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Positivity preservation is naturally guaranteed in exact non-Markovian master equations for open quantum
system dynamics. However, in many approximated non-Markovian master equations, the positivity of the
reduced density matrix is not guaranteed. In this paper we provide a general class of time-local, perturbative,
and positivity-preserving non-Markovian master equations generated from stochastic Schrödinger equations,
particularly quantum-state-diffusion equations. Our method has an expanded range of applicability for accom-
modating a variety of non-Markovian environments. We show the positivity-preserving master equation for a
three-level system coupled to a dissipative bosonic environment as a particular example to exemplify our general
approach. We illustrate the numerical simulations with an analysis explaining why the previous approximated
non-Markovian master equations cannot guarantee positivity. Our work provides a consistent master equation for
studying the non-Markovian dynamics in ultrafast quantum processes and strong-coupling systems.
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I. INTRODUCTION

A density matrix of a quantum system is positive semidef-
inite, as its eigenvalues naturally are the probabilities of the
associated eigenstates. For a closed system, the positivity of
the density matrix is always preserved in the dynamical equa-
tions, e.g., the von Neumann equation. However, no quantum
systems can be isolated from the surrounding environment. In
the context of the theory of open quantum systems (OQSs),
the state of the central quantum system is characterized by the
reduced density matrix whose time evolution equation is the
master equation (ME) instead [1,2]. Generally, it is extremely
difficult to obtain the exact ME due to the infinite number
of degrees of freedom of the environment. Several perturba-
tion strategies have been developed in the past decades to
obtain approximated MEs [3,4]. For instance, Lindblad-type
[5] and Redfield-type [6] MEs based on the Born-Markov
approximation effectively describe the Markovian dynamics
of many physical processes [7–9]. However, among the two
typical Markovian MEs, the former can preserve positivity,
while the latter cannot [3,10–15]. It is a dilemma to preserve
the positivity of MEs with perturbative methods beyond the
original Lindblad (Davies) MEs.

Moreover, the theory of non-Markovian OQSs recently
attracted great interest because Markovian approximations are
not valid in certain ultrafast processes [16–21]. A comprised
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solution is to use various weaker approximations to main-
tain certain non-Markovian features beyond the Lindblad-type
ME. Usually, such changes would lead to the new ME,
which cannot guarantee positivity preservation. Another fea-
sible solution is the hierarchical equations of motion (HEOM)
technique [22,23], which is a numerically exact approach to
studying the evolution of a density matrix without the typi-
cal assumptions that conventional Lindblad- or Redfield-type
MEs use. HEOM technique is applicable in computing expec-
tation values of quantum observables at both zero and finite
temperature. But HEOM is not a conventional ME, which
is supposed to be a homogeneous equation of the reduced
density matrix only. In studying the detailed balance breaking
in open quantum systems [24], the numerically generated den-
sity matrix, in chronological order, ρ̂r (t ) is often insufficient to
compute the probability flow and analyze the flow’s detailed
components, while a conventional ME can interpret transition
processes between arbitrary two states explicitly. As the result,
it is crucial and necessary to obtain a self-consistent ME.
And the consequent challenge is twofold: (1) obtaining exact
non-Markovian MEs is extremely difficult because of the lack
of mathematical tools [25–39] and (2) positivity preservation
is not guaranteed in perturbative MEs when certain approxi-
mations are applied [40]. The purpose of this paper is to solve
this long-standing problem.

We demonstrate our solution in Fig. 1. Due to the failure
to guarantee positivity, the path of obtaining the consistent
approximated ME from the exact ME is blocked. However,
in contrast to the dynamics of mixed states of OQSs, the
positivity preservation is always guaranteed in the pure state
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FIG. 1. Mind map of obtaining positivity-preserving MEs.

dynamics, even when approximations are applied (|ψ〉〈ψ | is
always positive-semidefinite; here the state |ψ〉 does not have
to be normalized). Additionally, the stochastic Schrödinger
equation (SSE) approach has provided a rigorous method
to obtain the associated ME by averaging an infinite num-
ber of stochastic pure-state trajectories in the Markov limit
[41–47]. Thus, we propose a strategy to generate positivity-
preserving non-Markovian MEs: (1) start with a formal exact
non-Markovian SSE; (2) apply truncation and obtain the ap-
proximated SSE; and (3) recover the approximated ME from
the approximated SSE rigorously. In the end we ensure that
the generated approximated ME using the strategy can guar-
antee positivity as expected.

If we restrict the measurement on the environment to
Bargmann coherent states, the evolution of the stochastic
pure state can be characterized by the quantum-state-diffusion
(QSD) equation [48–54], a time-evolution equation of a
stochastic quantum trajectory |ψz〉 ≡ 〈z‖�tot〉, where ‖z〉 is
the Bargmann coherent state of the environment and z repre-
sents a large number of complex Gaussian random variables.
Consequently, the reduced density matrix can be recov-
ered using ρ̂r = TrE[|�tot〉〈�tot|], which is equivalent to the
ensemble average over all stochastic quantum trajectories
ρ̂r = M(|ψz〉〈ψz|). As shown in Fig. 1, the exact ME and
SSE are equivalent. When some approximations have to be
employed, the approximated SSE (SSEapp) can numerically
generate the positivity-preserving reduced density matrix
ρ̂r (t ) at any time. But the approximated ME, if derived in
the same manner, is not positivity-preserving guaranteed. In
this paper we develop a method to generate an approximated
ME (MEapp), which is positivity-preserving and has the same
reduced density matrix as the ones numerically recovered
from the corresponding approximated SSE at any time.

