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Intrinsic correlations for statistical ensembles of Dirac-like structures
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The Weyl-Wigner formalism for evaluating the intrinsic information of Dirac bispinors as correlated qubits
(localized) in a magnetic field is investigated in the extension to statistical ensembles. The confining external field
quantizes the quantum correlation measures implied by the spin-parity qubit structure of the Dirac equation in
3 + 1 dimensions, which simplifies the computation of the entanglement quantifier for mixed states in relativistic
Landau levels. This allows for the evaluation of quantum and classical correlations in terms of entropy measures
for Dirac structures that are eventually mixed. Our results are twofold. First, a family of mixed Gaussian states is
obtained in phase space, and its intrinsic correlation structure is computed in closed form. Second, the partition
function for the low-dimensional Dirac equation in a magnetic field is derived through complex integration
techniques. It describes the low-temperature regime in terms of analytically continued zeta functions and the
high-temperature limit as a polynomial on the temperature variable. The connection with lower dimensional
systems is further elicited by mapping the spin-parity qubits to valley-sublattice bispinors of the low-energy
effective Hamiltonian of graphene.

DOI: 10.1103/PhysRevA.109.022206

I. INTRODUCTION

In spite of being proposed through distinct quantum me-
chanical platforms, information processing with statistical
ensembles is still a challenging task in the context of its
continuously investigated open theoretical issues. Discrete
and continuous quantum information issues are identified in
numerous arrangements [1], from qubit systems [2–4] to high-
dimensional states [5]. Of course, they do not exhaust all
the possibilities, since incremental degrees of freedom, for
instance, related to internal symmetries, can also be neces-
sary for encompassing the quantum information content of a
physical system. That is the case of relativistic-like systems
which have also been shown to accommodate a consistent
information approach to spinors [6–8]. In particular, Dirac-
like structures have been described in many physical systems,
standing as platforms for implementing quantum information
protocols [9–19] where the intrinsic entanglement—related to
internal degrees of freedom—plays a determinant role.

The quantum information profile of Dirac bispinors has
been thoroughly investigated with distinct types of interacting
potentials, as supported by the SU(2) ⊗ SU(2) group struc-
ture implied by the Dirac equation [20]. In other words, two
discrete degrees of freedom, spin and parity, have their en-
tanglement affected by external fields, through interactions
supported by the Poincaré group of symmetry [7,21]. In ad-
dition, such an associated internal correlation structure is also
modified by phase-space variables when the Hamiltonian has
some explicit dependence on position variables [8,22,23]. To
summarize, Dirac bispinors can be regarded as two-qubit
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entangled structures [6,7], eventually correlated by phase-
space variables [20]. Thus, the inclusion of position-
dependent interactions can be regarded as a natural extension
from a qubit theory to a continuous variable approach in
Dirac-like structures which, by the way, is relevant for de-
scribing Hamiltonian dynamics with a reduced symmetry
[24].

In this context, despite the subtleties of each physical
system, some transversal questions also must be answered
to complete understand the nature of correlations in mixed
states. The difficulty lies not exclusively in the existence of
multiple quantifiers of entanglement, but also in quantifying
other types of quantum correlations that are distinct from
entanglement [25–27]. These obstacles need to be addressed
in order to characterize a physical system as a candidate
for quantum computation protocols. Therefore, distinguish-
ing quantum from classical correlations becomes a crucial
endeavor.

From our recent results, the Dirac Hamiltonian in a con-
fining magnetic field has been considered in the dynamics
of pure Gaussian states, for which the phase and configura-
tion space representations have been shown to be completely
equivalent [28]. Even though this two-way correspondence
is formally indisputable, the relevant information measures
become much clearer in the Weyl-Wigner representation of
quantum mechanics [8,29–35], as disseminated from the
quantum information framework with light fields [36]. From
those results, one confirms that the phase-space representation
is a natural extension for addressing the classical limit and
properties of mixed states.

Aside from time-dependent phenomena, external interac-
tions are also expected to influence the quantum information
profile of spinors in a more realistic description of a quantum
information approach to the Dirac equation [7]. However,
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when the exact details of the environment are not known, an
option is to resort to statistical ensembles, instead of solving
an even more intricate Hamiltonian. Thus, the specification of
the mixed state depends on the type of interaction under inves-
tigation. The canonical ensemble is a prime example of such
interactions, which can be studied under the Weyl-Wigner
formalism in order to assess the quantum information profile
of intrinsically correlated bispinors at finite temperatures.

For all these reasons, the main goal of this work is to obtain
the information profile of statistical ensembles in relativistic
Landau levels, culminating in the partition function for a
quantum information theory at finite temperatures. Consid-
ering that randomness is a type of classical correlation, it is
essential to distinguish it from true quantum resources, i.e.,
from quantum correlations. In particular, our analysis focuses
on the quantum concurrence as a quantifier of entanglement
of formation extended to mixed states.

Thus, the paper is organized as follows. In Sec. II the
intrinsic entanglement measure for mixed Dirac bispinors is
revisited, and the framework for evaluating intrinsic corre-
lations in terms of entropy measures and Wigner functions
is recovered. In Sec. III a family of mixed Gaussian states
in relativistic Landau levels is obtained, and the engendered
connection between the continuous-variable entropy and lo-
calization is discussed. The obtained results are applied for
the analysis of a canonical ensemble of the low-dimensional
Dirac equation in Sec. IV. In particular, the partition function
and intrinsic correlations in the high-temperature limit are
all obtained through analytic continuation techniques. Finally,
our conclusions are drawn in Sec. V, where the mapping to
graphene Hamiltonians is explicitly discussed, and an outlook
for the next developments is given.

II. MIXED STATE CORRELATIONS
IN QUANTIZING FIELDS

Quantifying quantum and classical correlations of a quan-
tum state is an essential task. Thus, one first motivates the
search for a quantum correlation measure in confined systems
for statistical ensembles. Then entropy and purity measures
are introduced for Dirac bispinors as correlated qubits.

A. Quantum concurrence for (localized) two-qubit systems

For pure two-qubit states, the genuine nonseparability cri-
teria are given by the entanglement of formation, whereas
the extension to mixed states can be defined as the convex-
roof extension of the pure-state entanglement. Formally, this
is equivalent to finding the mean value of the pure-state
entanglement, minimized over all decompositions on pure
states [4]:

EEoF [�] = min�k

∑
k

qkEvN [�k]. (1)

It is related to the quantum concurrence as

EEoF [�] = E
[

1 −
√

1 − C2[�]

2

]
, (2)

with E[λ] = −λ log2 λ − (1 − λ) log2(1 − λ), and where
C[�] is given for two-qubit systems as

C[�] = max{ω1 − ω2 − ω3 − ω4, 0}, (3)

where ω1 > ω2 > ω3 > ω4 are the eigenvalues of the operator√√
� (σy ⊗ σy)�∗(σy ⊗ σy)

√
� and �∗ is the complex-

conjugated density operator. Thus, quantum concurrence itself
is a measure of nonseparability. This formula was first de-
rived by finding a set of pure density matrices, with the same
concurrence, that realizes ρ. In this case the mean quantum
concurrence,

C[�] = min�k

∑
k

qkC[�k], (4)

is the same as the pure-state concurrence for the set the min-
imizes the quantifier, since

∑
k qk = 1. One recalls that the

probability distribution qk is usually not unique. Statistical
ensembles are often decomposed over a complete basis in
multiple ways.

For confined systems, however, there is typically a handful
or even just one set of pure density matrices that realize a
given mixed state. Therefore, Eq. (4) is a valid quantifier in
terms of the pure-state entanglement. To verify its relation
with other information quantifiers for Dirac bispinors, one
first introduces the relevant density matrix for Dirac structures
in a localizing external field.

1. Qubit structure of the 3 + 1 Dirac equation

Before moving to mixed states, however, it is useful to
observe that this issue was initially addressed by extend-
ing correlation measures to pure localized Dirac bispinors,
for which spinor degrees of freedom are regarded as corre-
lated qubits. In this case, the entanglement exhibited by the
solutions of the Dirac equation is regarded as intrinsic, or
intraparticle, entanglement [20].

To clarify this assertion, one notices that the qubit structure
of the free Dirac equation is obtained in the Dirac represen-
tation, for which the gamma matrices are given by γ0 = β,
γ j = βα j , {γμ, γ5} = 0, and σμν = (i/2)[γμ, γν]. Thus, they
can be expressed in terms of Kronecker products of Pauli
matrices

H = k · (σ (P)
x ⊗ σ (S)

) + m
(
σ (P)

z ⊗ I (S)
2

)
, (5)

associated with spin (S) and parity (P) degrees of freedom.
Dirac bispinors carry the correlation structure associated with
these degrees of freedom, which are separable if external
fields are absent. In any case, since the momentum is a fixed
parameter of the theory, a matrix model is adequate to manage
the eigensolutions of this Hamiltonian, emulating the typical
formalism in qubit systems. Thus, classical and quantum in-
formation measures can be naturally considered in this matrix
approach, which, by the way, accommodates a Lorentz invari-
ant definition of the relevant intrinsic entanglement quantifier,
the quantum concurrence [37].

In contrast, when a quantizing external field is introduced,
the Hamiltonian has an additional dependence on the position
variable, and it is not possible to restrict the relevant inner
products only to spinorial degrees of freedom. In other words,
the momentum is no longer conserved and the matrix model
associated to a fixed momentum k breaks down. To amend
this, one turns to a density matrix that takes into account
not only discrete but also continuous degrees of freedom.
Fixing the notation for relativistic systems, typical 4-vectors
are written as xμ = (t, x), uμ = (τ, x), kμ = (k0, k), and the
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λth component of a Dirac bispinor reads

φλ(x + u) = ψλ(x + u) exp[−ik0(t + τ )]. (6)

One consistent framework for describing the qubit system dy-
namics is given by associating the density matrix of the system
with the so-called equal-time Wigner function [35], obtained
by an energy average of the covariant Wigner function,1

ωξλ(x, k; t ) =
∫ +∞

−∞
dE Wλξ (x, k)

= π−1
∑
j,m

exp[i(k0, j −k0,m)t]
∫

dτ

∫ +∞

−∞
dE exp[−i(2E−k0, j −k0,m )τ ]π−3

∫
d3u exp[2ik · u]ψ̄λ, j (x−u)ψξ,m(x+u)

= π−3
∑
j,m

exp[i(k0, j − k0,m)t]
∫

d3u exp[2ik · u]ψ̄λ, j (x − u)ψξ,m(x + u). (7)

It supports a decomposition over phase-space functions that
have well-defined transformation rules under Lorentz trans-
formations.2 The intrinsic information profile is stored in the
matrix structure of the Wigner function, where ψ̄ = ψ∗γ0 and
ψ can be regarded in matrix language as row and column vec-
tors, respectively. In this approach, while spinor components
correspond to spin-parity degrees of freedom, already present
in the free Dirac equation, the phase-space dependence intro-
duces the density matrix for continuous-variable systems.

