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Symmetric multipartite Bell inequalities via Frank-Wolfe algorithms

Sébastien Designolle ,1 Tamás Vértesi ,2 and Sebastian Pokutta 1

1Zuse-Institut Berlin, Takustraße 7, 14195 Berlin, Germany
2MTA ATOMKI Lendület Quantum Correlations Research Group, HUN-REN Institute for Nuclear Research, Debrecen, 4001, Hungary

(Received 15 November 2023; accepted 5 January 2024; published 7 February 2024)

In multipartite Bell scenarios, we study the nonlocality robustness of the Greenberger-Horne-Zeilinger (GHZ)
state. When each party performs planar measurements forming a regular polygon, we exploit the symmetry of
the resulting correlation tensor to drastically accelerate the computation of (i) a Bell inequality via Frank-Wolfe
algorithms and (ii) the corresponding local bound. The Bell inequalities obtained are facets of the symmetrized
local polytope and they give the best-known upper bounds on the nonlocality robustness of the GHZ state for
three to ten parties. Moreover, for four measurements per party, we generalize our facets and hence show, for
any number of parties, an improvement on Mermin’s inequality in terms of noise robustness. We also compute
the detection efficiency of our inequalities and show that some give rise to the activation of nonlocality in star
networks, a property that was only shown with an infinite number of measurements.
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I. INTRODUCTION

Bell nonlocality of multipartite quantum states is one of
the most counterintuitive aspects of nature [1]. Measure-
ments on entangled quantum states are indeed able to produce
correlations that cannot be explained by any local classical
mechanism. These nonlocal correlations can be witnessed in
experiments by violating Bell inequalities [1,2]. In addition
to its fundamental importance, Bell nonlocality also en-
ables a technology based on the so-called device-independent
paradigm of quantum information processing [3,4]. However,
to certify the nonlocal nature of multipartite correlations and
make it useful in real-life applications, one quickly runs into
the problem of exponential scaling of the parameter space
with the number of parties. Already for Bell inequalities with
binary settings and outcomes, the number of extremal vertices
and the dimension of the Bell polytope grows exponentially
with the number of parties. When it comes to computing
the nonlocality robustness of multipartite states, standard ap-
proaches relying on linear programming [5–7] or Frank-Wolfe
algorithms [8,9] are then very quickly intractable, and hence
limited to very low numbers of parties. However, symmetries,
already leveraged in [10], can be advantageously used in this
context to overcome these difficulties.

In this article, we exploit specific symmetries to reduce the
space and iteration complexity of the Frank-Wolfe approach
from [9]. We further use them to accelerate the computation
of the local bounds of the resulting Bell inequalities. The
symmetries considered are not ambient (they do not depend on
the scenario itself as in [10]) but embedded in the specific in-
stance we consider, namely, the multipartite GHZ state where
each party performs measurements forming a regular polygon
in the XY plane of the Bloch sphere. We obtain facets of
the symmetrized local polytope for up to N = 10 parties and
m = 9 measurements and give some consequences of these
results. For instance, the case just mentioned allows us to
show the activation of nonlocality in a star network, a fact that

was known only by using an infinite number of measurements
[11]. Moreover, the inequalities obtained with our method for
m = 4 appear to follow a pattern that we can generalize to
all N , improving on the asymptotic results given by Mermin’s
inequality [12].

We introduce the relevant notions and illustrate the main
symmetry reductions with a small example in Sec. II before
generalizing to arbitrary scenarios in Sec. III. Then we give
the main results in Sec. IV before discussing some conse-
quences in Sec. V.

II. PRELIMINARIES

A. Notations

We consider a scenario in which N parties, labeled by n ∈
[N], upon receiving inputs xn ∈ [m], give answers an = ±1
according to a strategy that they predefined. When repeat-
ing this for many rounds, one can construct the probabilities
p(a1, . . . , aN |x1, . . . , xN ) corresponding to this strategy. In
this work, marginals will always be zero and we work in the
correlation notation [4]. If the parties have access to some
shared quantum state, they may obtain correlations that cannot
be explained with local means. Geometrically, in this finite
scenario, this amounts to saying that these correlations are
outside of the local polytope defined as the convex hull of
local deterministic strategies.

Formally, for a choice of local deterministic strategies
�a(n) := (a(n)

1 . . . a(n)
m ) ∈ {±1}m for all n ∈ [N], the determinis-

tic strategy d�a(1)...�a(N )
has elements

d �a(1)...�a(N )

x1...xN
:=

N∏
n=1

a(n)
xn

, (1)

and the local polytope is defined as

L(m)
N := conv

{
d�a(1)...�a(N ) ∣∣ �a(1) . . . �a(N ) ∈ {±1}m

}
. (2)
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A point inside this polytope hence admits a convex de-
composition in terms of these deterministic strategies. Such
a decomposition is called a local model. Conversely, points
outside of the polytope may be detected by separating hyper-
planes, named Bell inequalities.