This paper is organized as follows. In Sec. II we briefly
review the QSD approach and introduce our method to derive
the positivity-preserving MEs. In Sec. III we study a dissi-
pative three-level system and demonstrate how to derive the
positivity-preserving ME explicitly. We close with a conclu-
sion in Sec. IV.

II. GENERAL METHODS

The theory of OQSs studies the dynamics of a quantum
system coupled with an external quantum system or an en-
vironment. Generally the system’s dynamics are significantly
influenced by the environment, e.g., the quantum decoher-
ence process and the quantum entanglement regeneration
process. The total Hamiltonian of the combined system and

environment is usually written as

Ĥtot = ĤS + Ĥint + ĤE. (1)

Here the environment Hamiltonian ĤE contains an infinite
number of bosonic modes. The interaction Hamiltonian of the
coupling between system and environment can be assumed
and formally written as

ĤE =
∑

k

ωkb̂†
kb̂k,

Ĥint = L̂
∑

k

gkb̂†
k + H.c.,

where L̂ is the system’s operator linearly coupled to the
environment. We assume that the environment is at zero tem-
perature and the initial state of the combined system and
environment is a product state, |�tot (t = 0)〉 = |ψS(t = 0)〉 ⊗
|0E〉. As mentioned above, having restricted the measurement
on the environment to Bargmann coherent states will lead to
the quantum trajectory in the form of |ψz〉 ≡ 〈z‖�tot〉, where
‖z〉 ≡ ⊗k‖zk〉 is the Bargmann coherent state of the entire
environment, satisfying b̂k‖z〉 = zk‖z〉. The evolution of |ψz〉
is governed by the QSD equation.

A. Quantum-state-diffusion approach

In the environmental interaction picture, the interaction
Hamiltonian reads

Ĥ I
int (t ) = L̂

∑
k

gkb̂†
keiωkt + L̂†

∑
k

g∗
kb̂ke−iωkt . (2)

Using the identity resolution of Bargmann coherent states

ÎE =
∫

d2z

π
e−|z|2‖z〉〈z‖, (3)

the reduced density operator of the system takes

the form of ρ̂r (t ) = ∫
d2z e−|z|2

π
〈z‖ρ̂tot (t )‖z〉 =∫

d2z e−|z|2

π
〈z‖�tot (t )〉〈�tot (t )‖z〉. When the term

e−|z|2

π
〈z‖�tot (t )〉〈�tot (t )‖z〉 is considered as the outcome

of a single shot measurement of the environment, the
environmental variables {zk} are interpreted as random

numbers, and
∫

d2z e−|z|2

π
(·) is the ensemble average.

Consequently, the Schrödinger equation, regarding the
evolution of the pure state of the composite system |�tot〉, can
be rewritten in the Bargmann space representation (setting
h̄ = 1),

∂t 〈z‖�tot〉 = −i〈z‖[ĤS + Ĥ I
int (t )

]|�tot〉

= −i

(
ĤS + L̂

∑
k

gkz∗
k eiωkt

)
〈z‖�tot〉

− iL̂†
∑

k

g∗
ke−iωkt ∂

∂z∗
k

〈z‖�tot〉. (4)

Here we define a complex Gaussian process
z∗

t ≡ −i
∑

k gkz∗
k eiωkt , which satisfies the follow-

ing relations: M(zt ) = M(zt zs) = 0, and α(t, s) ≡
M(zt z∗

s ) = ∑
k |gk|2e−iωk (t−s), where the ensemble average
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M(·) ≡ ∫
d2z e−|z|2

π
(·), and α(t, s) is the correlation function

of the complex Gaussian process z∗
t . Then, using the chain

rule ∂ (·)
∂z∗

k
= ∫ t

0 ds ∂z∗
s

∂z∗
k

δ(·)
δz∗

s
, Eq. (4) can lead to a formal linear

non-Markovian QSD equation [55]:

∂t |ψz〉 =
[
−iĤS + z∗

t L̂ − L̂†
∫ t

0
dsα(t, s)δz∗

s

]
|ψz〉, (5)

where δz∗
s

denotes the functional derivative with respect to the
stochastic process at the time “s.” By taking the statistical
mean over all trajectories, the reduced density matrix of the
system can be recovered:

ρ̂r = M(|ψz〉〈ψz|). (6)

The functional derivative term in Eq. (5) can be formally
written using a to-be-determined operator Ô, defined as

Ô(t, s)|ψz〉 ≡ δz∗
s
|ψz〉, (7)

which can be solved through an operator evolution equation:

∂t Ô(t, s) = −i[Ĥeff , Ô(t, s)] − iδz∗
s
Ĥeff , (8)

due to the consistency condition ∂tδz∗
s
|ψz〉 = δz∗

s
∂t |ψz〉 [55].