B. Linear entropies

These degrees of freedom are properly handled once the
relevant density matrix of each Hilbert space is identified.
The spin-parity density matrix is obtained by a phase-space
average,

ρSP =
∫

d3x
∫

d3k ω(x, k; t )γ 0, (8)

which is also a valid density operator for standard two-
qubit systems, since it is Hermitian and can be normalized.
However, it is a reduced density matrix where phase-space
averaging plays the role of a trace over continuous variables.
If the qubit system is entangled by phase-space variables,
then quantum correlations are lost after this integration. Con-
versely, the phase-space density matrix reads

ρ{x,k} = Tr[ω(x, k)γ0], (9)

where hereafter Tr[·] is the trace over spinor indices. It is
also a reduced density matrix, not exhibiting unitary purity
in the general case as well. Both density matrices are needed
to evaluate the complete information profile. One requires that
the amount of information be evaluated in terms of the linear
entropy.

The linearized von Neumann entropy with respect to the
spin-parity Hilbert space reads

ISP = 1 − Tr
[
ρ2

SP

]
. (10)

1From the definition of the equal-time Wigner function, one notices
that the matrix-valued ω is not Hermitian, since its components
satisfy ω†

ξλ = (γ0)ξα ωαβ (γ0)βλ. Thus, one simply chooses the charge
density ωγ0, which is Hermitian.

2Such decomposition is possible since there are 16 independent
generators of the Clifford algebra.

For continuous-variable systems, the trace operation is re-
placed by a phase-space integral,

I{x,k} = 1 − (2π )3
∫

d3x
∫

d3k ρ2(x, k), (11)

with ρ(x, k) = ρ{x,k}, corresponding to the phase-space linear
entropy. The normalization factor naturally shows up be-
cause the second term on the right-hand side quantifies the
quantum purity in the continuous-variable Hilbert space [34].
Consequently, pure states in the reduced Hilbert space are
also zero-entropy states, and no uncertainty or information is
stored in the corresponding variables.

These definitions put on an equal footing the spinor and
phase-space degrees of freedom. The linearized entropies are
useful for algebraic computations in phase space because the
von Neumann entropy is ill-defined for a localized density
matrix. Therefore, the information stored in the equal-time
Wigner function can be evaluated in terms of these entropy
measures. Adding all of them yields the total mutual informa-
tion quantifier [8],

MSP
{x,k} = I{x,k} + ISP − (1 − P ). (12)

The linear entropy with respect to the global density matrix
needs to be subtracted to take into account the loss of infor-
mation (or entropy) of the density matrix with respect to the
total Hilbert space in terms of the quantum purity P , which
is now introduced. One notices that the mutual information
quantifier is always a non-negative quantity. For mixed states,
this measure is degraded due to the uncertainty of the global
density matrix and is always less than the sum of the individ-
ual entropies with respect to each Hilbert space.

C. Decomposition over pure Wigner functions
and quantum purity

Recalling that the Weyl-Wigner transform in quantum me-
chanics applied to a pure density matrix ρ̂ = |ψ〉〈ψ | yields
a quantum phase-space quasidistribution [34], an equivalent
framework can be considered for bispinors, where the equal-
time Wigner function is regarded as the density matrix in
phase space. Therefore, the one-to-one relationship between
the phase and configuration spaces is a mathematical conse-
quence of the Fourier transform. Nevertheless, it is often the
case that there is no absolute certainty in the preparation of a
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pure quantum state. Then the density matrix picture becomes
inevitable.

One obtains a straightforward extension to statistical
ensembles by studying Wigner functions that allow a decom-
position over pure solutions,

W (x, k) =
∑

i

pi ωi(x, k), (13)

where ωi(x, k) is a stationary pure Wigner function and∑
i pi = 1. One assumes that each pi is known a priori;

however, all statistical ensembles of pure Wigner functions,
stationary or not, can be decomposed in this manner. Since the
most general Wigner function is both mixed and nonstation-
ary, extracting each pi with respect to an infinite dimensional
basis is not practical. Instead, this assumption simplifies the
study of statistical ensembles without the complicated time
dependence in the relativistic framework, which has been dis-
cussed elsewhere [28]. As will be shown in the next section,
the probability distribution turns out to be unique for spinors
with some kind of a localizing behavior.

One cannot write the stationary density matrix W (x, k)
in the form of Eq. (7), since no pure spinor realizes this
Wigner function. This is in agreement with the prescription
of a general density matrix in terms of pure quantum states
|ψi〉 of a Hilbert space,

ρ̂ =
∑

i

pi|ψi〉〈ψi|. (14)

In either case, pi is non-negative and can be regarded as
a probability distribution. In fact, one retrieves pure state
solutions when all, except one, pi = 0. For the equal-time
Wigner function considered here, it has been noticed that this
is satisfied when the purity quantum operator,

P = (2π )3
∫

d3x
∫

d3k Tr[(γ 0ω(x, k; t ))2]

= (2π )3
∫

d3x
∫

d3k Tr[ω(x, k; t ) ω†(x, k; t )], (15)

is maximized to unity [8]. In a similar fashion to qubit sys-
tems, one calculates the quantum purity by tracing over the
relevant degrees of freedom of the density matrix squared.
However, for confined systems, the complete trace operator
includes the trace over continuous degrees of freedom, i.e.,
phase-space integration, and thus the pure-state constraint
P = 1 cannot be verified without averaging over phase-space
variables. From now on, we omit the general time dependence
of the quantum purity since only stationary solutions will be
discussed.

The orthogonality of stationary solutions is retained in
phase space in the sense of Eq. (15), simplifying the quantum
purity expression for particular mixed solutions. For any two
pure stationary solutions of a given Hamiltonian,

W (x, k) = pA ωA(x, k) + pB ωB(x, k) (16)

is also a stationary solution of the same Hamiltonian [cf. (7)],
and one uses Eq. (15) to calculate the purity of the mixed state,

P[W ] = p2
A + p2

B + 2pA pBχAB, (17)

where

χAB = (2π )3
∫

d3x
∫

d3k Tr[ωB(x, k) ω
†
A(x, k)].

Only χAB = 0 is valid, which follows from the orthogonality
of the pure state solutions in configuration space. The quan-
tum purity depends exclusively on the weight parameters pA

and pB, which is straightforwardly generalized to a linear
combination of multiple Wigner functions. Thus, two pure
states do not overlap in phase space on average, and the
quantum purity always satisfies 1/m � P � 1 for a statistical
mixture of m pure Wigner functions, where the lower bound
is obtained for an equal mixture.

The point to be made from all the entropy measures is that
the formulas for correlations in two-qubit systems could be
naively applied to the phase-space averaged density matrix
from Eq. (8), a reduced density matrix. For instance, one
considers the concurrence quantifier. Even though separabil-
ity criteria are verified by standard matrix diagonalization,
measures of correlations thus obtained yield, at best, a lower
bound on the intrinsic quantum correlation structure of Dirac
bispinors. At worst, the eigenvalues that appear in the concur-
rence formula from Eq. (3) are ambiguous for mixed Wigner
functions because the square root of the continuous-variable
density matrix is ill-defined.

In order to obtain an explicit expression for the quantum
concurrence in a confining external field, it is argued that
the quantization of the Wigner function carries on to the
correlation structure as well. In this case the expression for
the quantum concurrence is also quantized. Thus, there is a
reduced set of pure states that realize this particular mixed
state, and optimization algorithms are rather simplified. This
is possible only when the energy spectrum is discrete, and the
relevant density matrix is also labeled by additional quantum
numbers. In a magnetic field, these quantum numbers corre-
spond to Landau level indices, which immediately restrict the
set of pure states in the decomposition of density matrices.

In the next section, quantum and classical correlations of
relativistic Landau levels shall be measured. To exhibit the
distinguishing features for mixed states, superpositions and
mixtures must be contrasted in the framework of Dirac-like
Wigner functions. Hence, the correlation structure of mixed
Gaussian states can be more properly discussed.

III. DIRAC MIXTURES IN A MAGNETIC FIELD

Considering the extension from pure to mixed states, a set
of stationary Wigner matrices [cf. (7)] can be yielded from
preliminarily reported [8] phase-space stationary solutions.
The quantization scheme is featured by applying a constant
magnetic field, which leads to an infinite set of solutions
labeled by the quantum number n, in correspondence to the so-
called Landau levels. For each n �= 0 there are four different
solutions; otherwise, there are two solutions corresponding to
the ground state [8,35]. The Hamiltonian is given by

HB = α · (p + (−1)r eA) + βm, (18)

where r = 1, 2 corresponds to negatively and positively
charged particles, respectively. Here the charge of the par-
ticle can also be used to label the intrinsic parity, a qubit
state, of the particle. The gauge is chosen as A = B x ŷ, since
the nontrivial continuous degrees of freedom are reduced
to one dimension. Nevertheless, any relevant result should
not depend on this particular gauge. Only the magnetic field
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B = ∇ × A = B ẑ along the z direction and physical parame-
ters should influence observables.

The phase-space eigensolutions describing the mixed solu-
tions are described in Appendix A. In particular, one notices
that no relevant information is stored in the plane wave con-
tribution, which is always integrated out of all expressions.
The set of solutions at each n Landau level corresponds to
matrix-valued Wigner functions that carry additional labels
with respect to the intrinsic parity, r = 1, 2, and the spin
projection (helicity), ±.

In order to study superpositions and mixtures in phase
space, it is essential to fix the center of the motion sr=1 ≡ s. In
this case the set for E > 0 is mapped to positive parity states,
r = 1, with

ω+
n,1(s, kx ) = ηn

⎛
⎜⎜⎜⎝

Ln−1 0 −An Ln−1 Bn Mn

0 0 0 0
An Ln−1 0 −A2

n Ln−1 AnBn Mn

−Bn Mn 0 AnBn Mn −B2
n Ln

⎞
⎟⎟⎟⎠,

(19)

ω−
n,1(s, kx ) = ηn

⎛
⎜⎜⎜⎝

0 0 0 0
0 Ln Bn Mn An Ln

0 −Bn Mn −B2
n Ln−1 −AnBn Mn

0 −An Ln −AnBn Mn −A2
n Ln

⎞
⎟⎟⎟⎠,

(20)

whereas the set for E < 0 is mapped to negative parity states,
r = 2, with

ω−
n,2(s, kx ) = ηn

⎛
⎜⎜⎜⎝

A2
nLn−1 AnBn Mn −An Ln−1 0

AnBn Mn B2
n Ln −Bn Mn 0

An Ln−1 Bn Mn −Ln−1 0
0 0 0 0

⎞
⎟⎟⎟⎠,

(21)

ω+
n,2(s, kx ) = ηn

⎛
⎜⎜⎜⎝

B2
nLn−1 −AnBn Mn 0 −Bn Mn

−AnBn Mn A2
n Ln 0 An Ln

0 0 0 0
Bn Mn −An Ln 0 −Ln

⎞
⎟⎟⎟⎠,

(22)

where An, Bn, ηn are non-negative constant parameters
(smaller than unity) related to the one-particle parameters,

An = kz

En + m
, Bn =

√
2n eB

En + m
, and ηn = En + m

2En
, (23)

given in terms of the energy eigenvalues En =√
m2 + k2

z + 2n eB. The correspondence with the harmonic
oscillator (HO) basis is identified by the phase-space
eigenfunctions,

Ln ≡ Ln(s, kx ) = (−1)n
√

eB
π

× exp
[−(

s2 + k2
x

)]
Ln
[
2
(
s2 + k2

x

)]
, (24)

with Ln corresponding to a Laguerre polynomial, such that∫ +∞

−∞
dx

∫ +∞

−∞
dkx Ln(s, kx ) = 1, (25)

2π√
eB

∫ +∞

−∞
dx

∫ +∞

−∞
dkx Ln(s, kx )Lm(s, kx ) = δmn, (26)

with ds = √
eB dx and

M(r)
n ≡ Mn(s, kx )

= (−1)n

2π

√
eB
n

exp
[−(

s2 + k2
x

)]( d

ds
Ln
[
2
(
s2 + k2

x

)])
,

(27)

which averages out to zero,∫ +∞

−∞
dx

∫ +∞

−∞
dkx Mn(s, kx ) = 0, (28)

and is also orthogonal to all Ln(s, kx ) [cf. Eq. (26)]. The HO
basis is a complete basis in phase space, and thus phase-space
integrals are straightforwardly calculated using such orthogo-
nality relations.