Consider the following N-partite GHZ state [13]:

|GHZN 〉 := |0 . . . 0〉 + |1 . . . 1〉√
2

, (3)

where |0〉 and |1〉 correspond to eigenvectors of σZ ; in other
words, they are oriented vertically in the Bloch sphere. We are
primarily interested in the nonlocality robustness of this state
[14]. In general, for a density matrix ρ, this quantity is defined
to be

vρ
c := inf

{
v | ∃m, ∃ �A, vpρ, �A �∈ L(m)

N

}
, (4)

where, given the observables �A := {{A(n)
xn

}xn}n, the correlation

tensor pρ, �A has elements

pρ, �A
xA...xN

:= Tr
[(

A(1)
x1

⊗ . . . ⊗ A(N )
xN

)
ρ
]
, (5)

according to Born’s rule.
In this work, we will detect the nonlocality of the quantum

state in Eq. (3) (so ρ = |GHZN 〉〈GHZN |) by having each party
perform m measurements forming a regular polygon in the XY
plane of the Bloch sphere [8], that is,

A(n)
xn

:= cos
(π

m
xn

)
σX + sin

(π

m
xn

)
σY . (6)

When doing so, it follows from Eq. (5) that the resulting
correlation tensor, denoted r(m)

N , has elements

r (m)
x1...xN

:= cos

(
π

m

N∑
n=1

xn

)
. (7)

The main focus of this article is to compute the critical
visibility

vGHZN
m := max

{
v | vr(m)

N ∈ L(m)
N

}
, (8)

which is a well-defined quantity as 0 ∈ L(m)
N and L(m)

N is com-
pact. By definition of the nonlocality robustness in Eq. (4),
one immediately has, for all m,

vGHZN
c � vGHZN

m . (9)

B. Simple example

We start with an illustration of the main symmetry re-
duction techniques when N = 2 and m = 3. In this case, the
correlation tensor from Eq. (7) simply reads

r(3)
2 =

⎛
⎜⎜⎝

1 1
2 − 1

2
1
2 − 1

2 −1

− 1
2 −1 − 1

2

⎞
⎟⎟⎠. (10)

The first step is to identify the symmetries of this matrix.
They can be seen in Eq. (7) and boil down, in this simple case,

FIG. 1. The symmetrised local polytope for N = 2 and m = 3,
that is, its projection on the subspace of matrices of the form of
Eq. (13). The point r(3)

2 outside of the polytope is given in Eq. (10).

to the following equalities:

Ar(3)
2 A = r(3)

2 and Br(3)
2 B = r(3)

2 , (11)

where A corresponds to a cycling with a sign flip of the
overflowing element and B acts as a mirror on the last two
elements on top of flipping their signs, namely,

A :=
⎛
⎝ 0 1 0

0 0 1
−1 0 0

⎞
⎠ and B :=

⎛
⎝1 0 0

0 0 −1
0 −1 0

⎞
⎠. (12)

The Reynolds operator � associated to the action generated
by A and B reads

�(p) := p + ApA + A2pA2 + BpB + BApAB + ABpBA

and projects any 3 × 3 matrix p onto the subspace of matrices
of the form ⎛

⎜⎜⎝
α β −β

β −β −α

−β −α −β

⎞
⎟⎟⎠ =:

[
α

β

]
. (13)

Now consider the local polytope projected onto this sub-
space; it is the convex hull of the following eight points:[−1

− 1
3

]
,

[−1

1

]
,

[
1

−1

]
,

[
1
1
3

]
, (14)

[− 1
3

− 1
3

]
,

[− 1
3

1
3

]
,

[
1
3

− 1
3

]
,

[
1
3
1
3

]
, (15)

and is depicted on Fig. 1. As can be seen there, only the
four points of Eq. (14) are extreme points of the projected
polytope. This symmetrised polytope has four facets given by
the following inequalities:〈

±
[

1
0

]
,

[
α

β

]〉
� 3 and

〈
±
[

2
3

]
,

[
α

β

]〉
� 12. (16)
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TABLE I. First values of the sequence {um}m defined in Eq. (26).

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

um 1 2 2 4 6 10 16 30 52 94 172 316 586 1096 2048 3856 7286 13 798 26 216 25 482

Notice that the right-hand sides in Eq. (16) correspond to the
scalar product in the initial nonsymmetrized space, not to the
one represented in Fig. 1.

The noise robustness is the scalar v at which the point vr(3)
2

enters the local polytope. In this case it is exactly 4
5 as shown

by the following equality:

4

5
r(3)

2 = 4

5

[
1
1
2

]
= 9

10

[
1
1
3

]
+ 1

10

[−1

1

]
. (17)

The decomposition indeed lies precisely on the facet opti-
mally detecting r(3)

2 , that is, f := [2, 3].
When it comes to the computation of the local bound of this

Bell inequality, namely, 12 as given in Eq. (16), the symmetry
can also play a role. Formally, this bound L(3)

2 is defined by

L(3)
2 := max

d�a,�b
〈f, d�a,�b〉 = max

�a,�b∈{±1}m

∑
x,y∈[m]

fxyaxby. (18)

Because f is symmetric, i.e., it satisfies f = �(f ), we have

〈f, d�a,�b〉 = 〈�(f ), d�a,�b〉 = 〈f, �(d�a,�b)〉 (19)

since � is self-adjoint. This ensures that we can restrict the
search to the symmetrized deterministic strategies. Actually,
�b can be fixed once the strategy �a is chosen. This simplifies
the computation of L(3)

2 to

L(3)
2 = max

�a∈{±1}m

∑
y∈[m]

∣∣∣∣∣ ∑
x∈[m]

fxyax

∣∣∣∣∣, (20)

which reduces the number of strategies to the number of orbits
of a suitable action discussed below in the general case. For
the simple example of this section, instead of running over the
eight possible strategies �a, it suffices to consider the following
two strategies:

�a = (−1,−1,−1) and �a = (−1, 1,−1), (21)

giving rise, respectively, to

�b = (−1, 1,−1) and �b = (1,−1, 1), (22)

which both attain the optimal value of 12 here.
Sections III A to III D generalize these symmetry ar-

guments to any number of parties N and any number
of measurements m, showing, in particular, the following
reductions:

(a) from mN to 
m
2 � for the dimension of the space,

(b) from 2(N−1)(m−1) to
(um+N−2

N−1

)
for the number of strate-

gies to enumerate, where the first terms of um are given in
Table I.