Here Ĥeff is the effective Hamiltonian in Eq. (5),

Ĥeff ≡ ĤS + iz∗
t L̂ − iL̂†Ō, (9)

and Ō(t ) ≡ ∫ t
0 ds α(t, s)Ô(t, s). Therefore, the formal linear

QSD equation reads

∂t |ψz〉 = [−iĤS + z∗
t L̂ − L̂†Ō(t )]|ψz〉. (10)

Generally, the structure of the exact O-operator is com-
plicated. Only a few models can be solved with the exact
O-operator. A compromised solution to this difficulty is to
replace the exact O-operator with an approximated one. One
can drop certain terms of the O-operator to simplify the cal-
culation, called a truncation operation. How to truncate the
O-operator depends on the type of interaction and the size of
the system. Without the loss of generality, the O-operator can
be written as a sum of all component operators [56]:

Ô(t, s, z∗) =
∑

n

Ôn(t, s, z∗). (11)

Note that the explicit form of Ôn(t, s, z∗) is not unique
and depends on the method for sorting the O-operator. For
instance, if sorting the O-operator by the noise order, then
Ôn(t, s, z∗) represents the operator component with nth order
of noise. And the approximated O-operator after the trunca-
tion is defined as

ÔN (t, s, z∗) ≡
N∑

n=0

Ôn(t, s, z∗). (12)

Consequently, the approximated QSD equation after the trun-
cation reads

∂t

∣∣ψN
z

〉 =
[
−iĤS + z∗

t L̂ − L̂†
∫ t

0
dsα(t, s)ÔN

]∣∣ψN
z

〉
, (13)

where the trajectory |ψN
z 〉 is the associated approximated tra-

jectory.
One of the advantages of the non-Markovian QSD ap-

proach is that any reduced density operator recovered from

quantum trajectories ρ̂r = M(|ψz〉〈ψz|) is always positiv-
ity preserved, even if quantum trajectories are numeri-
cally generated by the approximated QSD equation (13),
ρ̂N

r = M(|ψN
z 〉〈ψN

z |). For the single trajectory, we know
that |ψN

z 〉〈ψN
z | must be positive semidefinite. The ensemble

average M(|ψN
z 〉〈ψN

z |) can be considered as a convex combi-
nation of |ψN

z 〉〈ψN
z |, therefore, M(|ψN

z 〉〈ψN
z |) is also positive

semidefinite. Principally, this is how we derive the positivity-
preserving ME from the approximated QSD equation.

B. Positivity-preserving ME

For a given exact QSD equation, the associated ME reads

∂t ρ̂r = M
(

∂|ψz〉
∂t

〈ψz| + |ψz〉∂〈ψz|
∂t

)

= M(−iHeff |ψz〉〈ψz| + i|ψz〉〈ψz|H†
eff )

= −i[ĤS, ρ̂r] + L̂M(z∗
t P̂) + M(zt P̂)L̂†

− L̂†M(ŌP̂) − M(P̂Ō†)L̂, (14)

where P̂ denotes the stochastic operator P̂ ≡ |ψz〉〈ψz|. Using
the conclusions in Refs. [52,57,58], (see Appendix A), the two
terms, M(z∗

t P̂) and M(zt P̂), in the above equation, can be
estimated,

M(z∗
t P̂) =

∫ t

0
dsM(z∗

t zs)M(δzs P̂). (15)

Using the definition of the Ô operator in Eq. (7), we have
M(z∗

t P̂) = M(P̂Ō†) [52], then the formal ME is obtained,

∂t ρ̂r = −i[ĤS, ρ̂r] + [L̂,M(P̂Ō†)] − [L̂†,M(ŌP̂)]. (16)

The above-derived ME is positivity-preserving since the
reduced density matrix ρ̂r is equivalent to the exact stochastic
quantum trajectory governed by the QSD equation (5).

Next, we will demonstrate why the ME cannot guarantee
positivity if all the four exact O-operators in Eq. (16) are
replaced by the approximated one ÔN . Following the similar
method of obtaining Eq. (16), the approximated ME for the
perturbative reduced density matrix ρ̂ ′

r reads

∂t ρ̂
′
r = −i[ĤS, ρ̂

′
r] + [L̂,M(P̂′(ŌN†)] − [L̂†,M(ŌN P̂′)].

(17)

However, it is worth pointing out that the reduced density
matrix ρ̂ ′

r can violate positivity because the approximated ME
can not be unraveled by the QSD equation (13). To clarify the
difference between Eq. (17) and the approximated ME which
is equivalent to the approximated QSD equation (13), we re-
cover the ME starting from the identity ρ̂N

r = M(|ψN
z 〉〈ψN

z |)
and the QSD equation (13). The approximated ME reads

∂t ρ̂
N
r = −i

[
ĤS, ρ̂

N
r

] + L̂M(z∗
t P̂N ) + M(zt P̂

N )L̂†

− L̂†M(ŌN P̂N ) − M(P̂N ŌN †)L̂, (18)

where P̂N ≡ |ψN
z 〉〈ψN

z |. After applying Eq. (15) to simplify
the term of M(z∗

t P̂N ), it is easy to verify that in the general
case

M(z∗
t P̂N ) =

∫ t

0
ds α∗(t, s)M

(
δzs P̂

N
) 	= M(P̂N ŌN†).
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This is why the above-mentioned approximated ME (17)
cannot be unraveled by the QSD equation (13). To solve this
problem, we need to know the exact value of δzs P̂