A. Admissible Wigner functions

Two additional properties of Dirac-like Wigner functions
must be addressed. They follow from the Weyl transform ap-
plied to the relevant density matrices, and they will be relevant
for evaluating entropy measures.

All Wigner functions are normalized to unity since the
probability is conserved. The normalization condition applied
to Dirac bispinors encompasses both the trace over discrete
degrees of freedom, Tr[·], and the trace over continuous de-
grees of freedom,∫ +∞

−∞
dx

∫ +∞

−∞
dkx Tr

[(
ωs

n,r (s, kx )γ0
)] = 1, (29)

for both pure and mixed states.
The pure-state constraint is satisfied by eigenstates of a

given Hamiltonian. The basis introduced above is composed
by pure states,

2π√
eB

∫ +∞

−∞
dx

∫ +∞

−∞
dkx Tr

[(
ωs

n,r (s, kx )γ0
)(

ωs′
n′,r′ (s, kx )γ0

)]
= δs,s′δr,r′δn,n′ , (30)

and the orthogonality property is extended to Dirac-like
Wigner functions. The additional factor comes from the
normalization of the phase-space functions [cf. (26)]. This
confirms that orthogonal wave functions remain orthogonal
in phase space. In addition, Eq. (30) suggests that particular
mixed states can be expanded in phase space with positive
coefficients [cf. (16)]. However, this is not possible for a
general 4 × 4 density matrix. Namely, a superposition needs
an additional term that must be calculated in configuration
space. To verify such an assertion, an instructive example shall
be discussed in the following, distinguishing typical quantum
phenomena from classical ones due to the mixture of states.
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B. Randomness and interference effects
in quantum correlations

To depict the differences between superpositions and mixtures within the Weyl-Wigner framework, it is useful to consider
first a quantum superposition within the degenerate subspace,

ωn,θ = sin2(θ ) ω+
n,1 + cos2(θ ) ω−

n,1 + sin(θ ) cos(θ ) �n,

where �n(s, kx ) = ηn

⎛
⎜⎜⎜⎝

0 Mn −Bn Ln−1 An Mn

Mn 0 −An Mn −Bn Ln

Bn Ln−1 AnMn 2AnBn Ln−1
(
A2

n − B2
n

)
Mn

−An Mn −Bn Ln
(
A2

n − B2
n

)
Mn −2AnBn Ln

⎞
⎟⎟⎟⎠, (31)

which is obtained by plugging the normalized pure states
sin(θ ) u+

n,1(s) + cos(θ ) u−
n,1(s) (cf. Appendix A) into the def-

inition of the equal-time Wigner function in Eq. (7). Thus, the
first two terms on the right-hand side stand for the density
matrix of each state in the superposition, and the third term
corresponds to an overlap between them, where sin(θ ) cos(θ )
naturally quantifies this overlap. �n(s, kx ) is by no means a
valid Wigner function, since it cannot be normalized [cf. (29)],∫ +∞

−∞
dx

∫ +∞

−∞
dkx Tr[�n(s, kx )γ0]

= −2ηn AnBn

∫ +∞

−∞
dx

∫ +∞

−∞
dkx (Ln − Ln−1) = 0, (32)

and sin(2θ )/2 is negative for π/2 < θ < π ; nevertheless, the
complete expression in (31) is in fact a valid Wigner function.
First, it is normalized,∫ +∞

−∞
dx

∫ +∞

−∞
dkx Tr[ωn,θ (s, kx )γ0]

=
∫ +∞

−∞
dx

∫ +∞

−∞
dkx Tr[(sin2(θ ) ω+

n,1 + cos2(θ ) ω−
n,1)γ0]

= 1, (33)

where one has used the normalization condition in Eq. (29)
for each term above. Second, the matrix �n(s, kx ) drives the
interference effects between the pure state solutions ω+

n,1 and
ω−

n,1, not affecting the purity content of the superposition,
which is evaluated as

P = 2π√
eB

∫ +∞

−∞
dx

∫ +∞

−∞
dkx Tr[(ωn,θ (s, kx )γ0)2]

= [sin2(θ ) + cos2(θ )]2η2
n

(
1 + A2

n + B2
n

)2

= 1, (34)

i.e., as a pure state. The simplification in the last line, ηn(1 +
A2

n + B2
n ) = 1 [cf. (23)] follows from an algebraic manipula-

tion of the energy parameters. Thus, Eq. (31) is not a mixture
of quantum states. It corresponds to a change of basis since
the spectrum has a twofold spin degeneracy.

On the other hand, a true mixture between two stationary
Wigner functions of a fixed quantum number n reads

ωn,φ = sin2(φ) ω+
n,1 + cos2(φ) ω−

n,1. (35)

It is noticed that the ensemble is also constituted by states
within the degenerate subspace, and only positive coefficients
appear in the decomposition, without any interference term.

The purity content is similarly evaluated,

P = 2π√
eB

∫ +∞

−∞
dx

∫ +∞

−∞
dkx Tr[(ωn,φ (s, kx )γ0)2]

= (sin4(φ) + cos4(φ))η2
n

(
1 + A2

n + B2
n

)2

= sin4(φ) + cos4(φ) � 1. (36)

Thus, φ is a true mixing parameter and yields pure state
solutions for φ = lπ/2 with integer l . One notices that the
purity only depends on the probability distribution itself, as
expected from Eq. (17). In brief, the quantum purity measure
exclusively quantifies the effects of linear combinations that
take place in phase space but is not affected by superpositions
in configuration space.

In regard to the probability distribution uniqueness, i.e., if
it is possible to obtain the same mixed state [cf. (35)] with a
distinct decomposition, one first notices that the HO basis is
orthogonal in phase space. Thus, only mixtures for a fixed n
from Eqs. (19)–(22) exhibit the appropriate scalar functions.
Even then, one now has to match all the 16 constants from
the components of the density matrix. It is straightforward
to verify that it is not possible to obtain the same state with
a distinct linear combination, with positive coefficients, of
Wigner functions with other pure states. Therefore, this de-
composition is unique.

One now evaluates the mutual information expression in
(12) for superposition and mixing angles θ and φ, respec-
tively. Although the cumbersome dependence on parameters
makes this measure somewhat obscure to interpret, one ob-
serves more illuminating features if results are depicted in
Fig. 1 for coincident values of θ and φ. The same angles were
chosen so as to compare each mixture with a corresponding
quantum superposition, such that in both cases one obtains a
stationary Wigner function since energy levels are degenerate.
The external field is a factor that strongly affects correlations.
On the one hand, the mutual information for quantum super-
positions (θ �= 0) is a nonmonotonic function of the magnetic
field represented by Bn =

√
2n eB√

k2
z +2n eB

because the interference

pattern could either amplify or suppress its effects on correla-
tions. It is somewhat surprising, though, that for a strong field
(Bn ≈ 1), this quantifier approaches unity for all values of θ .
On the other hand, correlations for a fixed φ always increase
when the magnetic field increases. One notices, however, that
for a fixed value of the interaction, φ tunes the total amount of
information.
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(a) (b)

FIG. 1. Total intrinsic information for stationary Landau levels. The amount of information is computed through the mutual information
quantifier [cf. Eq. (12); black lines] for which it is assumed that m = 0 [cf. Eq. (23)]. (a) Results are for pure superpositions of spin up and
down states from Eq. (31), for coefficients sin2(θ ) = 0 (solid), 1/4 (dashed), 1/2 (dot-dashed), and 3/4 (dotted). (b) Results are for mixtures
of spin up and down states from (35), for coefficients sin2(φ) = 0 (solid), 1/4 (dashed), 1/2 (dot-dashed), and 3/4 (dotted), i.e., with the same
line patterns. Results for the intrinsic concurrence (orange lines) are also depicted in both plots, with the same line patterns for the related
coefficients. Whereas some amount of information is lost in mixed states for strong magnetic fields (Bn = 1), randomness creates correlations
in weak magnetic fields (Bn = 0). In addition, all mixtures share the same value of quantum concurrence.

In fact, there is an optimal value of the field that determines
whether increasing φ degrades or increases these correlations.
In the figure, this corresponds to Bn ≈ 0.6. Below this value,
mixing creates correlations; above this value, mixing sup-
presses correlations. For instance, considering the pure state
as the reference state, an equal mixture with sin2(φ) = 1/2
(dot-dashed lines) loses almost one quarter of correlations due
to randomness in a strong magnetic field. However, in a weak
magnetic field (Bn = 0), half of these correlations are created
for the same mixing angle.

Additional features are observed as well. Two distinct
mixtures for which the values of φ are complementary ex-
hibit coincident values for all quantifiers. In particular, for
sin2(φ) = 1/4 (φ = π/6), 3/4 (φ = π/3), one obtains the
same information measures. This means that swapping the
probability distribution of a mixture of two states generates
an equivalent ensemble. In contrast, there is no equivalence
between quantum superpositions with the same angles
sin2(θ ) = 1/4, 3/4 (dashed and dotted lines, respectively).
This is a consequence of the fundamental distinction be-
tween superpositions and mixtures. Whereas θ quantifies the
interference of states, the mixing angle φ attributes only a
probability, or chance, of measuring each pure state.