III. METHOD

A. Group action

We define the action by how its generators transform the
basis elements of the space of correlation tensors:

e := ex1 ⊗ ex2 ⊗ ex3 ⊗ . . . ⊗ exN ,

g1 · e := ex2 ⊗ ex1 ⊗ ex3 ⊗ . . . ⊗ exN ,

g2 · e := exN ⊗ ex1 ⊗ ex2 ⊗ . . . ⊗ exN−1 ,

g3 · e := ex1+1 ⊗ ex2−1 ⊗ ex3 ⊗ . . . ⊗ exN ,

g4 · e := ex̄1 ⊗ ex̄2 ⊗ ex̄3 ⊗ . . . ⊗ ex̄N , (23)

where em := −e1 and ex̄n
:= −em−xn . g1 and g2 generate the

symmetric group permuting the parties, g3 encodes the peri-
odic structure of the tensor, and g4 its reflection structure. We
denote by G the group generated by g1, g2, g3, and g4. Note
that we do not study the structure of G itself, as we are only
interested in its action on tensors defined in Eq. (23).

The action defined by the generators preserves the deter-
ministic strategies of Eq. (1). The orbits of this action on
deterministic strategies will play an important role later. We
can accelerate their enumeration by exploiting the invariance
under permutation of parties (given by g1 and g2) and the
fact that g3 cycles only two parties at a time. This means
that, for N − 1 parties, we can restrict the enumeration of
the strategies to the orbits of the subgroup generated by g3,
effectively using the last party to freely cycle the first N − 1
parties. This procedure gives a simple upper bound on the
number of orbits

2muN−1
m , (24)

which can be refined by ordering the orbits of the first N − 1
parties to

2m

(
um + N − 2

N − 1

)
, (25)

where um is the number of orbits of the subgroup generated by
g3, namely,

um := 1

2m

∑
2�d|m

ϕ(d )2
m
d , (26)

where this formula comes from the enumeration of binary
necklaces, see the on-line encyclopedia of integer sequences
[15] and references therein; see also Table I for the first terms
of this sequence. Equation (25) can be slightly improved, for
instance, by exploiting g4 (which we did in practice), but it is
already good enough for our needs.

Next we study the Reynolds operator associated to the
generic action on tensors, that is,

�(p) := 1

|G|
∑
g∈G

g · p. (27)

By construction, this operator projects the correlation tensor
p onto a subspace of dimension 
m

2 � such that the coordinates

022205-3



DESIGNOLLE, VÉRTESI, AND POKUTTA PHYSICAL REVIEW A 109, 022205 (2024)

TABLE II. Number of vertices of the symmetrized local poly-
tope, that is, number of different correlation tensors of the form
Eq. (28) obtained when applying the Reynolds operator Eq. (27) on
all deterministic strategies defined in Eq. (1).

�
��m
N

3 4 5 6 7 8 9 10

2 2 3 2 3 2 3 2 3
3 10 12 14 16 18 20 22 24
4 10 21 14 29 18 37 22 45
5 60 90 126 168 216 270 330 396
6 100 249 336 657 816 1367
7 640 1640 3740 7774 14 990
8 1540 7889 22 008
9 10 032 51 260
10 30 494 340 349
11 243 090
12 799 980

p̃x1...xN of �(p) satisfy

p̃x1...xN =
{

(−1)qtot p̃rtot,0...0 if rtot � m
2 ,

(−1)qtot+1 p̃m−rtot,0...0 if rtot � m
2 ,

(28)

where qtot and rtot are the quotient and remainder of the Eu-
clidean division of

∑
n xn by m. Note that, when m is even,

the two conditions in Eq. (28) are simultaneously fulfilled for
rtot = m/2 so that the corresponding elements in the projected
correlation tensor are 0. This justifies the dimension 
m

2 � given
above.

Note that [16], Appendix A considers a similar type of Bell
inequalities in the case where N = 2 and the flip generator g4

is omitted. The construction of inequalities there was done by
enumeration of all matrices respecting the symmetry, which
was very soon intractable as m grows. In the following, we
give two methods to generate multipartite Bell inequalitites
satisfying the symmetry: Computing all facets of the sym-
metrised polytope (limited to small m) or deriving the one
separating our point of interest given in Eq. (7) (via Frank-
Wolfe algorithms).

B. Symmetrized local polytopes

Following [10] we first try to fully characterize the pro-
jected polytope, that is, �(L). To do so, we can enumerate
all symmetrized deterministic strategies and then compute
the facets of the resulting polytope. The number of vertices
found in the computationally tractable cases can be found in
Table II. For all these examples, the number of facets is equal
to 2
m/2�. This seems to indicate that the symmetric polytope is
affinely equivalent to the cross-polytope in dimension 
m/2�.
Although we considered the orbits giving rise to the extreme
points of this polytope and tried to infer a generalizable pat-
tern, we could not establish this fact. We conjecture, however,
that it holds in general, and hope that further research will
identify these general extreme points. Note that proving this
may be motivated by the observation that symmetric facets
seem to be facets of the nonsymmetrized local polytope when
N is odd and m even, so that obtaining them in general may
directly give infinite families of facets for the local polytope.