N , therefore
a new O-operators has to be introduced,

Ôd (t, s, z∗)
∣∣ψN

z

〉 ≡ δz∗
s

∣∣ψN
z

〉
, (19)

where the new operator Ôd (t, s, z∗) is determined by the
consistency condition ∂tδz∗

s
|ψN

z 〉 = δz∗
s
∂t |ψN

z 〉. Substituting
Eqs. (13) and (19) into the consistency condition, the evolu-
tion equation for the operator Ôd reads

∂t Ôd (t, s, z∗) = [−iĤS + z∗
t L̂ − L̂†ŌN , Ôd (t, s, z∗)]

− L̂†δz∗
s
ŌN , (20)

together with the initial condition,

Ôd (t = s, s, z∗) = L̂. (21)

The subtle difference between ÔN and Ôd is just the reason
of positivity violation in the ME (17). Consequently, the result
of applying Eq. (15) is revised to

M(z∗
t P̂N ) =

∫ t

0
ds α∗(t, s)M

(
δzs P̂

N
)

= M(P̂N Ō†
d ), (22)

where Ō†
d (t, z∗) ≡ ∫ t

0 dsα∗(t, s)Ô†
d (t, s, z∗). By substituting

Eq. (22) into Eq. (18), we obtain the formal positivity-
preserving approximated ME,

∂t ρ̂
N
r = −i

[
ĤS, ρ̂

N
r

] + L̂M(P̂N Ō†
d ) − M(P̂N ŌN†)L̂

− L̂†M(ŌN P̂N ) + M(Ōd P̂N )L̂†. (23)

III. MODELS AND RESULTS

In this section we consider a ladder-type three-level sys-
tem coupled with a dissipative zero-temperature reservoir and
use it to demonstrate how to obtain the positivity-preserving
approximated ME. (Among models with exact O-operators,
three-level systems are simple yet still capable of distinguish-
ing between Ôd and a traditionally truncated Ô.) The total
Hamiltonian reads

Ĥtot = ωĴz +
∑

k

gk (Ĵ+b̂k + b̂†
k Ĵ−) +

∑
k

ωkb̂†
kb̂k, (24)

where gk is the real coupling strength of the kth mode. Ĵ+ (Ĵ−)
is the raising (lowering) operator of the three-level system,
satisfying the commutation relation Ĵz = 1

2 [Ĵ+, Ĵ−]. The three
operators have the matrix form

Ĵz =
⎡
⎣1 0 0

0 0 0
0 0 −1

⎤
⎦, Ĵ+ =

√
2

⎡
⎣0 1 0

0 0 1
0 0 0

⎤
⎦,

Ĵ− =
√

2

⎡
⎣0 0 0

1 0 0
0 1 0

⎤
⎦.

A. ME for the three-level system

In Refs. [31,59] it has been proved that the exact O-
operator of the dissipative three-level system contains noise

up to the first order. We use a noise-free operator Ô{0} to
replace the exact Ô in the QSD equation:

∂t

∣∣ψ {0}
z

〉 = (−iĤS + z∗
t L̂ − L̂†Ō{0})

∣∣ψ {0}
z

〉
, (25)

where Ō{0} ≡ ∫ t
0 dsα(t, s)Ô{0}(t, s), and the Lindblad operator

L̂ = Ĵ−. By substituting the effective Hamiltonian in Eq. (25)
into Eq. (8), the evolution equation of Ô{0} reads

∂t Ô
{0}(t, s) = [−iĤS − L̂†Ō{0}, Ô{0}(t, s)], (26)

with its initial condition

Ô{0}(t = s, s) = L̂. (27)

Practically, the ansatz of the operator Ô{0} has the form of

Ô{0}(t, s) ≡ f1(t, s)Ĵ− + g1(t, s)ĴzĴ−, (28)

where f1(t, s) and g1(t, s) are two to-be-determined evolu-
tion coefficients [56,59]. By substituting the ansatz (28) into
Eq. (26), the coefficients f1 and g1 can be determined by the
following differential equations:

∂t f1 = (iω + 2G1) f1,

∂t g1 = (−2F1 + 4G1) f1 + (iω + 2F1 − 2G1)g1, (29)

associated with the initial conditions,

f1(t = s, s) = 1, g1(t = s, s) = 0, (30)

where F1(t ) ≡ ∫ t
0 dsα(t, s) f1(t, s), and G1(t ) ≡∫ t

0 dsα(t, s)g1(t, s). Subsequently, the time-evolution
equation of the operator Ôd (t, s, z∗) reads

∂t Ôd = [−iĤS + z∗
t L̂ − L̂†Ō{0}, Ôd ]. (31)

Note that the last functional derivative term in Eq. (20)
has been eliminated because Ô{0} is noise-free. Similarly, the
ansatz of the operator Ôd reads