1. Spin-parity concurrence in Landau levels

Aside from the total mutual information measured by the
associated linear entropies, quantum concurrence can also be
computed. However, the exact formula for two-qubit systems
correlated by phase-space variables has been demonstrated
only for pure states, as presented in the Appendix B. The
main result is that the additional degree of freedom related
to the orbital wave function introduces a quantization in the
pure-state entanglement, which exhibits coincident values for
any of the density matrices shown in Eqs. (19)–(22),

∫ +∞

−∞
ds

∫ +∞

−∞
dkx C2[ω±

n,r] = 2(ηnBn)2, (37)

where these coefficients were introduced in Eq. (23) and are
related to the ratio between the magnetic field intensity and the
one-particle energy eigenvalue. This means that concurrence
is quantized, and all quantum states of the same Landau level
exhibit coincident values of the spin-parity entanglement.

Returning to the statistical ensemble parameterized by the
angle φ in Eq. (35), one now recalls that the quantum con-
currence is obtained by looking for the minimal value among
all sets that realize this state [cf. (4)]. It is fortunate, however,
that these mixed states are in fact unique, as discussed above.
Thus,∫ +∞

−∞
ds

∫ +∞

−∞
dkx C2[ωn,φ]

= (sin2(φ) + cos2(φ))
∫ +∞

−∞
ds

∫ +∞

−∞
dkx C2[ω±

n ]

= 2(ηnBn)2, (38)

independent of the mixing angle.
On the other hand, the superposition considered in Eq. (31)

has a concurrence that can be written as (cf. Appendix B)∫ +∞

−∞
ds

∫ +∞

−∞
dkx C2[ωn,θ ] = 2η2

n[Bn cos(2θ ) − An sin(2θ )]2,

(39)
simplifying into the quantum concurrence in Eq. (37) when
cos(2θ ) = ±1. Hence, this quantifier distinguishes between a
quantum superposition and a statistical ensemble.

This is also included in Fig. 1 for A2
n + B2

n = 1 (massless
limit). The results indicate the most dramatic difference be-
tween pure and mixed states in a quantizing field. While a
complete disentanglement is observed for quantum superpo-
sitions with sin2(θ ) = 1/4, 1/2 (dashed and dot-dashed lines,
respectively), the intrinsic entanglement profile is unaffected
by mixing states that have the same intrinsic concurrence. In
fact, this measure has the same qualitative behavior as the
mutual information for mixed states, increasing whenever the
magnetic field increases. Therefore, quantum concurrence is
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not sensitive to the uncertainty associated with the quantum
state preparation.

Summarizing, it has been shown that the total information
stored in discrete and continuous degrees of freedom, quan-
tified by the mutual information, is affected by randomness
and interference in different ways. Whereas the former limits
the maximum information that can be measured in the mixed
state, the latter changes the (monotonic) dependence on the
magnetic field for a superposition. In regard to quantum cor-
relations, they are determined by interference effects, not by
a phase-space probability distribution. This implies that the
mutual information minus the quantum concurrence quanti-
fies a type of correlation that can be augmented or reduced
by randomness. In contrast, interference affects all types of
correlations in a nontrivial manner.

In the next subsection, we evaluate correlations of mixed
Gaussian states, which have similarities with classical distri-
butions in phase space; namely, the probability distribution is
always positive. They are obtained by inspecting the generat-
ing functions of Laguerre polynomials in phase space.

C. Gaussian mixed states

1. Maximally mixed Landau level

One first recalls that there are four pure states for each
principal quantum number. Thus, the maximally mixed state
within this subspace is obtained by an equal mixture with both
signs of the parity,

Wn(s, kx ) = 1

4

2∑
s,r=1

ωs
n,r (s, kx ),

= 1

4

⎛
⎜⎜⎝
Ln−1 0 0 0

0 Ln 0 0
0 0 −Ln−1 0
0 0 0 −Ln

⎞
⎟⎟⎠, (40)

where the restricted sum over s = 1 yields the results from
the previous section. However, those states were difficult
to manipulate because the density matrix is not diagonal
and depends on several physical parameters. Here, however,
the rather simple form of the Wigner function simplifies all
quantifiers.

The purity is straightforwardly computed since the density
matrix is diagonal,

P = 2π√
eB

∫ +∞

−∞
dx

∫ +∞

−∞
dkx Tr[(Wn(x, kx )γ0)2]

= π

4
√

eB

∫ +∞

−∞
dx

∫ +∞

−∞
dkx

(
L2

n−1 + L2
n

)
= 1

4
, (41)

where one has obtained the last equality by using Eq. (26).
Thus, this mixed state corresponds to an equal mixture of four
pure states.

Moving to the computation of entropies with respect to
phase-space and spin-parity space, one has

I{x,kx} = 1 − 2π√
eB

∫ +∞

−∞
dx

∫ +∞

−∞
dkxTr[γ0Wn(s(x), kx )]2 = 1

2

(42)

and

ISP = 1 − Tr

⎡
⎣(γ0

∫ +∞

−∞
dx

∫ +∞

−∞
dkx Wn(s, kx )

)2
⎤
⎦ = 3

4
,

(43)

respectively. These are calculated by considering the orthog-
onality relations of the basis functions in Eqs. (25) and (26).
Then the total mutual information reads

MSP
{x,kx} = I{x,kx} + ISP − (1 − P )

= 1
2 . (44)

Surprisingly, it does not depend on any particular regime or
energy parameter, and all correlations are constant for the
maximal mixture within the same Landau level. This can be
compared with the intrinsic (squared) concurrence previously
discussed,

C2 = 2(ηnBn)2, (45)

which is a quantity that takes a fixed value for each Landau
level and is constrained to 0 � C2 � 1/2 [cf. (23)]. There-
fore, at the lower bound, the total information is dominated
by classical correlations. At the upper bound, the amount of
information is dominated by concurrence, and randomness
degrades all classical correlations.

2. Mixing distinct Landau levels

Using this diagonal state for each Landau level, one now
seeks states that are arbitrarily mixed. Generally, they corre-
spond to ensembles of all eigenstates. One assumes that they
take the form

W (s, kx ) =
∞∑

n=0

pn Wn(s, kx ), (46)

where Wn(s, kx ) is an equal mixture of states as obtained in
Eq. (40).

For appropriate choices of pn, subtle analytic functions can
be obtained. Assuming further that pn = zn yields a straight-
forward interpretation for the mixture. In this case, z = 0
selects only the ground state, whereas z = 1 selects infinitely
many Landau levels. This parametrization is useful because
Laguerre polynomials satisfy

∞∑
n=0

Ln(r2) zn = 1

1 − z
exp

(
z r2

z − 1

)
, (47)

where the right-hand side is their generating function with
r2 = s2 + k2

x . Recalling the complete basis functions from
(24), only two components of the Wigner function need to be
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calculated,
∞∑

n=0

Ln(s, kx ) zn =
√

eB exp(−r2)
∞∑

n=0

(−1)n Ln(2r2) zn

=
√

eB
exp

[
2r2

(
z

z+1 − 1/2
)]

z + 1
, (48)

and
∞∑

n=0

Ln(s, kx ) zn+1 = z
√

eB exp(−r2)
∞∑

n=0

(−1)n Ln(2r2) zn

= z
√

eB
exp

[
2r2

(
z

z+1 − 1/2
)]

z + 1
. (49)

Therefore, all components are Gaussian functions in phase
space. For admissible Wigner functions and a clear connection
with statistical ensembles, z should be restricted to positive
values. In fact, z can be regarded as a mixing parameter,
selecting states with large quantum numbers as z → 1. By
collecting the normalization factors, the final result is the
Wigner function

W11 = N

4

√
eB

π

z

z + 1
exp

[
2
(
s2 + k2

x

)( z

z + 1
− 1/2

)]
, (50)

W22 = N

4

√
eB

π

{
exp

[ − (
s2 + k2

x

)] + 1

z + 1

× exp

[
2
(
s2 + k2

x

)( z

z + 1
− 1/2

)]}
, (51)

W33 = −W11, (52)

W44 = −W22, (53)

where Wi j denotes the element at the ith row and jth col-
umn. Also, N = (

∑∞
n=0 zn)−1 = 1 − z is the normalization

constant, and all other matrix elements are zero.3

3Before computing the relevant physical observables, it is use-
ful to emphasize that all phase-space integrals are immediately
evaluated using polar coordinates since these functions depend ex-
clusively on the phase-space radius r2 = s2 + k2

x , and integrands
simplify to exponential functions of a single variable. Noticing that
ds dkx = r dr dθ ,∫ +∞

−∞
ds

∫ +∞

−∞
dkx exp

[
(s2 + k2

x )α
] = 2π

∫ +∞

0

dr r exp(α r2)

= −π

(
1

α

)
, (54)

for Re[α] < 0. All physical observables can be obtained using this
change of variables. For instance, the probability density in phase
space Tr[W (s, kx )γ0] is a normalized Gaussian function since∫ +∞

−∞
dx

∫ +∞

−∞
dkx Tr[Wγ0]

= (1 − z)
∫ +∞

0

dr r

{
exp

[
2r2

(
z

z+1
− 1

2

)]
+ exp[−r2]

}
= 1.

(55)

3. Gaussian quantum purity

One interesting feature is that as z approaches unity, the
probability density spreads over all phase-space coordinates,
and the state is no longer localized, which is depicted in Fig. 2.
Since z = 1 selects all excited levels, the probability becomes
evenly distributed over all eigenstates. This can be straight-
forwardly measured by the quantum purity, which takes a
workable form (cf. Appendix C),

PW = 2π

∫ +∞

−∞
dx

∫ +∞

−∞
dkx Tr[(γ0W (x, kx ))2]

= (z − 1)(z2 − 2)

4(z + 1)
, (56)

where polar coordinates have been used since the exponents
are always nonpositive. A vanishing quantum purity for z =
1 corresponds to a maximally mixed state in the infinite-
dimensional Hilbert space. From the probability density in
(55) and the quantum purity above, it could be naively argued
that this state is a trivial one. However, the integrated proba-
bility still satisfies the normalization condition for any z.

4. Phase-space uncertainty relations

One notices that localization in phase space, indirectly
controlled by the mixing parameter, cannot be set to arbi-
trary values. This property is bound to satisfy the uncertainty
principle of canonically conjugate variables. Using the
(nonintegrated) probability density above, standard deviation
in momentum and position are formally evaluated as

(σkx )2 =
∫ +∞

−∞
dx

∫ +∞

−∞
dkx k2

x Tr[Wγ0] = z2 + 1

2(1 − z)
, (57)

(σx )2 =
∫ +∞

−∞
dx

∫ +∞

−∞
dkx s2Tr[Wγ0] = z2 + 1

2(1 − z)
, (58)

exhibiting coincident values. For z = 0, the uncertainty re-
lation is saturated with σkx σx = 1/2. On the other hand, it
is unbounded for increasing values of the mixing parameter,
approaching infinity for the maximally mixed and delocalized
state with z = 1, as can be inferred from Fig. 2.