C. Symmetric Frank-Wolfe

As m and N grow, the enumeration of all symmetrized
vertices soon becomes intractable, and a fortiori the enumer-
ation of all facets of the symmetrized polytope, see Table II.
Since our main interest lies on a specific facet, namely, the
one separating the correlation tensor in Eq. (7), we can use
a different approach to get this exact facet. The most natural
reformulation leads to a linear programming (LP) instance,
but it becomes intractable very soon [6,7], essentially because
enumerating all vertices of the (symmetrized) local polytope
soon becomes impossible. This problem has been addressed
using the Gilbert algorithm [17] adapted for quantum appli-
cations [8], and later reconnected to the corresponding field
of constrained convex optimization working on Frank-Wolfe
algorithms [9]. In this paper, we pursue this Frank-Wolfe
approach, which allows us to move inside the local polytope
without the need of enumerating its vertices, as only those
which are relevant to our problem are explored.

More precisely, this class of first-order algorithms, also
called conditional gradient methods [18], uses a linear mini-
mization oracle (LMO) to find directions of progress within
the feasible region and is quite memory efficient, which is
suited for high-dimensional problems. Moreover, in our case
where the feasible region is a polytope, the decomposition of
the final point returned by the algorithm is usually very sparse,
which makes this approach a good way of obtaining the points
defining the facet of interest.

Formally, we are solving

min
x∈L(m)

N

f (x)︷ ︸︸ ︷
1

2

∥∥x − v0r(m)
N

∥∥2

2, (29)

where the choice of the initial visibility v0 will be discussed
below (take v0 = 1 to start with). The core idea of the original
Frank-Wolfe algorithm [19,20] is to repeatedly move towards
the minimizer of the so-called LMO, which is the linearization
of our function at the current iterate xt :

vt := arg min
x∈L(m)

N

〈 ∇ f (xt )︷ ︸︸ ︷
xt − v0r(m)

N , x
〉
. (30)

In our case, this oracle amounts to finding a deterministic
strategy reaching the local bound of the Bell inequality de-
fined by the gradient at the current iterate. We explain in more
details how this is done in Sec. III D. Since this LMO can
be costly, variants of this algorithm have been developed that
feature a memory (active set) used to recycle previously found
vertices and hence reduce the number of calls to the LMO.
Moreover, for high m, we employ a heuristic LMO. We refer
to [9] and references therein for more details on the method
and only comment here on the choice of v0.

As already mentioned, we start with v0 = 1, which gives
a first separating hyperplane, and then use the corresponding
visibility (that is, v such that vr(m)

N lies on this hyperplane)
to start again the algorithm, keeping the active set, i.e., the
deterministic strategies already found. Since we are interested
in facets of the symmetrized polytope, we repeat this proce-
dure until the number of points in the active set reaches the
dimension of the search space, which is conveniently quite
small here.
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TABLE III. Critical visibility vGHZN
m for the nonlocality of the N-partite GHZ state with each party performing m measurements forming

a regular polygon on the XY plane. We also include robustnesses obtained with large number of measurements for which computing the local
bound is out of reach, even with our symmetric approach, see Table VI for more values. The lower bound on v

GHZN
XY (see Sec. V B) is, however,

rigorously proven as it only requires a valid local model.

N 3 4 5 6 7 8 9 10 Comments

2(1−N )/2 0.5 0.35355 0.25 0.17678 0.1250 0.08839 0.0625 0.04419 Mermin [12]

m = 4 0.5 0.35355 0.21875 0.15468 0.09375 0.06629 0.04004 0.02748 Sec. V A

m 22 20 18 16 12 11 10 9
vGHZN

m 0.49143 0.32493 0.20872 0.13422 0.08569 0.05544 0.03521 0.02301

m 224 128 64 32 16
Putative

vGHZN
m 0.49132 0.32384 0.20824 0.13327 0.08526

v
GHZN
XY � 0.49129 0.32374 0.20793 0.13231 0.08243 0.05108 0.03149 0.01974 Sec. V B

vN
low 0.32489 0.22335 0.15354 0.10555 0.07256 0.04989 0.03429 0.02358 Sec. V D

In our symmetric case, we can indeed navigate in the
reduced space of dimension 
m

2 �, keeping in mind that the
scalar product has to be properly weighted to reflect the
actual geometry of the initial tensors. What allows us to per-
form this dimension reduction is the fact, mentioned above
in Sec. III B, that symmetrized vertices can be viewed both
geometrically (as the projection on the symmetric subspace)
and algebraically [as the sum of the orbit of the atom found by
the LMO, see Eq. (27)]. Phrased differently, this means that
every atom found is virtually added to the active set together
with its entire orbit, placing the same weight on all these
symmetrically equivalent atoms.

Although the dimension of the space is independent of
N , the complexity of the LMO depends on N so that it be-
comes more and more expensive as this number increases.
More precisely, the heuristic approach used in [9] (alternating
minimization) acts on full tensors (of size mN ) and requires
more and more iterations to converge when N grows. One
can naturally avoid to store these full tensors in memory,
but the complexity still scales quite poorly. We nonetheless
underline that this LMO is called very infrequently in the
version of Frank-Wolfe that we use here (with active set)
[21]. Typically the total number of calls is a few times the
dimension 
m

2 �, hence very reasonable; for example, in the
instance with N = 3 and m = 224 given in Table III, it was
called 539 times.

Moreover, as N grows, the enumeration of orbits discussed
below becomes more and more competitive with respect to the
alternating heuristic just mentioned. For N � 8 we systemati-
cally use this enumeration as it is faster on top of being exact.

D. Local bounds

The question of computing local bounds is notoriously
complex. Already for N = 2, it is a quadratic unconstrained
binary optimization (QUBO) instance, and the degree of the
problem increases with N . One could reformulate these prob-
lems into linear ones at the expense of increasing the number
of variables, but such a reformulation is out of question in
practice as the resulting problems are far too big, already
for N = 2. In this section, we explain how symmetry can
significantly reduce the naive enumeration of cases.