Ôd (t, s, z∗) ≡ f2(t, s)Ĵ− + g2(t, s)ĴzĴ−

+
∫ t

0
ds′ p2(t, s, s′)z∗

s′ Ĵ2
−. (32)

By substituting the ansatz (32) into Eq. (31), the new set
of coefficients, f2(t, s), g2(t, s) and p2(t, s, s′), are determined
by

∂t f2 = (iω + 2G1) f2,

∂t g2 = (−2F1 + 4G1) f2 + (iω + 2F1 − 2G1)g2,

∂t p2 = (2iω + 2F1)p2, (33)

with the initial conditions

f2(t = s, s) = 1,

g2(t = s, s) = 0,

p2(t = s′, s, s′) = g2(s′, s).

By comparing Eq. (29) and Eq. (33), it is clear that f1 = f2

and g1 = g2, since they have the same evolution equations and
the same initial conditions. As a result, f1 and g1, in the rest
of the paper, will be replaced by f2 and g2, respectively.
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After obtaining operators Ôd and Ô{0}, the formal ME (23)
for the dissipative three-level model reads

∂t ρ̂
{0}
r = −i

[
ĤS, ρ̂

{0}
r

] +
{[

(F2Ĵ− + G2ĴzĴ−)ρ̂{0}
r , Ĵ+

]

+ Ĵ2
−

∫ t

0
dsP2(t, s)M(z∗

s P̂{0})Ĵ+

}
+ H.c., (34)

where F2(t ), G2(t ), and P2(t, s′) are defined as

F2(t ) ≡
∫ t

0
dsα(t, s) f2(t, s),

G2(t ) ≡
∫ t

0
dsα(t, s)g2(t, s),

P2(t, s′) ≡
∫ t

0
dsα(t, s)p2(t, s, s′).

Applying Eqs. (15), (19), and the termination condition in
Ref. [27], the term Ĵ2

−
∫ t

0 dsP2(t, s)M(z∗
s P̂{0})Ĵ+ in the above

ME can be further simplified to

Ĵ2
−M(z∗

s P̂{0})Ĵ+ =
∫ t

0
ds′α∗(s, s′)Ĵ2

−M(P̂{0}Ô†
d (t, s′, z))Ĵ+

=
∫ t

0
ds′α∗(s, s′) f ∗

2 (t, s′)Ĵ2
−ρ̂{0}

r Ĵ+Ĵ+. (35)

Here we observed that when substituting Ôd in Eq. (32)
into Ô†

d Ĵ+, certain terms are terminated: (g∗
2(t, s′)Ĵ+Ĵz )Ĵ+ =

0 and (
∫ t

0 ds′′ p∗
2(t, s′, s′′)zs′′ Ĵ2

+)Ĵ+ = 0. Subsequently the ap-
proximated positivity-preserving ME reads

∂t ρ̂
{0}
r = −i

[
ĤS, ρ̂

{0}
r

] + {[
(F2Ĵ− + G2ĴzĴ−)ρ̂{0}

r , Ĵ+
]

+ Pf ∗ Ĵ2
−ρ̂{0}

r Ĵ2
+
} + H.c., (36)

where the coefficient Pf ∗ (t ) ≡ ∫ t
0

∫ t
0 ds ds′P2(t, s)α∗(s, s′)

f ∗
2 (t, s′). Note that α(t, s) is the time correlation function,

corresponding to a variety of spectra, white or colored. For
simplicity, we assume the environment is described by an
Ornstein-Uhlenbeck process. So its correlation function is
α(t, s) = aγ e−γ |t−s|e−i�(t−s), where 1/γ is the scale of mem-
ory time and � is the central frequency of the environment.
As a result, the coefficients’ evolution equations can be
simplified from integrodifferential equations to differential
equations that

∂t F2 = aγ + (iω − γ − i� + 2G2)F2,

∂t G2 = −2F 2
2 + (iω − γ − i� + 6F2 − 2G2)G2,

∂t P̃2 = aγ G2 + (2iω − 2γ − 2i� + 2F2)P̃2,

∂t Pf ∗ = (iω − γ − i� + 2F2 + 2G∗
2 )Pf ∗ + P̃2 + G2F ∗

2 , (37)

with the initial conditions,

F2(t = 0) = G2(t = 0) = P̃2(t = 0) = Pf ∗ (t = 0) = 0,

where P̃2(t ) ≡ ∫ t
0 dsα(t, s)P2(t, s).

In case some readers are not familiar with stochastic
methods used in non-Markovian open quantum systems, we
provide a brief explanation to show how our results in Eq. (36)

t
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22
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t
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00

Approx. QSD
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FIG. 2. Time evolution of the population of the dissipative three-
level system, ρ00, ρ11, and ρ22 are generated by two different
methods: approximated linear QSD equation approach (red cir-
cle), and the derived positivity-preserving approximated ME (black
cross). The parameters are ω = 1, a = 0.8, γ = 0.05, and � = 0.
(The result of the approximated QSD equation approach is obtained
by averaging over 5000 quantum trajectories.)

cover the Lindblad-type (Davies) MEs in the weak system-
bath coupling regime. Our results contain several additional
operator components, G2[ĴzĴ−ρ̂{0}

r , Ĵ+], Pf ∗ Ĵ2
−ρ̂{0}

r Ĵ2
+, and their

Hermitian conjugates. In the Markov limit, with the evolution
equations of the coefficients in Eq. (37) and the associated
initial conditions, it is easy to estimate that G2 → 0, Pf ∗ → 0,
F2 → �(t )/2. Therefore, Eq. (36) can be simplified to resem-
ble the Lindblad-type (Davies) MEs.