5. Quantum and classical information in Dirac-Gaussian states

The information content of mixed Gaussian states is also
relevant. In fact, using the change of variables as discussed
above [cf. (54)], one now calculates the entropies with respect
to both Hilbert spaces. Recalling that the phase-space entropy
is evaluated by integrating the probability density squared [cf.
(11)], the result reads

I{x,kx} = 1 − 4π2
∫ +∞

0

dr r Tr[Wγ0]2

= z

2
(2 + z − z2), (59)

where the calculation is also left to Appendix C. The mini-
mum uncertainty state is obtained for z = 0, which has zero
entropy, whereas the completely delocalized Gaussian state
with z = 1 saturates the linear entropy at unity. Therefore,
delocalization, with an arbitrarily small probability density
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FIG. 2. Delocalization of mixed Gaussian states in phase space. Localization is measured in terms of the probability density Tr[Wγ0]√
eB of

states obtained in Eqs. (50) and (51). The so-called coherent state (a), with z = 0, covers the minimum area, whereas the Gaussian states with
z = 0.5 (b) and z = 0.9 (c) are smoothed over phase space.

in phase space, yields the maximum information content (or
entropy) in this Hilbert space.

Moving to the computation of the spin-parity entropy (cf.
Appendix C), the result can be written as

ISP = 1 − 4π2Tr

⎡
⎣(γ0

∫ +∞

0

dr r W
)2

⎤
⎦

= 1

2

(
1 + z − z2

2

)
, (60)

which is finite for all Gaussian states, including the ground
state.

Wrapping up, the total mutual information is then com-
posed by all three quantifiers above and reads

MSP
{x,kx} = 3z2 + z − z4

2 + 2z
, (61)

vanishing only for z = 0 in the region 0 � z � 1, which con-
firms that the completely mixed state is not trivial.

This result is confronted with the expression for the quan-
tum concurrence,

C2 =
∞∑

i=0

piC2
i = p0C2

0 +
∞∑

i �=0

piC2
i

= 0 +
∞∑

i=1

piC2
i � 1 − z

2

∞∑
i=1

zi

= z

2
, (62)

where the upper bound C2
i = 1

2 is valid only in strong mag-
netic fields. Thus, C2 = z/2 is the greatest value for the
intrinsic concurrence; otherwise, it cannot be calculated an-
alytically. In any case it minimizes the mutual information
quantifier. To see this, the mutual information in Eq. (61) is
expanded around the ground state, z ≈ 0,

MSP
{x,kx} = z

2
+ O(z2), (63)

concurring with the result just obtained. Thus, both the mutual
information and the intrinsic concurrence increase linearly for
small values of the mixing parameter. For greater values of z,
classical correlations become relevant.

These results are illustrated in Fig. 3, where all information
quantifiers are depicted. The maximally mixed state, with
z = 1, maximizes the phase-space linear entropy, I{x,kx}, and
is completely delocalized. Thus, for highly mixed states, the
global density matrix loses the exact amount of information
that is gained by the continuous-variable density matrix. In
the aftermath of maximal mixing, the mutual information
between phase and spin-parity spaces is solely described by
discrete degrees of freedom.

To sum up, the information profile of stationary Gaussian
states has been examined in the phase space. It is somewhat
curious that entropy measures depend only on the probability
distribution due to randomness effects. The so-called coher-
ent state has a vanishing phase-space entropy since it covers
the minimum area, whereas the fully delocalized Gaussian
state maximizes the same quantifier. In regard to the mu-
tual information, the main result is that as the ground state

FIG. 3. Information balance for mixed Gaussian states. Linear
entropies, I{x,kx} [cf. Eq. (59); dotted yellow line] and ISP [cf.
Eq. (60); dashed magenta line], with respect to phase-space and
spin-parity Hilbert spaces are depicted alongside the estimated con-
currence [cf. Eq. (62); solid gray line], and quantum purity [cf.
Eq. (56); dot-dashed blue line]. The total mutual information con-
sidering all these quantifiers [cf. Eq. (61); solid black line] is also
included. It is equal to the spin-parity entropy for a maximally mixed
state, with z = 1, which has zero purity and maximum phase-space
entropy.
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contributes less to the mixture, this measure departs from the
quantum concurrence and includes other correlations, sim-
plifying to the spin-parity entropy at the maximally mixed
state.

In the next section, we finally link mixed density matri-
ces to thermalized low-dimensional electrons. The quantum
information quantifiers are computed in terms of the relevant
physical observable, namely, the partition function.

IV. THERMODYNAMIC ENSEMBLE AND
HIGH-TEMPERATURE CORRELATIONS

The results from previous sections can be read for statis-
tical ensembles as linear combinations of Wigner functions.
Frequently, physical systems exhibit a probability distribu-
tion that is dictated by the qubit-environment interaction; in
particular, the environment itself probabilistically selects the
density matrix. One now assumes that the probability is dis-
tributed according to energy eigenvalues. If the probability
of measuring each state is canonically distributed [38], then
an ensemble of Wigner functions describes two-dimensional
thermalized systems. To see this, the energy eigenvalues are
written as

En =
√

�2 + 2n eB with �2 = m2 + k2
z , (64)

and one possible statistical mixture is identified from the basis
of equal-time Wigner functions as

W(s, kx ) =
∞∑

n=0

pn(ω−
n,1), (65)

where one assumes the unnormalized weights pn =
exp(−βEn) with β = 1

T , where kB = 1 is the Boltzmann
constant and T the equilibrium temperature.4 It has been
assumed that for each Landau level, including the ground
state, the quantum state is pure as was introduced in Eq. (20).
One notices that the ground state solution does not have
the twofold spin degeneracy of excited Landau levels,
justifying the ensemble with positive intrinsic parity r = 1
and spin-down states only.

Precisely, this particular ensemble is somewhat arbitrary.
Each Landau level can be either mixed or in a superposition
state that affects the correlation profile as initially discussed
in Fig. 1. A mixture within the same Landau level is ruled out
since the statistical weights pn would have to be normalized
again. However, a change of basis is also admitted, and one
must investigate if the total information can be evaluated
unambiguously. This multi-valuedness is expected since there
are multiple quantum systems that are described by the same
partition function.

A. Partition function

For all systems that can be thus identified, it is expected
that the relevant observables of the theory are independent
of the gauge-dependent Wigner functions chosen to realize

4Dimensionless variables are discussed in Appendix D. In natural
units, both β and T are dimensionless.

this ensemble. Explicitly, one notices that Eq. (65) is still not
normalized, since∫ +∞

−∞
dx

∫ +∞

−∞
dkx Tr[Wγ0] =

∞∑
n=0

exp(−βEn) = Z, (66)

where the notation for the partition function Z is used.
Of course, for fermions in three dimensions, the sum over

states should take into account the quantum number related to
the kz degree of freedom. Otherwise, Eq. (66) is the relevant
object for the thermodynamic quantities of low-dimensional
Dirac-like systems such as, for instance, the graphene elec-
trons with quantum numbers read as fixed parameters of the
theory [39]. In fact, for graphene described as Dirac-like sys-
tems, the � parameter and the Rashba coupling play a similar
role in the calculation of the partition function [39]. Without
this coupling, the partition function is formally obtained with
� = 0, but with results constrained to the infinite-temperature
limit (T → ∞). To address this issue, the calculation will be
revisited in the following.

Let

Z =
∞∑

n=0

exp(−μ
√

κ + n), (67)

with

μ =
√

2 eB
T

and κ = �2

2 eB . (68)

Now the exponential can be expressed in terms of a complex
contour integral,

e−z = 1

2π i

∮
ds z−s�(s) =

+∞∑
n=0

(−z)n

n!
, (69)

where the integration is performed along a counterclockwise
contour that includes all the poles of the Gamma function. A
straightforward choice is the circle of radius R → ∞ around
the origin in the complex plane. To obtain the second equal-
ity with the residue theorem, one notices that the Gamma
function �(s) can be defined in the complex plane as a mero-
morphic function with simple poles at nonpositive integers
through the fundamental relation

�(s) = �(s + 1)

s
, (70)

for any s in the complex plane except at the poles [40].
For positive integers, the Gamma function admits the usual
factorial representation, �(s) = (s − 1)!. The simple poles at
s = −n, with n a non-negative integer, have residues given by

Res(�(s),−n) = lim
s→−n

(s + n)�(s)

= lim
s→−n

(s + n)�(s + n + 1)

s(s + 1) · · · (s + n)
= (−1)n

n!
, (71)

where the recurrence relation (70) has been used n + 1 times
to relate �(−n) to �(1) = 1. These residues can be plugged
into Eq. (69) to finally obtain the second equality, which
shows that the complex integral above is a valid representation
of the exponential function, as long as all the residues are
taken into account.
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Turning back to the computation of the partition function
above, the insertion of the integral into Eq. (67) yields

Z = 1

2π i

+∞∑
n=0

∮
ds μ−s(n + κ )−s/2�(s)

= 1

2π i

∮
ds ζ (s/2, κ ) �(s) μ−s, (72)

where the series in the first line was written as the Hurwitz zeta
function ζ (z, κ ), which simplifies to the well-known Riemann
zeta function when κ = 1, ζ (z, 1) ≡ ζ (z) [41]. The series con-
verges when Re(z) > 1 and is analytic continued otherwise,
namely, to all z in the complex plane and κ > 0 except at the
simple pole z = 1.5 The continuation is necessary since the
residues of the integrand need to be evaluated at the poles of
the Gamma function (cf. (71)). Moreover, since the integration
contour contains the real axis, the new singularity is already
included.6 The residue theorem is once again applied to z = 1,

Res(ζ (z, κ ), 1) = lim
z→1

(z − 1) ζ (z, κ ) = 1, (73)

where the result is obtained by considering an alternative
representation of the zeta function (cf. Appendix E).

Finally, the partition function is obtained by including the
residues of the poles at nonpositive integers and at s = 2. The
final expression for the partition function reads

Z =
+∞∑
m=0

ζ
(
−m

2
, κ
) (−μ)m

m!
+ 2

μ2
. (74)

The series is then regarded as an expansion on the parameter
μ =

√
2 eB
T , which is obvious nowhere from the formal defini-

tion of the partition function. It is absolutely convergent, due
to the analytic continuation of zeta functions, and determines
the low-temperature regime, whereas the last term in Eq. (74)
dominates for high temperatures. This is consistent with [42],
where the expansion and the leading term as μ ≈ 0 are both
present.

In the current framework, correlations are investigated for
small deviations from the infinite-temperature limit, and a few
terms of the series are included in computations. One notices
that the two representations of the partition function, (67) or
(74), are useful in different temperature ranges. In the former
case, it simplifies to a single term at absolute zero; in the latter
one, it reduces to a single term in the infinite-temperature
limit.

5In [41], the Hurwitz zeta function is defined as ζ (s,w) =∑∞
n=1

1
(w+n)s , and w = κ − 1 in the current notation. Thus, w > −1

implies κ > 0.
6The series representation of zeta functions diverges in the half

plane Re(z) � 1. Therefore, the uniqueness of the analytic contin-
uation allows one to extract the relevant residue, and an adequate
contour should include all the singularities, which profoundly affect
the calculation. This assumption will be tested in the following so as
to confirm if the relevant quantifiers are physically acceptable.