Formally, for an N-partite tensor f defining a Bell inequal-
ity, the problem reads

max
�a(1)...�a(N )

∑
�x∈[m]N

f�x
N∏

n=1

a(n)
xn

, (31)

where the maximization is performed for �a(n) ∈ {±1}m, that
is, over deterministic strategies.

In general, without symmetries, it suffices to enumerate
2(N−1)(m−1) strategies. This is because the optimal strategy
for the last party is fixed when the other N − 1 parties have
chosen theirs, as follows:

a(N ) = sign

⎛
⎝ ∑

�x∈[m]N−1

f�x
N−1∏
n=1

a(n)
xn

⎞
⎠, (32)

where we set sign(0) = 1. Moreover, since we do not consider
marginals here, we can fix a(n)

0 = −1 for n ∈ [N − 1], up to
flipping the signs of both �a(n) and �a(N ).

With symmetries, we can further restrict to the orbits of the
deterministic strategies. Since the last strategy is fixed as in
the nonsymmetric case, see Eq. (32), the factor 2m is Eq. (25)
can be dropped to obtain an upper bound on the number of
cases to be considered(

um + N − 2

N − 1

)
, (33)

where we recall that um is defined in Eq. (26) and its first terms
given in Table I. In practice, we used GAP [22] to obtain the
orbits of interest (up to m = 26).

IV. RESULTS

We are now ready to present the robustnesses obtained
by using the method presented in the previous sections. The
evolution of the value of vGHZN

m is shown in Fig. 2 and we sum-
marize the best values in Table III together with some values
relevant for the discussion in Sec. V. All Bell inequalities and
closed-form expressions of the values given here can be found
in the Supplemental Material accompanying this article [23].

Let us show an elegant example to give a flavor of the
kind of inequalities found by our method. We pick N = 5 and
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FIG. 2. Critical visibility vGHZN
m (y axis) for the nonlocality of

the N-partite GHZ state with each party performing m (x axis)
measurements forming a regular polygon on the XY plane. These
visibilities naturally give lower bounds on the nonlocality robustness
of the N-partite GHZ state, see Eqs. (4) and (9). We refer to the
supplemental file for the analytical values and corresponding Bell
inequalities and to Table VI for approximate values. The nonmono-
tonic behavior is related to the nonoptimality of the quantum strategy
chosen to witness the nonlocality of the N-partite GHZ state for
m measurements per party. We expect optimal strategies to enjoy
similar symmetries than the ones exploited here but do not study this
point in this work.

m = 10, so that the facet f derived with our procedure and
given in the Supplemental Material has its first m elements

fx10000 for x1 ∈ [m] being

[988, 0, 575, 0, −575, 0, 575, 0, −575, 0],

all the others being deduced by symmetry, see Eq. (28).
With a slight improvement on Eq. (33) obtained by using
g4 from Eq. (23), we obtain the upper bound 242 873 on
the number of orbits. By enumerating only this many cases
instead of all 236 ≈ 7 × 1010 strategies, we get the local
bound L(10)

5 = 3 280 000. The quantum value reached by the
GHZ state is Q(10)

5 = 15 630 000, which finally gives v
GHZ5
10 =

L(10)
5 /Q(10)

5 ≈ 0.20985.
One immediate comment when considering Fig. 2 is the

nonmonotonicity of the curves when N is odd. This happens
because the measurements used are the same on all parties,
which is not optimal in terms of robustness. For instance, for
N = 3, we could use the following asymmetric setting: the
first and third parties perform the same measurements given
by a regular polygon in the XY plane, and the second uses the
same polygon, but rotated by an angle π/(2m). The resulting
correlation tensor also enjoys symmetries, but they are slightly
different, although the very same method as the one presented
in this article can be equally successfully applied.

Interestingly, the integer coefficients of the inequalities
found become quite large when m increases (for instance,
14 digits for N = 3 and m = 24). Although this property
is not surprising from an algebraic point of view (they are
hyperplanes going through integer vertices in an increasing
dimension), most inequalities studied in the literature contain
small integers, and the authors of [16] also restricted its search
of symmetric inequalitites to such small values. Maybe a close
examination of the inequalities constructed in this work (or
similar ones that the authors can compute on demand) could
reveal an interesting method to build general inequalities of
interest.

As far as the computation time is concerned, we ran all
instances on a 64-core Intel® Xeon® Gold 6338 machine and
the longest one was for N = 10 and m = 9, which took ten
days. For N � 6, however, the running time is more reason-
able: From a few seconds for m � 10 to a few hours beyond.
Typically, the case N = 3 and m = 224 took 3 hours.

V. CONSEQUENCES

A. Extension of the inequality for m = 4 to all N

For m = 4, the inequalities found with our method have a
very simple form: [1, 0, 0, 0] for odd N and [0, 1, 0,−1] for
even N , straightforwardly reaching the quantum value Q(4)

N

of 4N−1 and 4N−1
√

2, respectively. However, the computa-
tion of the local bound L(4)

N , whose first values are given in
Table IV, is not as simple. In Appendix A, we show that
L(4)

N+2 = 8(L(4)
N+1 − L(4)

N ) so that this local bound forms a Lucas
sequence. From there its value follows:

L(4)
2n−1 = 4n−1ln√

2
and L(4)

2n = 4nln√
2

, (34)
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TABLE IV. Local bounds of the inequalities defined by [1, 0, 0, 0] for odd N and [0, 1, 0, −1] for even N , see Eq. (34).