B. Numerical results

In this section we compare the simulation results of the
population of states of the three-level system using four
different methods: (1) the exact ME, ρ̂r = M(|ψz〉〈ψz|) in
Eq. (16); (2) the approximated positivity-preserving ME,
ρ̂{0}

r = M(|ψ {0}
z 〉〈ψ {0}

z |) in Eq. (23); (3) the approximated
non-positivity-preserving ME, ρ̂ ′

r in Eq. (17); and (4) the
approximated QSD, |ψ {0}

z 〉 in Eq. (25). (More details can be
found in Appendix B.)

First of all, we plot the time evolution of the population of
the dissipative three-level system, ρ00, ρ11, and ρ22, generated
by the approximated QSD equation approach and the approx-
imated positivity-preserving ME approach. The initial state of
the system is prepared at an excited state: |ψz(t = 0)〉 = |2〉.
[In the three-level ladder system, when we set the initial value
of the density operator as ρ̂r (0) = |2〉〈2|, all the off-diagonal
elements of the density operator remain zero throughout the
evolution process. As a result, the three eigenvalues of ρ̂r (t )
are ρ22(t ), ρ11(t ), and ρ00(t ).] We choose the frequency,
ω = 1, and the central frequency of the environment � = 0.
In a strong non-Markovian regime, γ = 0.05, the simulation
results from two methods, as shown in Fig. 2, overlap each
other. Since the reduced density matrix generated from the ap-
proximated QSD approach is naturally positivity-preserving,
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FIG. 3. Comparison of the time evolution of the population of
the ground state, generated by three different ME approaches: ex-
act ME (ρr,00, red circle), positivity-preserving approximated ME
(ρ{0}

r,00, black cross), and non-positivity-preserving approximated ME
(ρ ′

r,00, green dash-dotted line). The parameters are ω = 1, a = 0.8,
γ = 0.05, and � = 0.

the matched dynamics prove that our approximated ME gives
rise to the same degree of accuracy as the approximated QSD
equation. It indicates that the approximated ME can guarantee
positivity.

Next, we plot the time evolution of the population of the
ground state using three different ME approaches in Fig. 3.
Using the same parameters as Fig. 2, we observe that the
exact ME and our approximated positivity-preserving ME
both preserve the positivity. Meanwhile, the simulation re-
sult of the non-positivity-preserving ME leads to failure due
to the appearance of negative probabilities in some time
intervals. Furthermore, the magnitude of the negative prob-
ability increases with time up to infinity. Consequently, the
probabilities of the other two levels also increase to infinity
simultaneously. If one simply replaces the exact O-operator in
the exact ME with the truncated operator Ô{0}, then Eq. (17)
can be explicitly written as

∂t ρ̂
′
r = −i[ĤS, ρ̂

′
r] + ([(F2Ĵ− + G2ĴzĴ−)ρ̂ ′

r, Ĵ+] + H.c.).

It is clear that the above approximated ME does not pre-
serve positivity in some parameter regions and may lead to
meaningless physics.

To further demonstrate the importance of our method in
studying non-Markovian dynamics, we plot Fig. 4, the time
evolution of the population of the ground state in a moderate
non-Markovian regime. When γ = 0.2, a shorter memory
time compared with the parameter γ = 0.05 used in Fig. 3,
the dynamics simulated by the approximated non-positivity-
preserving ME ρ ′

r,00 do not contain any negative probabilities.
However, its distance from the results of the exact ME ap-
proach is significantly larger compared with the results of our
positivity-preserving ME. Comparing Figs. 3 and 4, we show
that the reduced density matrix ρ{0}

r can guarantee positivity
preservation from the Markovian to the strong non-Markovian
regime. In contrast, the reduced density matrix ρ ′

r cannot

0 2 4 6 8 10

 t

0

0.02

0.04

0.06

0.08

0.1

FIG. 4. Comparison of time evolution of the population of the
ground state, generated by three different ME approaches: exact
ME (ρr,00, red circle), positivity-preserving approximated ME (ρ{0}

r,00,
black cross), and non-positivity-preserving approximated ME (ρ ′

r,00,
green dash-dotted line) in a moderate non-Markovian regime. The
parameters are ω = 1, a = 0.2, γ = 0.2, and � = 0.

offer such confidence. Moreover, for different models and
interested parameter spaces, our method is flexible for dif-
ferent approximations. It provides a robust method to obtain
positivity-preserving MEs for the analysis of non-Markovian
dynamics.