1. Thermodynamic functions

For completeness, usual dimensionless thermodynamic
functions are redefined (cf. Appendix D) as, for instance,

U = −
√

2 eB ∂ ln(Z )

∂β
= −∂ ln(Z )

∂μ

= −1

Z

[+∞∑
m=0

ζ

(
−m + 1

2
, κ

)
(−μ)m

m!
− 4

μ3

]
, (75)

the internal energy, and

C = −μ2

(
∂U

∂μ

)

= −μ2

{
U 2 − 1

Z

[+∞∑
m=0

ζ

(
−m + 2

2
, κ

)
(−μ)m

m!
+ 12

μ4

]}
,

(76)

the specific heat. They are depicted in Fig. 4, which includes
the low-temperature corrections. On the one hand, results are
not very illuminating as κ increases indefinitely, since more
terms are needed to obtain the adequate precision. On the
other hand, the infinite-temperature limit is independent of
the κ parameter. In fact, at μ = 0, the Dulong-Petit law is
retrieved for the specific heat in two dimensions. This could
be anticipated, since the partition function takes the same
form as, for instance, for graphene electrons close to Dirac
points [42].

B. Temperature-dependent maximal mixing

Turning back to the computation of the relevant quantum
information observables for finite temperatures, the normal-
ized Wigner function is recast as WTE = (Z )−1W, so as to
ensure the probability is conserved.

Using Eq. (17), the quantum purity can be evaluated,

P[WTE] = Z−2(μ)
∞∑

n �=0

(
exp[−μ

√
κ + n]

)2

= Z−2(μ)

( ∞∑
n=0

exp[−2μ
√

κ + n]

)

= Z−2(μ)Z (2μ) (77)

≈ μ2

8
, (78)

where the last line is valid in the high-temperature limit [cf.
Eq. (74)]. Thus, the quantum purity depends only on the
partition function, evaluated at two distinct temperatures, μ

and 2µ. This result is consistent with [43], where the quantum
purity has been universally derived from a partition function.
At absolute zero (T → 0), however, the quantum purity is
more easily obtained from Eq. (67), whose leading term yields

P[WTE]T =0 = lim
μ→∞

Z (2μ)

Z (μ)2
= lim

μ→∞
exp(−2μκ1/2)

exp(−μκ1/2)2
= 1,

(79)

i.e., the quantum system is pure and is in the ground state for
any value of κ , as expected. This concurs with the numerical
results exhibited in Fig. 5, which shows that the quantum
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(a) (b)

FIG. 4. Dimensionless internal energy (a) and specific heat (b) in high temperatures. In natural units, μ =
√

2 eB
T is the expansion parameter

for the partition function. Results are for κ = 0 (solid line), 1 (dot-dashed line), and 10 (dashed line) when some few terms from the infinite

expansion [cf. Eqs. (67) and (69)] are considered. At μ = 0, the result is analytic and independent of κ = m2+k2
z

2 eB [cf. Eq. (68)].

purity is constrained to 0 � P � 1. It is somewhat surpris-
ing that the highly oscillatory behavior of zeta functions
never violates the admissible values of quantum purity. This
behavior is obtained when an ever increasing number of terms
is included at low temperatures.

This result is reassuring since the continuation of zeta
functions to negative integers still yields a consistent quan-
tum purity quantifier. Moreover, Fig. 5 shows that purity in
thermodynamic ensembles for uneven Landau levels has a
straightforward interpretation. Starting at absolute zero, the
plotted curves indicate that the system is in the ground state.
As the temperature increases, the system also occupies excited
levels. For small values of κ , the lowest energy is away from
the first excited level, and the system remains in the ground
state up to great temperatures. Conversely, for increasing
values of κ , the zero-point energy level is much closer to
excited levels, and thus only a tiny amount of thermal energy
is required to populate excited levels; namely, for κ → ∞, the
system remains in the ground state strictly at absolute zero.
For κ = 0, 1, the system remains in the ground state up to

FIG. 5. Quantum purity of uneven Landau levels in finite tem-
peratures. As in Fig. 4 plots are for κ = 0 (solid line), 1 (dot-dashed
line), and 10 (dashed line). At absolute zero (T → 0), μ → ∞, and
all ensembles approach asymptomatically P = 1, a pure state. In the
infinite-temperature limit (T → ∞), μ = 0, all states are maximally
mixed.

μ ≈ 5 and 10, respectively. This is characteristic of uneven
energy levels. In contrast, an energy spectrum with constant
energy spacing can be simply shifted by a constant amount.
Thus, the quantum purity would not depend on any additional
parameter.

To summarize, the partition function has been computed
using the method of complex contour integral. Even though
the low-temperature behavior does not have a closed form
expression, the quantum purity quantifier, which depends only
on the partition function itself, ranges from a maximal mixture
in the infinite-temperature limit to a pure state at absolute zero.
It is emphasized that the quantum purity is straightforwardly
computed once the partition function is obtained. Next, this re-
sult will be used to finally compute the temperature-dependent
correlations for Dirac spinors.

C. Intrinsic correlations

Unlike the quantum purity expression, which solely de-
pends on the probability distribution, other entropy measures
do not have an obvious dependence on the partition function.
Even worse, the energy parameters of each Wigner function
from Eq. (22) make sums difficult to obtain because one needs
to consider the spinor degrees of freedom. Nevertheless, it
is essential to verify if a general behavior is observed in
the infinite-temperature limit. In particular, correlations are
expected to exhibit temperature-dependent plateaus, i.e., a
temperature for which these quantifiers become saturated.
They can be evaluated even if the density matrix does not
exhibit a closed form because orthogonality in phase space
can be used to calculate phase-space integrals.

In the following computations, it will be assumed that κ =
0 [cf. (68)], valid in strong magnetic fields. The associated
energy parameters take the form

Bn =
√

2n eB√
m2 + k2

z + 2n eB + m
= 1 − δn,0, (80)

An �=0 = kz√
m2 + k2

z + 2n eB + m
= 0, (81)

ηn �=0 =
√

m2 + k2
z + 2n eB + m

2
√

m2 + k2
z + 2n eB

= 1

2
. (82)
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In other words, for κ = 0, the constants above take an uni-
versal value for excited levels. However, the normalization
of the ground state is still undetermined but is constrained to
1/2 � η0 � 1.

The reason for this assumption is threefold. First, the cor-
relation structure no longer depends on the particular Landau
level,7 simplifying summations over several indices. From
the preliminary results shown in Fig. 1, the total information
also takes a constant value. Second, the partition function at
κ = 0 describes thermalized two-dimensional Dirac electrons
on graphene [42]. Third, one is mainly interested in the be-
havior of correlations in the infinite-temperature limit, which
is expected to be independent of κ .

Now, recalling that the ensemble from Eq. (65) is given in
terms of ω−

n,1(s, kx ) introduced in Eq. (20), which for n > 0
and κ = 0 simplifies to

ω−
n,1(s, kx ) = 1

2

⎛
⎜⎜⎝

0 0 0 0
0 Ln Mn 0
0 −Mn −Ln−1 0
0 0 0 0

⎞
⎟⎟⎠. (83)

The ground state needs an additional normalization, which
does not qualitatively affect the result for high temper-
atures. The phase-space entropy is calculated for WTE

(cf. Appendix F),

I{x,kx} = 1 − Z (2µ)

2Z2(µ)
− p2

0

2Z2
− 1

2Z2

∑
n=0

pn pn+1. (84)

It has been noticed that for high temperatures, the third and
fourth terms can be dropped.

Therefore, the phase-space linear entropy is approximated
as I{x,kx} ≈ 1 − 1/2P , approaching unity at μ = 0. A similar
result has been obtained for Gaussian states in the previous
section. The quantum state is spread out in phase space,
and thus any phase-space measurement yields the maximal
amount of information with respect to the continuous degrees
of freedom. Conversely, at absolute zero, Eq. (84) is evaluated
with Z = p0 = 1, and thus I{x,kx} = 0, i.e., the ground state
has zero entropy.

The result obtained for the quantum purity is closely tied
with the continuous linear entropy, which can be confirmed
in Fig. 6 since the linear entropy is, to a good approximation,
a reflection of the quantum purity curve. Qualitatively, these
quantifiers have an opposite behavior for finite temperatures.
For κ = 0, the quantum state has zero entropy when μ � 5,
the temperature below which the quantum state is pure. This
result can be generalized to different types of interactions
as long as the particle is confined. A maximally mixed state
corresponds to an arbitrary statistical mixture of infinitely
many eigenstates of a given Hamiltonian. It follows that the
phase-space entropy quantifier is always maximized, since the
basis is orthogonal, and thus mixed states cover the entire
phase space.

7This is true only after phase-space averaging. The local behavior
of the Wigner function is still quantized and described by the HO
basis.

FIG. 6. Finite-temperature information profile of uneven Landau
levels. It is assumed that κ = 0 [cf. (68)], which is valid in strong
magnetic fields. In the infinite-temperature limit, with μ = 0, these
results do not depend on κ . Solid and dashed black lines are for
spin-parity [cf. Eq. (85)] and phase-space [cf. Eq. (84)] entropies,
respectively. Solid gray line is for the intrinsic concurrence [cf.
Eq. (86)]. The result shows that these entropy measures increase for
increasing temperatures, and quantum correlations are preserved.

The calculation of the spin-parity linear entropy follows
along the same lines and is left to Appendix F for brevity. The
final result for κ = 0 is

ISP = 1

2

(
1 − p2

0

Z2

)
, (85)

where it has been assumed the same the ground state nor-
malization from Eq. (84). One notices that the information
associated with the discrete degrees of freedom is also en-
hanced by greater temperatures.

Finally, one calculates the concurrence as

C2
TE = Z−1

∑
n=0

pnC2
n = Z−1

∑
n=1

2pn(ηnBn)2

� 1

2Z (Z − p0), (86)

where the equality holds when κ = 0, the case under consid-
eration. p0 shows up again because the ground state has zero
intrinsic concurrence. One briefly recalls that this measure is
affected by the basis chosen, as has been preliminarily shown
in Fig. 1. Indeed, there are ensembles with the same partition
function that exhibit only classical correlations.

Results for the partial entropies and concurrence are sum-
marized in Fig. 6, confirming what is suggested by Fig. 5.
For increasing temperatures, the decrease of quantum pu-
rity compensates the increase of phase-space entropy. This
compensation effect is exact in the infinite-temperature limit,
where the quantum purity and the continuous-variable entropy
reach 0 and 1, respectively. Thus, the spin-parity entropy
becomes the only remaining source of information, and
MSP

{x,kx} = ISP = C2
TE at μ = 0 [cf. (12)]. The total mutual

information is not affected by choosing κ �= 0 in the infinite
temperature limit. However, quantum correlations decrease by
increasing κ or choosing a distinct superposition.