N 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

L(4)
N 8 32 56 224 384 1536 2624 10 496 17 920 71 680 122 368 489 472 835 584 3 342 336 5 705 728

where

ln :=
(

1 + 1√
2

)n

−
(

1 − 1√
2

)n

. (35)

The gist of the proof of the validity of this local bound
is the following: There are only u4 = 2 orbits per party, so
that the total number of strategies to check is N , see Eq. (33).
In this example, the best two strategies reaching the local
bound are the ones in which all N − 1 first parties use the
same deterministic strategy (out of the two orbits available).
Note that, in this case, as the dimension of the space is also

m

2 � = 2, we can extract the explicit local model of v
GHZN
4 r(4)

N
as in Eq. (17).

Similar inequalities were already mentioned in [24], but
the computation of the local bound, which did not use any
symmetry reduction, was only done up to N = 5. Although
the proof in Appendix A is admittedly tedious, we expect
further research to simplify the argumentation and to gener-
alize it to more measurements. A motivation to investigate
in this direction is the observation that the trivial strategy is
saturating all inequalities given in this work, see Sec. V B
below.

B. Lower bounds on the nonlocality robustness with all
projective measurements in the XY plane

In the qubit case, the visibility of 1/
√

2 does not only
correspond to the noise threshold reached by Clauser-Horne-
Shimony-Holt (CHSH), but also to 1/KG(2), that is, the best
robustness achievable with measurements lying on a great cir-
cle of the Bloch sphere [25]. With our method we can obtain
bounds on generalizations of this number: vGHZN

m can indeed
be turned into a lower bound on the nonlocality threshold
v

GHZN
XY of the N-partite GHZ state under projective measure-

ments in the XY plane. More precisely,

v
GHZN
XY �

[
cos

( π

2m

)]N
vGHZN

m , (36)

where the trigonometric factor is the shrinking factor of the
regular polygon with 2m vertices.

Note that valid lower bounds on vGHZN
m can safely be

plugged in Eq. (36) and that our algorithm can easily produce
such lower bounds. The main bottleneck to obtain vGHZN

m is
the computation of the local bound, which soon becomes
intractable, although we have considerably pruned the number
of strategies to consider. But, obtain a lower bound v on
vGHZN

m , we only need an explicit local model of vr(m)
N , that is,

a convex decomposition of this point in terms of deterministic
strategies; this is precisely what the Frank-Wolfe algorithm
produces. Moreover, given the small number of symmetrized
vertices involved in the final decomposition, we can retrieve
the putative facet of the symmetrized local polytope. This
wording underlines the fact that we are unable to rigor-
ously establish the corresponding local bound and hence the

property of indeed being a facet (and not simply a separating
hyperplane containing 
m

2 � deterministic strategies). Interest-
ingly, as mentioned above, the strategy consisting of always
answering −1 on all N − 1 first parties is always reaching
the value given by our heuristic, which seems to indicate that
the geometry of the problem could be leveraged to prove the
validity of the heuristic local bound. We could not use it to our
advantage and leave this question open for further work.

With the local model obtained above for m = 4, we can
also derive bounds on v

GHZN
XY for all N by combining Eqs. (34)

and (36). Contrary to those derived with Mermin’s inequality,
these bounds are higher than the entanglement threshold [26].

C. Detection efficiency

We consider the case where the parties share an N-partite
GHZ state (3) and detect the particles with the same efficiency
η. When the particle is not detected, the parties agree to output
+1; this ensures that the measurements remain dichotomic.
Note, however, that the parties could also use a third outcome
in the case of no detection [27,28]. If all detectors fire, which
happens with a probability of ηN , then the N-partite full cor-
relation Bell inequality I can be maximally violated, that is,
we have I = Q(m)

N , the quantum value. If only some of the
detectors fire, we have I = 0 since the inequality I contains no
marginal terms. On the other hand, if no detector fires, which
happens with a probability of (1 − η)N , the local bound can be
reached, i.e., we have I = L(m)

N . Consequently, the entire data
violate the inequality I if and only if

ηN Q(m)
N + (1 − η)N L(m)

N > L(m)
N , (37)

and then dividing by L(m)
N to make vGHZN

m = L(m)
N /Q(m)

N appear,
we arrive at

ηN
crit

v
GHZN
m

+ (1 − ηcrit )
N = 1, (38)

which defines the critical detection efficiency threshold ηcrit

for N parties and m measurements.
In [29], the value of ηcrit = 0.7706 was calculated (based

on the WWWKŻB inequalities, see references therein) for the
special case of N = 4 and m = 2. This value is already repro-
duced by our inequality for N = 4 and m = 4, and we steadily
improve on this critical efficiency when m increases, reaching,
for N = 4 and m = 19, the value ηcrit = 0.7544. More gener-
ally, the bank of inequalities provided in this work should be
of interest as they all feature good detection efficiency with
few measurements. Naturally, these critical efficiencies get
better as the number of parties increases [30].

D. Activation of nonlocality in star networks

Consider a star network in which a central party shares
two-qubit isotropic states with visibility v with N surrounding
parties. Upon projection onto the GHZ state by this central
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party, the state shared by the surrounding parties reads

ρN = vN |GHZN 〉〈GHZN | + (1 − vN−1)
12N

2N
+ ρrest, (39)

where ρrest vanishes when each party performs measurements
on the XY plane, so that we are effectively left with the
correlations of an N-partite GHZ state with noise vN .