IV. CONCLUSION

We have addressed a long-standing issue in OQSs on
how to construct positivity-preserving approximated MEs in
a general situation. Although several developed MEs, such
as Lindblad- and Redfield-type MEs, can provide powerful
and efficient mathematical tools, these approaches have com-
mon shortcomings since they are rooted in the Born-Markov
approximation. In this study we start from the fact that a
reduced density matrix must carry over positivity if recovered
from the ensemble average over the stochastic pure states.
Then we consider a class of linear approximated QSD equa-
tions, exploring the possibility of constructing MEs equivalent
to QSD equations. A traditional solution is to utilize the
approximation relationship δz∗

s
|ψN

z 〉 ≈ Ô|ψN
z 〉 ≈ ÔN |ψN

z 〉 to
obtain the approximated MEs [52]. However, this approxi-
mation could induce negative eigenvalues in the numerical
simulations under certain conditions. In fact, δz∗

s
|ψN

z 〉 should
be equal to Ôd |ψN

z 〉, where Ôd is a newly defined operator.
No matter how small the difference between the Ôd and the
approximated ÔN is, replacing Ôd by ÔN in the derivation
may lead to a violation of positivity of MEs. Consequently,
it is necessary to introduce two different approximated Ô to
generate the positivity-preserving approximated ME. Gener-
ally, we explain why applying an approximation directly on
the exact ME may violate positivity, while applying the same
approximation on the exact SSE will not.

In the paper we propose a general class of positivity-
preserving non-Markovian MEs generated from SSEs, in
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particular, QSD equations. We explicitly derive the approx-
imated positivity-preserving ME for a dissipative three-level
system as a specific example of our general results. More-
over, our simulations also show that the negative probability
generated by non-positivity-preserving MEs sometimes ends
up with negative infinity, which is definitely not a trivial
issue.

In summary, we have developed a systematic method to
obtain a class of approximated but positivity-preserving non-
Markovian MEs originating from approximated linear QSD
equations. With such MEs, it is feasible to study nonequi-
librium dynamics in living or biological systems, perform
reliable error analysis for quantum engineering, and investi-
gate dynamics and phase transitions in many-body systems.
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APPENDIX A: DERIVATION OF EQ. (15)

First, we recall several notations:

M(·) =
∫

d2z

π
e−|z|2 (·), (A1)

where d2z
π

≡ d2z1
π

d2z2
π

... d2zk
π

. . ., |z|2 ≡ ∑
k |zk|2,

∫
d2zk ≡∫ ∞

−∞
∫ ∞
−∞ dxk dyk , and xk ≡ Re(zk ), yk ≡ Im(zk ). In addition,

the complex Gaussian process is defined as

z∗
t ≡ −i

∑
k

gkz∗
k eiωkt . (A2)

Consequently, the left-hand side of Eq. (15) can be explicitly
expanded as

M(z∗
t P̂) =

∫
d2z

π
e−|z|2 z∗

t P̂

=
∫

d2z

π
e−|z|2

(
−i

∑
k

gkz∗
k eiωkt

)
P̂

=
∫

d2z

π
e−|z|2

(
−i

∑
k

gk (xk − iyk )eiωkt

)
P̂. (A3)

Using integration by parts for the kth mode, we have∫
d2zke−|zk |2 xkP̂

= −1

2

∫
d2zk

∂

∂xk
(e−|zk |2 )P̂

= −1

2

∫
dyk (e−|zk |2 P̂)|xk=∞

xk=−∞ + 1

2

∫
d2zke−|zk |2∂xk P̂.

(A4)

Usually, the boundary terms (e−|zk |2 P̂)|xk→∞ and
(e−|zk |2 P̂)|xk→−∞ in the above equation converge to zero
rapidly. Thus, we have∫

d2zke−|zk |2 xkP̂ = 1

2

∫
d2zke−|zk |2∂xk P̂. (A5)

Similarly, we also have∫
d2zke−|zk |2 ykP̂ = 1

2

∫
d2zke−|zk |2∂yk P̂. (A6)

According to the chain rule, we have[
∂xk

∂yk

]
=

[
∂zk/∂xk ∂z∗

k/∂xk

∂zk/∂yk ∂z∗
k/∂yk

][
∂zk

∂z∗
k

]

=
[

1 1
i −i

][
∂zk

∂z∗
k

]
. (A7)

By employing Eqs. (A5), (A6), and (A7), we obtain the con-
clusion:∫

d2zke−|zk |2 z∗
k P̂ =

∫
d2zke−|zk |2 (xk − iyk )P̂

= 1

2

∫
d2zke−|zk |2 [1 − i]

[
1 1
i −i

][
∂zk

∂z∗
k

]
P̂

=
∫

d2zke−|zk |2∂zk P̂. (A8)

Substituting Eq. (A8) into Eq. (A3), we obtain

M(z∗
t P̂) = −i

∑
k

gkeiωkt
∫

d2z

π
e−|z|2 ∂P̂

∂zk

=
∑

k

∂z∗
t

∂z∗
k

∫
d2z

π
e−|z|2 ∂P̂

∂zk
. (A9)