In brief, partial entropies have been computed analytically
for finite temperatures in terms of the partition function. One

022206-14



INTRINSIC CORRELATIONS FOR STATISTICAL … PHYSICAL REVIEW A 109, 022206 (2024)

has also measured quantum correlations with the concur-
rence quantifier. The amount of entanglement saturates due
to highly excited Landau levels as the temperature increases.
In the infinite-temperature limit, the quantum state spreads
over phase space and thus maximizes the phase-space linear
entropy while minimizing the quantum purity measure.

V. CONCLUSIONS AND OUTLOOK

We have investigated stationary mixtures of Dirac-like
Wigner functions that carry the intrinsic correlation structure
as SU(2) ⊗ SU(2) qubits in relativistic Landau levels [8].
The preliminary result is the uniqueness of pure state decom-
positions of Wigner functions in some kind of a confining
potential. The external magnetic field introduces a new degree
of freedom, quantizing not only the energy spectrum, but also
the density matrix, a result that simplifies the calculation of
the quantum concurrence. This is completely consistent with
the mutual information measure, which quantifies the total in-
formation shared by the phase-space and spin-parity (Hilbert)
spaces.

As a prelude, superpositions and mixtures have been
contrasted. The fundamental difference is summarized as
follows. The interference between two solutions in config-
uration space degrades the intrinsic entanglement. However,
probability distributions in phase space do not affect this sep-
arability measure. Only classical correlations are affected by
mixedness.

We have then considered mixed Gaussian states analyt-
ically obtained from the generating function of Laguerre
polynomials. The physical observables depend only on the
mixing parameter, which works as a localization probe in
phase space. In fact, the ground state has zero phase-space
entropy and is the most localized state as allowed by quantum
mechanics. On the other extreme, the fully delocalized state
covers the entire phase space and has zero purity but maxi-
mum phase-space entropy.

The phase-space linear entropy is maximized when the
quantum purity is minimized. Thus, this entropy quantifier
becomes a localization measure in its own right. Since all
the remaining information, quantum and classical, is quan-
tified by the spin-parity linear entropy, one concludes that it
contains the quantum concurrence (squared). Likewise, the
nonseparability measure between discrete degrees of freedom
is thus regarded as a source of uncertainty, or (quantum)
information, in this Hilbert space.

Some conclusions drawn for closed-form Gaussian states
are not restricted to these particular states. A similar behav-
ior is also valid for any confining potential, which depends
on position variables. Namely, all completely mixed Wigner
functions maximize the phase-space linear entropy because
systems with infinite-dimensional bases need a small but finite
probability over all eigenstates to reach a zero purity state.
For orthogonal eigenstates, maximally mixed states are thus
delocalized.

Finally, one has investigated the correlation structure of
canonically distributed probability distributions. One has ob-
tained the partition function of the system with complex
integration methods, which is the main result of the paper. It

reads

Z =
+∞∑
m=0

ζ
(
−m

2
, κ
) (−μ)m

m!
+ 2

μ2
.

This partition function simplifies in the infinite-temperature
limit to Z = 2/µ2, independent of any additional parame-
ter. However, the low-temperature corrections are described
by analytically continued Hurwitz zeta functions ζ (−m

2 , κ ),
which also include the dependence on the one-particle pa-

rameters κ = m2+k2
z

2 eB . The quantum purity, P = Z (2µ)/Z (μ)2,
has been immediately obtained. It quantifies the Landau levels
occupation with respect to the fundamental state. Namely, at
absolute zero, the system is in the ground state with P = 1.
As the temperature increases, the quantum purity decreases
down to P = 0, when all energy levels are occupied with an
arbitrarily small probability.

In regard to entropy measures, a relevant behavior is
observed in the infinite-temperature limit; namely, the phase-
space linear entropy is maximal when the state delocalizes,
confirming the observation for Gaussian states. Thus, the spin-
parity linear entropy becomes the only information source.
This remaining information is either classical- or quantum-
like, which in the latter case can also be quantified in terms
of the quantum concurrence. However, a basis change affects
the intrinsic entanglement. Each choice identifies a distinct
quantum system.

Precisely, the partition function does not uniquely iden-
tify the (thermalized) low-dimensional system. For instance,
graphene is a platform that appeals to the quantum informa-
tion framework described here. One first recalls that graphene
is a two-dimensional layer of carbon atoms (A − B) packed in
a hexagonal lattice and whose low-energy excitations are de-
scribed by Dirac Hamiltonians at the corners of the Brillouin
zone. Briefly using the notation from Ref. [44], the effective
low-energy Hamiltonian is written as

Hp = vF σ z ⊗ p · σ, (87)

for small deviations q (p = h̄q) from the Dirac points, and
vF the fermi velocity. Thus, the first Pauli matrix σ z de-
notes the valley pseudospin (K − K ′), and the second set
of Pauli matrices represents the sublattice pseudospin (A −
B). Landau levels are formed when a perpendicular mag-
netic field is introduced with the minimal substitution, p →
p − eA. Excited levels can be written in the basis8 � =
(ψA

p,K ψB
p,K ψB

p,K ′ ψA
p,K ′ )T and are proportional to

�±
n,ky

(x) = exp(−ikyy)

⎛
⎜⎜⎜⎝

φn−1

±φn

φn−1

(∓)φn

⎞
⎟⎟⎟⎠, (88)

where the upper sign corresponds to the conduction band, and
the lower sign to the valence band, with eigenvalues εn =
± h̄vF

lB

√
2n. The HO basis in configuration space is written as

8The Hamiltonian is written as a tensor product if the roles of the
A − B sublattices are reversed for the K ′ valley.
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[16]

φn = Hn
((

x − l2
Bky

)
/lB

)
√

2n n!
√

π lB
exp

[
−1

2

(
x − l2

Bky

lB

)2
]
, (89)

where lB = √
h̄/eB is the magnetic length and Hn(x) is a

Hermite polynomial. Thus, the scalar functions are closely
related to those discussed for the three spatial dimensions
case.9 Thus, the stationary states of the low-dimensional
Hamiltonian are expanded in the basis of the spin-parity Dirac
Hamiltonian (an equivalent basis in three spatial dimensions)
if one simply identifies vF ↔ c. This expansion involves only
Landau levels with the same index. After this mapping, these
Hamiltonians share the same eigenvalues,

εn = ± h̄vF

lB

√
2n ↔ ±En = ± h̄c

lB

√
2n, (92)

and thus the conduction band is associated to positive parity
states, whereas the valence band is associated to negative
parity states.

The superposition of distinct parity states is not station-
ary, different from Eq. (31) [sin(θ ) u+

n,1(s) + cos(θ ) u−
n,1(s)].

Nevertheless, at t = 0 and θ = π/4, all quantum informa-
tion measures exhibit coincident values. This correspondence
follows from the fact that this stationary state differs from
Eqs. (90) and (91) only by a relative sign in the spinor com-
ponents.

Therefore, the proposed quantifiers are appropriate for
measuring valley-sublattice correlations implied by the ef-
fective Hamiltonians close to Dirac points. From our results,
when the energy eigenvalues are dominated by the magnetic
field (Bn = 1) in Fig. 1, the total mutual information reaches
unity. However, the intrinsic concurrence between valley and
sublattice reads (cf. Appendix B)∫ +∞

−∞
ds

∫ +∞

−∞
dkx C2[ωn,θ ] = 1

2
cos2(2θ )|θ=π/4 = 0; (93)

i.e., these qubit states are separable. This result could be
anticipated since the Hamiltonian is diagonal in the valley
subspace. To put it simply, the total information stored in
these Dirac bispinors is composed by two parts: the entropy
associated to continuous degrees of freedom, the HO basis,
and the entropy associated to discrete degrees of freedom, the
valley-sublattice pseudospins. However, these qubits are not
entangled. One thus expects a finite concurrence measure if
intervalley couplings are introduced.

9The two copies of the massless (2 + 1)-dim Dirac equation are not
equivalent to the (3 + 1)-dimensional Dirac equation and thus do not
have a common set of eigensolutions. However, one notices that for
a fixed Landau level, a map between these solutions is obtained by a
straightforward eigenfunction expansion (cf. Appendix A),

u+
n,1(s) + u−

n,2(s) ∝ �+
n,ky

(x), (90)

−u−
n,1(s) + u+

n,2(s) ∝ �−
n,ky

(x), (91)

(with kz = m = 0) up to a normalization factor. There is an additional
exp(−ikyy) factor at both sides that is factorized out.

In such a context, the partition function obtained here
describes the thermodynamics of graphene electrons close to
Dirac points. Entropy measures have been obtained in terms
of dimensionless variables that include a scaling factor, being
consistent with both the relativistic and the solid-state Hamil-
tonians. Even though quantum correlations are trivial without
any intervalley coupling, this framework is suitable not only to
electronic band structures, but also to recently reported Dirac
Hamiltonians for bosonic systems [45,46] with a confining
potential.
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APPENDIX A: EQUAL-TIME WIGNER FUNCTION
IN LANDAU LEVELS

Considering that the prescription for calculating the
equal-time Wigner function is indicated in Eq. (7), the eigen-
functions of the Dirac Hamiltonian for a constant magnetic
field can be written as

ψ = exp[i((−1)rEnt + kyy + kzz)]u±
n,r (sr ), (A1)

describing plane-wave solutions in both y and z directions.
The dynamics along the x coordinate is shifted according to
the charge of the particle,

sr =
√

eB
(

x + (−1)r ky

eB

)
. (A2)

The bispinors u±
n,r (sr ) form a complete basis in configuration

space. It is possible to choose a set with positive parity states
(r = 1),

u+
n,1(s1) = √

ηn

⎛
⎜⎜⎜⎝

Fn−1(s1)

0

An Fn−1(s1)

−Bn Fn(s1)

⎞
⎟⎟⎟⎠,

u−
n,1(s1) = √

ηn

⎛
⎜⎜⎜⎝

0

Fn(s1)

−Bn Fn−1(s1)

−An Fn(s1)

⎞
⎟⎟⎟⎠, (A3)

and negative parity (r = 2) states,

u+
n,2(s2) = √

ηn

⎛
⎜⎜⎜⎝

Bn Fn−1(s2)

An Fn(s2)

0

Fn(s2)

⎞
⎟⎟⎟⎠,

u−
n,2(s2) = √

ηn

⎛
⎜⎜⎜⎝

−An Fn−1(s2)

Bn Fn(s2)

Fn−1(s2)

0

⎞
⎟⎟⎟⎠. (A4)

For a clear connection with typical superposition phenomena,
one simply chooses one of the two equivalent Hamiltonians
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for positively or negatively charged particle, fixing the sr=1 ≡
s coordinate. The second set of solutions describes the usual
E < 0 solutions, and the HO basis in configuration space in
terms of Hermite polynomials Hn(s) becomes

Fn(s) =
( √

eB
n! 2n

√
π

)1/2

e−s2/2Hn(s). (A5)

The corresponding matrix basis in Eqs. (19)–(22) can be
obtained componentwise by plugging the Dirac bispinors
above into Eq. (7). Instead of calculating all 16 components,
one simply notices that there are only two distinct functions
to be evaluated,

Ln(s, kx ) =
∫ +∞

−∞
du exp[2i kx u]Fn(s − u)Fn(s + u),

(A6)

Mn(s, kx ) = 1

2

∫ +∞

−∞
du exp[2i kx u][Fn−1(s − u)Fn(s + u)

+ Fn−1(s + u)Fn(s − u)], (A7)

which result in Laguerre polynomials as shown in Eqs. (24)
and (27). These functions appear alongside the appropriate
combination of constants An and Bn.