In [31] this entanglement swapping procedure was used
to show that nonlocality can be activated for N � 21. This
means that there is a visibility v for which the initial two-qubit
states are local, but where nonlocality can be demonstrated
in the star network using the method described above. As
a first remark, the proof used in [31] relied on the lower
bound 0.6595 on the nonlocality threshold of the two-qubit
isotropic state. As this bound has been improved since then to
vlow ≈ 0.6875 [9], the number of parties for which nonlocality
activation occurs is N = 10. Indeed, for this number of parties
we have (

2

π

)
2

1
N < vlow, (40)

which shows that the inequality from [11], with an infinite
number of measurements, can be used to witness the activa-
tion of nonlocality in networks.

Our results strengthen this result though. For N = 10 and
m = 8 or m = 9, we indeed have(

vGHZN
m

) 1
N < vlow, (41)

which shows that the activation of nonlocality in networks
can be demonstrated with a finite (and fairly small) number
of measurements.

VI. CONCLUSION

In this article we studied the nonlocality robustness of
the N-partite GHZ state through a specific quantum strategy
where all parties perform measurements forming a regular
polygon in the XY plane of the Bloch sphere. The specificity
of this setting is motivated by the symmetry of the resulting
correlation tensor and the quality of the corresponding criti-
cal visibilities, giving bounds on the nonlocality robustness.
Studying these symmetries allows us to devise efficient ways
of finding tight Bell inequalities for which the local bound
can also be computed thanks to symmetries. The largest in-
stance we solve is N = 10 and m = 9, which would feature,
without symmetrization, correlation tensors with 3.5 × 109

elements and would require enumerating 4.7 × 1021 deter-
ministic strategies; instead, we only need five elements to
represent the correlation tensors and iterate over 1.4 × 108

orbits to obtain the local bound. These critical visibilities have
some immediate consequences in terms of detection efficiency
and activation of nonlocality in star networks, but they should
essentially be seen as a proof of concept that symmetries can
be leveraged in the main algorithmic ingredient of this work:
Frank-Wolfe algorithms.

As the inequalities derived in this article naturally fall in
the framework of [32], they can be extended to any number
of outcomes following the technique therein. Studying the re-
sulting inequalities would be interesting as it could potentially
reveal experimentally relevant inequalities.

Finding other relevant symmetric cases would be a natural
next step; in particular, identifying a bipartite correlation ten-
sor featuring nice symmetries and a good robustness would
be an excellent way to improve on the upper bound on
the Grothendieck constant of order three. But more gener-
ally, showcasing the use of symmetrization in this context
may be taken as an inspiration for all contexts in which
Frank-Wolfe algorithms may play a role, e.g., entanglement
detection, inflation in networks, and large-scale semi-definite
programming.
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APPENDIX A: COMPUTATION OF THE LOCAL
BOUND FOR m = 4

Here we outline the proof of the local bound in the case
of an odd number of parties, that is, for the facet [1, 0, 0, 0].
The other case, namely, [0, 1, 0,−1] for an even number of
parties, can be treated similarly.

We start by defining the matrices

R :=

⎛
⎜⎜⎝

1 1 1 1
−1 1 1 1
−1 −1 1 1
−1 −1 −1 1

⎞
⎟⎟⎠ = V

⎛
⎜⎜⎝

α−+
α++

α−−
α+−

⎞
⎟⎟⎠V �

(A1)

and

S :=

⎛
⎜⎜⎝

1 1 −1 1
−1 1 1 −1

1 −1 1 1
−1 1 −1 1

⎞
⎟⎟⎠ = V

⎛
⎜⎜⎝

α−−
α+−

α−+
α++

⎞
⎟⎟⎠V �,

(A2)

which we directly diagonalized with the following eigenval-
ues and eigenvectors:

α±± = 1 ± (
√

2 ± 1)i and V = 1

2

⎛
⎜⎜⎝

ω−3 ω3 ω−1 ω

−i i i −i
ω−1 ω ω−3 ω3

1 1 1 1

⎞
⎟⎟⎠,

(A3)

where ω = eiπ/4. Note that V is, up to trivial operations, a
Vandermonde matrix.

The reason to introduce these matrices is that

Li, j := ‖RiS j‖1 (A4)
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TABLE V. Values of Li j for small i and j. The antidiagonal in bold corresponds to N = i + j + 1 = 9 and reaches its highest value when
i = N − 1 or j = N − 1, that is, when the deterministic strategies chosen by all parties coincide.

�����i
j

0 1 2 3 4 5 6 7 8 9 10

0 1 4 8 24 56 160 384 1088 2624 7424 17920
1 4 4 8 24 64 160 448 1088 3072 7424 20 992
2 8 8 8 32 64 192 448 1280 3072 8704 20 992
3 24 24 32 32 64 192 512 1280 3584 8704 24 576
4 56 64 64 64 64 256 512 1536 3584 10 240 24 576
5 160 160 192 192 256 256 512 1536 4096 10 240 28 672
6 384 448 448 512 512 512 512 2048 4096 12 288 28 672
7 1088 1088 1280 1280 1536 1536 2048 2048 4096 12 288 32 768
8 2624 3072 3072 3584 3584 4096 4096 4096 4096 16 384 32 768
9 7424 7424 8704 8704 10 240 10 240 12 288 12 288 16 384 16 384 32 768
10 17 920 20 992 20 992 24 576 24 576 28 672 28 672 32 768 32 768 32 768 32 768

is exactly the value attained in a scenario with i + j + 1
parties, when i of them choose the trivial strategy (1, 1, 1, 1)
and j of them the strategy (1, 1,−1, 1). Because m = 4 mea-
surements, these two possibilities are the only two orbits.
Note that the order of the parties does not matter thanks to
the symmetries, which can be seen in the commutation of R
and S. Actually, only the first column of RiS j truly matters
in the definition of Li, j since the Bell inequality considered
here is [1, 0, 0, 0], but, normalizing the 1-norm (so that it is
submultiplicative) and noting that all columns have the same
1-norm by symmetry, Eq. (A4) is equivalent to this.