Then we apply the chain rule,

∂ (·)
∂zk

=
∫ t

0
ds

∂zs

∂zk

δ(·)
δzs

, (A10)

and obtain Eq. (15) [52,57],

M(z∗
t P̂) =

∑
k

∂z∗
t

∂z∗
k

∫
d2z

π
e−|z|2

∫ t

0
ds

∂zs

∂zk

δP̂

δzs

=
∫

d2z

π
e−|z|2

∫ t

0
ds

∑
k

[
∂z∗

t

∂z∗
k

∂zs

∂zk

]
δP̂

δzs

=
∫ t

0
dsM(z∗

t zs)M
(

δP̂

δzs

)
, (A11)

where we have utilized the property of the correlation

function: α∗(t, s) = M(z∗
t zs) = ∑

k[ ∂z∗
t

∂z∗
k

∂zs
∂zk

]. Furthermore, the

term δP̂
δzs

can be formally expressed as δ|ψz[z∗
t ]〉

δzs
〈ψz[zt ]| +

|ψz[z∗
t ]〉 δ〈ψz[zt ]|

δzs
. Due to features of analytic functions, we have

δ|ψz[z∗
t ]〉

δzs
= 0, as a result, δP̂

δzs
= |ψz[z∗

t ]〉 δ〈ψz[zt ]|
δzs

= P̂Ô†. Simi-
larly, we can obtain the relations in Eq. (18).
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APPENDIX B: EXPLICIT FORMS OF THE EQUATIONS
IN THE NUMERICAL SIMULATION

We have explicitly listed four equations used in numerical
simulations. To maintain simplicity and improve readability,
we assign the same notation to coefficients associated with
the identical operators in different subsections, even though
these coefficients differ from one another.

1. Exact ME

∂t ρ̂r = −i[ĤS, ρ̂r] + {[(FĴ− + GĴzĴ−)ρ̂r, Ĵ+]

+ [(Pf ∗ Ĵ2
−ρ̂r Ĵ+ + Pg∗ Ĵ2

−ρ̂r Ĵ+Ĵz ), Ĵ+]} + H.c., (B1)

where the coefficients satisfy

∂t F = aγ + (i(ω − �) − γ + 2G)F − 2P̃,

∂t G = −2F 2 + (i(ω − �) − γ + 6F − 2G)G − 2P̃,

∂t P̃ = aγ G + (2i(ω − �) − 2γ − 2G + 4F )P̃,

∂t Pf ∗ = (i(ω − �) − γ + 4F − 2G + 2G∗)Pf ∗

− 2PP∗ + GF ∗ + P̃,

∂t Pg∗ = (i(ω − �) − γ + 4F + 2F ∗ − 2G − 2G∗)Pg∗

+ (4G∗ − 2F ∗)Pf ∗ + |G|2 − 2PP∗ ,

∂t PP∗ = (4F + 4F ∗ − 2G − 2G∗ − 2γ )PP∗ + G∗P̃

+ GP̃∗, (B2)

with the initial conditions F (0) = G(0) = P̃(0) = Pf ∗ (0) =
Pg∗ (0) = PP∗ (0) = 0.

2. Approximated positivity-preserving ME

∂t ρ̂
{0}
r = −i

[
ĤS, ρ̂

{0}
r

] + {[
(FĴ− + GĴzĴ−)ρ̂{0}

r , Ĵ+
]

+ Pf ∗ Ĵ2
−ρ̂{0}

r Ĵ2
+
} + H.c., (B3)

where the coefficients satisfy

∂t F = aγ + (iω − γ − i� + 2G)F,

∂t G = −2F 2 + (iω − γ − i� + 6F − 2G)G,

∂t P̃ = aγ G + (2iω − 2γ − 2i� + 2F )P̃,

∂t Pf ∗ = (iω − γ − i� + 2F + 2G∗)Pf ∗ + P̃ + GF ∗, (B4)

with the initial conditions F (0) = G(0) = P̃(0) = Pf ∗ (0) =
0.

3. Approximated non-positivity-preserving ME

∂t ρ̂
′
r = −i[ĤS, ρ̂

′
r] + [(FĴ− + GĴzĴ−)ρ̂ ′

r, Ĵ+] + H.c., (B5)

where the coefficients satisfy

∂t F = aγ + (iω − γ − i� + 2G)F,

∂t G = −2F 2 + (iω − γ − i� + 6F − 2G)G, (B6)

with the initial conditions F (0) = G(0) = 0.

4. Approximated QSD equation

∂t

∣∣ψ {0}
z

〉 = (−iĤS + z∗
t Ĵ− − FĴ+Ĵ− − GĴ+ĴzĴ−)

∣∣ψ {0}
z

〉
, (B7)

where the coefficients satisfy

∂t F = aγ + (iω − γ − i� + 2G)F,

∂t G = −2F 2 + (iω − γ − i� + 6F − 2G)G, (B8)

with the initial conditions F (0) = G(0) = 0.
The stochastic process z∗

t can be generated using dz∗
t =

(−γ + i�)z∗
t dt + γ

√
aγ dWt , where Wt is the complex

Wiener process.
All the above equations of coefficients are based on

the assumption that the correlation function is α(t, s) =
aγ e−γ |t−s|−i�(t−s).
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