle
and connect the centers of these circles in each column with a red
dashed line. The trend of the red lines indicates that with increasing
ξ , all degeneracy points move closer to gC . The size of the circles
encompassing all degeneracy points in the left column decreases,
suggesting a narrowing of the energy gaps between degenerate levels.

that the energy levels tend to become infinitely degenerate at
the critical point as ξ approaches infinity. The deviation of
degeneracy points at finite ξ from gC explains the discrep-
ancies in Figs. 2 and 3 compared to the theoretical analysis
with ξ → ∞ in Sec. II A, including deviations in the finite-
temperature cases and its asymptotic behavior.

V. CONCLUSION AND DISCUSSION

In this paper we explore the influence of quantum criti-
cality on the efficiency of a Stirling cycle that utilizes the
QRM as its WS. We assume that the effective coupling
constant g is the only tunable parameter of the QRM Hamil-
tonian needed to complete the thermodynamic cycle. The
Stirling cycle comprises two isochoric processes with corre-
sponding coupling constants of g1 and g2 such that g1 < g2.
Our results demonstrate that the efficiency approaches the
Carnot efficiency when the thermodynamic cycle satisfies the
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conditions g1 < g2 → gC . This statement should be under-
stood in an asymptotic sense, namely, it is possible to get as
close as one wants to the critical point and hence to the Carnot
efficiency. Furthermore, we derive an analytical expression
for the efficiency of the quantum Stirling engine when g2

is near the critical point. Our analysis reveals that as g2

approaches the critical point, the asymptotic behavior of a
quantum heat engine is characterized by a logarithmic di-
vergence in the denominator. Additionally, we provide a
numerical demonstration of our analytical findings, which
includes an explicit analysis of the finite-ξ effect.

This study deepens our understanding of how critical-
ity affects the performance of a Stirling heat engine while
also advancing our appreciation of criticality. At last, it
would be interesting to mention an experimental possibility to
realize the criticality of the QRM. It is well known that the
occurrence of an superradiant phase transition (SPT) in the
QRM cannot be observed in cavity QED due to the presence
of a no-go theorem. Recently, although the SPT has not been
observed in circuit QED, there have been proposals to utilize
a hybrid circuit QED system to circumvent the no-go theorem
and achieve a single-photon-triggered SPT [65,66]. Given the
experimental challenges encountered in the cavity and circuit
QED systems, quantum simulation offers an alternative way
for experimentally studying the SPT of the QRM. Notably,
the SPT of the standard QRM has been successfully simulated
using trapped ions [64] and an NMR system [67], which
encourages us to expect that the experimental study on the
criticality of the QRM heat engine will come soon.
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APPENDIX A: THE CAPACITY FUNCTION C(x)

Given the internal energy in the normal phase in Eq. (10),
it can be straightforwardly obtained that

∂

∂T
U (T, g) = ε2

np(g)

T 2

eεnp(g)/T

[eεnp(g)/T − 1]2
. (A1)

Considering the function we defined in the main text,

C(x) ≡
( x

2

)2
csch2 x

2
= x2ex

(ex − 1)2
, (A2)

we can write the capacity as

∂

∂T
U (T, g) = C[εnp(g)/T ]. (A3)

In the following we will prove that C(x) is a monotonically
decreasing function. The derivative of C(x) is

d

dx
C(x) = −x

4
csch

x

2

(
xcosh

x

2
− 2 sinh

x

2

)
. (A4)

We can see that xcschx/2 > 0 when x > 0. The term in the
above brackets is also positive when x > 0, because it equals
zero when x = 0 and is nondecreasing as

d

dx

(
x cosh

x

2
− 2 sinh

x

2

)
= x

2
sinh

x

2
� 0.

As a result, we prove that the derivative of capacity C(x) is
a monotonically decreasing function due to dC(x)/dt < 0.
In addition, it is simple to demonstrate limx→0 C(x) = 1 and
limx→∞ C(x) = 0. Thus, C(x) ∈ (0, 1) for x ∈ (0,∞).

Next we discuss the heat capacity in the superradiant
phase. As we have introduced in Sec. II A, the diagonalized
QRM Hamiltonian in the g > gC regime reads Hsp = εspb†b −
�(g2 + g−2)/4, and combining with Eq. (9), one can get the
internal energy in the superradiant phase by the same way
Eq. (10) was derived,

Usp = εsp

exp(εsp/T ) − 1
− �(g2 + g−2)

4
, (A5)

and straightforwardly, we have the heat capacity in the normal
phase:

∂

∂T
Usp(T, g) = ε2

sp(g)

T 2

eεsp(g)/T

[eεsp(g)/T − 1]2
. (A6)

By the definition in Eq. (A2), the above heat capacity can be
rewritten as

∂

∂T
Usp(T, g) = C[εsp(g)/T ], (A7)

which has the same form as (A3), with the only difference
being the replacement of the excitation energy in the normal
phase εnp with the excitation energy in the superradiant phase
εsp. For cases in which g2 > gC , by the same way Eq. (20) was
derived, one can obtain a similar inequality as follows:

−(Th − Tc)C[εsp(g2)/Th] < QBC < 0. (A8)

Similarly, the inequality (23) is not available in the regime
g2 > gC ; instead, the following relation can be derived:

−Th − Tc

Tc
C[εsp(g2)/Th] < SBC < 0. (A9)

APPENDIX B: THE EXACT DIAGONALIZATION
OF THE QRM

In formulating the numerical results, we first perform
numerical diagonalization on the Hamiltonian of the QRM
in Eq. (1). In the truncated basis {|+,−(N − 1)〉, |+,−(N −
2)〉, . . . , |+, 0〉, |−, 0〉, . . . , |−, N − 2〉, |−, N − 1〉}, where
|±〉 are eigenstates of σz, satisfying σz|±〉 = ±|±〉,
{|n〉|n = 0, 1, 2, . . . , N − 1} are Fock states, and the QRM
Hamiltonian in Eq. (1) can be written in the following
form:

H =
(

H++ H+−
H−+ H−−

)
, (B1)
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where

H±± =

⎛
⎜⎜⎜⎜⎜⎜⎝

�
2 0 0 · · · 0

0 ω0 ± �
2 0 . . .

...

0 0 . . .
. . . 0

...
. . .

. . . (N − 2)ω0 ± �
2 0

0 · · · 0 0 (N − 1)ω0 ± �
2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B2)

H+− = H−+ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −λ 0 · · · 0

−λ 0 . . .
. . .

...

0 . . .
. . . −λ

√
N − 3 0

...
. . . −λ

√
N − 3 0 −λ

√
N − 2

0 · · · 0 −λ
√

N − 2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B3)

By applying exact diagonalization to the above Hamiltonian, we get its eigenvalues {Ek|k = 1, 2, . . . , N}.
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