Having diagonalized the matrices R and S allows us to
explicitly derive the expression of Li, j :

Li, j = 1
4 (|ai j + bi j + ci j + di j | + |ai j − bi j − ci j + di j |
+|ai j + ibi j − ici j − di j | + |ai j − ibi j + ici j − di j |)

(A5)

where we defined

ai j := αi
−+α

j
−−, bi j := αi

++α
j
+−,

ci j := αi
−−α

j
−+, di j := αi

+−α
j
++. (A6)

We give some values of Li, j in Table V.
To prove the validity of the local bound, we have to show

that the pattern emphasized in Table V for N = 9 generalizes,
that is, that all antidiagonals of this array grow from the
diagonal to the edges. As the form in Eq. (A5) is not very
practical for this purpose, we derive inductive formulas from
there.

First, it is clear that

R2S2 = 8 · 1 gives Li+2, j+2 = 8Li, j . (A7)

Second, we can derive the explicit phases involved in the
moduli in Eq. (A5) by manually showing that the pattern has a
period of eight (in i or j), which, in turn, allows us, thanks to
the newly linearized equation, to derive the following relation:

Li, j+4 = 8(Li, j+2 − Li, j ), (A8)

which we have to prove separately for odd and even j and
for i = 0 and i = 1, the other values following from Eq. (A7).
With Eqs. (A7) and (A8) at hand, a simple induction suffices

to prove the desired result, namely, that the antidiagonals of
Table V reach their maximum on the edges.

Given the tedium of this proof, it would be interesting for
further work to simplify it by connecting it with the abundant
literature on generalized Fibonacci numbers and identities
involving multinomial coefficients, from which we consulted
the authors of [33,34], just to mention a few. We were un-
successful in our attempts to do so but we expect elegant
methods to easily solve this small case and to generalize to
more measurements. To this end, note that the matrix from
Eq. (A1) can be written

R = 1 + A + A2 + A3 =

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

1

A
A2

A3

⎞
⎟⎟⎠

and the one from Eq. (A2)

S = 1 + A − A2 + A3 =

⎛
⎜⎜⎝

1
1

−1
1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝
1

A
A2

A3

⎞
⎟⎟⎠

where

A =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

−1 0 0 0

⎞
⎟⎟⎠.

The sign pattern is precisely the one of the underlying orbit.
These observations allow to write, for instance, Ri as a combi-
natorial sum instead of the analytic expression from Eq. (A5),
namely,

Ri =
∑

k0+k1+k2+k3=i

(
i

k0, k1, k2, k3

)
1k0 Ak1 A2k2 A3k3

=
∑

k0+k1+k2+k3=i

i!

k0!k1!k2!k3!
Ak1+2k2+3k3 , (A9)

which can be simplified further given that A4 = −1.
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APPENDIX B: FULL TABLE OF RESULTS

Here is a full table of all results obtained in this work.

TABLE VI. Critical visibility vGHZN
m for the nonlocality of the N-partite GHZ state with each party performing m measurements forming

a regular polygon on the XY plane. Each value is obtained analytically by finding the facet of the symmetrized local polytope that optimally
detects r(m)

N from Eq. (7). The local bound is rigorously established only for the bold values; the other ones rely on a heuristic, although
the trivial deterministic strategy always saturates it so that there might be some symmetry arguments enabling to generalize the proof from
Appendix A. Note that, for m = 12, the computation of the local bound by enumeration is barely possible for N = 4 (244 cases) whereas we
can reach N = 7 with symmetries (25 879 574 945 < 235 cases).

�����m
N

3 4 5 6 7 8 9 10

2 0.5 0.5 0.25 0.25 0.125 0.125 0.0625 0.0625
3 0.57143 0.39024 0.26230 0.17534 0.11700 0.07802 0.05202 0.03426
4 0.5 0.35355 0.21875 0.15468 0.09375 0.06629 0.04004 0.02748
5 0.50794 0.34293 0.22521 0.14653 0.09503 0.06155 0.03985 0.02521
6 0.49505 0.33800 0.21296 0.14236 0.08866 0.05913 0.03678 0.02452
7 0.49911 0.33302 0.21666 0.13971 0.08983 0.05770 0.03705 0.02379
8 0.49317 0.33059 0.21077 0.13809 0.08691 0.05680 0.03570 0.02332
9 0.49676 0.32994 0.21347 0.13705 0.08779 0.05619 0.03596 0.02301
10 0.49206 0.32836 0.20985 0.13623 0.08612 0.05575 0.03521
11 0.49288 0.32740 0.21158 0.13565 0.08675 0.05544
12 0.49221 0.32721 0.20938 0.13524 0.08569
13 0.49249 0.32637 0.21062 0.13488
14 0.49176 0.32606 0.20904 0.13461
15 0.49320 0.32607 0.21010 0.13441
16 0.49160 0.32548 0.20884 0.13422 0.08526
17 0.49192 0.32530 0.20961
18 0.49180 0.32531 0.20872
19 0.49184 0.32500 0.20933
20 0.49153 0.32493 0.20861
21 0.49210 0.32494 0.20916
22 0.49143 0.32471 0.20854
23 0.49155 0.32463 0.20897
24 0.49150 0.32465 0.20849 0.13352
25 0.49162
26 0.49143
27 0.49162
28 0.49141
29 0.49147
30 0.49145
31 0.49146
32 0.49138 0.32423 0.20836 0.13327
64 0.49134 0.32391 0.20824
96 0.49133 0.32386
128 0.49133 0.32384
224 0.49132
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