APPENDIX B: PURE STATE QUANTUM CONCURRENCE

For pure states, quantum correlations are quantified by the
quantum concurrence whose formula for two qubits can be
straightforwardly extended to the equal-time Wigner func-
tion, by recalling that the density matrix of the system � =
γ0 ω±

n,r now also depends on phase-space coordinates. In this
context, the qubit-flip operator in spinor space reads σ (P)

y ⊗
σ (S)

y = −i γ 2, which is applied after the complex conjugate
operation,

˜γ 0 ω±
n,r = (−iγ 2)γ 0 ω±

n,r (−iγ 2), (B1)

not affecting the density matrices in Eqs. (19)–(22) since they
have real components. The promised formula for the quantum
concurrence squared is written as [8]∫ +∞

−∞
ds

∫ +∞

−∞
dkx C2[ω±

n,r]

=
∫ +∞

−∞
ds

∫ +∞

−∞
dkx Tr[γ 0 ω

±
n,r

˜γ 0 ω±
n,r]

= 2(ηnBn)2, (B2)

where these parameters are given by Eq. (23), namely,
Bn =

√
2n eB

En+m and ηn = En+m
2En

, related to the fermion physical
parameters.

One notices that while the square root of the above expres-
sion is clearly well defined, the square root of the unintegrated
expression cannot be defined locally in phase space, since
it depends on the products of functions that take negative
values. Thus, one keeps the squared expression as the relevant
quantifier for intrinsic entanglement.

However, a distinct basis is possible since the energy levels
are degenerate. This is summarized by the basis change in

Eq. (31), which introduces the superposition angle θ ,

ωn,θ = sin2(θ ) ω+
n,1 + cos2(θ ) ω−

n,1 + sin(θ ) cos(θ ) �n.

(B3)

One finally evaluates the quantum concurrence squared as∫ +∞

−∞
ds

∫ +∞

−∞
dkx C2[ωn,θ ] = 2η2

n[Bn cos(2θ ) − An sin(2θ )]2,

(B4)
where now An = kz

En+m . Thus, for θ = π (k + 1/2), with inte-
ger k, one recovers the previous result. Each θ corresponds to
a distinct quantum superposition, and tan(2θ ) = Bn/An iden-
tifies states that are spin-parity separable for all An �= 0 and
cos(2θ ) �= 0.

APPENDIX C: PHASE-SPACE INTEGRATION
OF DIRAC-GAUSSIAN STATES

The quantum purity in Eq. (56) can be calculated using
polar coordinates,

PW = 2π

∫ +∞

−∞
dx

∫ +∞

−∞
dkx Tr[(γ0W (x, kx ))2]

= (1−z)2

4

∫ +∞

0

dr r

{
z2 + 1

(z+1)2
exp

[
4r2

(
z

z + 1
−1/2

)]

+ exp[−2r2] + 2

z + 1
exp

[
2r2

(
z

z + 1
− 1

)]}

= (z − 1)(z2 − 2)

4(z + 1)
, (C1)

where the final result is obtained by noticing that a change of
variable u = r2 yields an exponential integrand.

Equation (59) is obtained using the same method.
Explicitly,

I{x,kx} = 1 − 4π2
∫ +∞

0

dr r Tr[Wγ0]2

= 1 − (1 − z)2
∫ +∞

0

dr r

{
exp[−2r2]

+ exp

[
4r2

(
z

z + 1
− 1

2

)]

+ 2 exp

[
2r2

(
z

z + 1
− 1

)]}

= z

2
(2 + z − z2). (C2)

Turning to Eq. (60), one now calculates the entropy with
respect to the spin-parity Hilbert space [cf. (10)]. The phase-
space degrees of freedom are removed by integrating Eqs. (50)
and (51),

2π

∫ +∞

0

dr r W11 = z

4
, (C3)

2π

∫ +∞

0

dr r W22 = 2 − z

4
. (C4)

Now, in a similar fashion to Eq. (59), the linear entropy is
calculated by tracing over the square of the spin-parity density

022206-17



FERNANDO E SILVA AND BERNARDINI PHYSICAL REVIEW A 109, 022206 (2024)

matrix. Then the corresponding linear entropy [cf. (10)] can be
calculated,

ISP = 1 − 4π2Tr

⎡
⎣
(

γ0

∫ +∞

0

dr r W
)2

⎤
⎦

= 1 − 2

[(
z

4

)2

+
(

2 − z

4

)2
]

= 1

2

(
1 + z − z2

2

)
, (C5)

which is the desired result.

APPENDIX D: DIMENSIONLESS
THERMODYNAMIC FUNCTIONS

Following a similar procedure described in [42] for non-
commutative graphene, one extracts other thermodynamics
functions from the partition function,

Z =
∑

n

exp(−βEn), β = 1

kBT
, (D1)

where kB is the Boltzmann constant and T is the equilibrium
temperature. Whereas the partition function is dimensionless,
other functions derived from it are not. For instance, En is
temporarily regarded as a dimension-full quantity,

En =
√

(mc2)2 + (ch̄kz )2 + 2n eBh̄ c2. (D2)

Any term that appears in the energy eigenvalue can be used
as a scaling parameter. Choosing the last one, one introduces
dimensionless variables as

β̃ = 1

T̃
, T̃ = 1

c
√

2eBh̄

(
1

β

)
, (D3)

where “∼” stands for a dimensionless quantity. This choice
yields an analogous scaling to Dirac electrons in graphene,
where the speed of light is replaced by the Fermi velocity.

Other thermodynamic functions can also be written in
terms of these new variables, namely, the free energy F , the
mean energy U , the entropy S, and the specific heat C. One
then obtains dimensionless quantities simply by noticing that

β = β̃

(
1

c
√

2eBh̄

)
(D4)

has units of inverse energy. Thus, the first two can be
rescaled as

F̃ = F

c
√

2eBh̄
= − 1

β̃
lnZ, (D5)

Ũ = U

c
√

2eBh̄
= − ∂

∂β̃
lnZ. (D6)

Conversely, the entropy and the specific heat can be simply
written as

S̃ = S

kB
= β̃2 ∂F̃

∂β̃
, (D7)

C̃ = C

kB
= β̃2 ∂Ũ

∂β̃
. (D8)

Throughout the paper, one uses natural units, with kB = c =
h̄ = 1. This is simply equivalent to choosing the dimension-
less set of physical observables. To avoid confusion, one
adopts the notation μ = β̃ in natural units, so that μ stands for
the inverse temperature normalized by the magnetic field. This
parameter will be used for expanding the functions above. In
the paper, the “∼” notation is omitted.

APPENDIX E: RESIDUE OF THE ZETA FUNCTION

The residue theorem is once again applied to z = 1, by
using an alternative representation of the zeta function in
Eq. (73), an analytic continuation in terms of a double sum
of binomial coefficients (n

m) [41],

Res(ζ (z, κ ), 1) = lim
z→1

(z − 1)

[
1

z − 1

∞∑
n=0

1

n + 1

×
n∑

m=0

(−1)m

(
n

m

)
(κ + m)1−z

]

=
∞∑

n=0

1

n + 1

n∑
m=0

(−1)m

(
n

m

)

= 1 +
∞∑

n=1

1

n + 1
(1 − 1)n

= 1, (E1)

where the binomial theorem has been applied in the third
equality.

APPENDIX F: FINITE TEMPERATURE CORRELATIONS

In order to calculate each component of the ensemble in
Eq. (65), one recalls that if κ = 0, the one-particle parameters
for excited levels simplify to Bn = 1, ηn = 1/2, An = 0. Thus,
for n �= 0, the matrix (20) simplifies to

ω−
n,1(s, kx ) = 1

2

⎛
⎜⎜⎝

0 0 0 0
0 Ln Mn 0
0 −Mn −Ln−1 0
0 0 0 0

⎞
⎟⎟⎠. (F1)

However, the ground state has a distinct normalization, de-
pending on the value of η0. The simplest choice is η0 = 1
(A0 = 0) since there are fewer components to evaluate. This
choice does not affect the results at absolute zero or in the
infinite-temperature limit. The ground state reads

ω−
0,1(s, kx ) =

⎛
⎜⎜⎝

0 0 0 0
0 L0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠. (F2)

Thus, the phase-space entropy in Eq. (84) can be calcu-
lated, by recalling that the thermalized ensemble has been
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introduced in Eq. (65). The result reads

I{x,kx} = 1 − 2π√
eB

∫ +∞

−∞
dx

∫ +∞

−∞
dkx Tr[WTEγ0]2

= 1 − 2π

Z2
√

eB

∫ +∞

−∞
dx

∫ +∞

−∞
dkx

(
1

2

∑
n=1

pnLn−1

+ 1

2

∑
n=1

pnLn + p0L0

)2

= 1 − 1

Z2

(
1

2

∑
n=1

(pn)2 + p2
0

2

+ 1

2

∑
n=1

pn pn+1 + 1

2
p0 p1

)

= 1 − Z (2µ)

2Z2(μ)
− p2

0

2Z2
− 1

2Z2

∑
n=0

pn pn+1, (F3)

where the phase-space integrals in the second line are per-
formed using the orthogonality of Laguerre polynomials from
Eq. (26). In the last line, the series and the third term become
negligible. To see this, one recalls that Z2(μ) = (

∑
pn)2, so

that the denominator is always greater than the numerator.
Moreover, for high-temperatures, all pn are arbitrarily small.
Thus, the third and fourth terms can be dropped.

The spin-parity entropy in Eq. (85) needs to be considered
separately. The expression to be calculated is

ISP = 1 − Tr

⎡
⎣
(

γ0

∫ +∞

−∞
dx

∫ +∞

−∞
dkx WTE(s, kx )

)2
⎤
⎦, (F4)

where again

WTE(s, kx ) = 1

Z

∞∑
n=0

pn(ω−
n,1). (F5)

No integration is needed, since the functions Ln are normal-
ized, and Mn vanish upon phase-space averaging [cf. (28)].

Now, using the notation ai j to indicate each element of the
4 × 4 matrix after integration,

a22 = 1

2

∑
n=1

pn + p0,

a33 = −1

2

∑
n=1

pn. (F6)

Using Z = ∑
n=1 pn + p0,

ISP = 1 − a2
22 − a2

33

= p2
0 + 1

2
(Z − p0)2 + (Z − p0)p0

= 1

2

(
1 − p2

0

Z2

)
, (F7)

the result shown in Eq. (85).
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