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We study the stability of counterdiabatic drive by computing the joint dependence of the probability of
nonadiabatic transitions Pη(δ) on the adiabatic parameter δ and on the normalized amplitude of the adiabatic
gauge potential (AGP) η in the Landau-Zener-Stückelberg-Majorana model. We show that the Dykhne-Davis-
Pechukas formula cannot be readily applied since the AGP introduces a singularity in the Hamiltonian which
makes the wave function multivalued in the complex-time plane. This can be understood as the non-Abelian
Aharonov-Bohm phase introduced by the AGP and leads to the counterdiabatic correction of the Landau-Zener
formula. In particular, it shows that, unlike the nonperturbative suppression of transitions in the adiabatic limit
δ → 0, the probability is only perturbatively suppressed in the counterdiabatic limit η → 1. We then consider the
extension of our results to integrable time-dependent quantum Hamiltonians. We prove that the AGP satisfies the
flatness constraint which characterizes integrability in these models, which allows us to derive simple expressions
for the AGP and the probability of transitions Pη(δ) near adiabatic or counterdiabatic evolution in three- and
four-state integrable examples.
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I. INTRODUCTION

Motivated by a variety of applications in quantum tech-
nology, interest in control protocols which effectively realize
adiabatic evolution in time-dependent quantum systems has
increased recently [1–10]. In counterdiabatic driving, one
modifies the Hamiltonian by an extra term which is engi-
neered to minimize the probability of nonadiabatic transitions
[11–14]. This term is known as the adiabatic gauge potential
(AGP) since it is the gauge generator of unitary rotations
onto the time-dependent eigenbasis [15–17]. The stability of
this method against perturbations has been considered both
theoretically and experimentally in different contexts [18–25],
but naturally, it is a hard question to answer with any de-
gree of generality due to the wealth of possible Hamiltonian
perturbations.

We approach this problem in a manner inspired by the
famous Landau-Zener (LZ) formula. In the Landau-Zener-
Stückelberg-Majorana (LZSM) model [26–30], the deviations
of the Hamiltonian from the adiabatic regime are parametrized
by a single adiabatic parameter δ, and the probability of nona-
diabatic transitions is found to vanish nonperturbatively fast
in the adiabatic limit δ → 0 as P(δ) = e−π/δ , the LZ formula.
In this sense, the adiabatic regime is nonperturbatively stable
against Hamiltonian perturbations parametrized by δ. Sub-
sequent generalizations led to the Dykhne-Davis-Pechukas
(DDP) formula [31–33], which considers the analytic con-
tinuation of the Hamiltonian to complex time and computes
the exponent in P(δ) from the singularities of the eigenstates
which lie closest to the real axis, with corrections given by a
power series in δ [34–36].
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We show that one can similarly quantify the stability of
the counterdiabatic regime in terms of the dependence of the
probability of nonadiabatic transitions Pη(δ) on a suitably
defined counterdiabatic parameter η. Here, η is the amplitude
of the AGP, normalized so that η = 0 is the original drive
and η = 1 is the counterdiabatic drive. For small but fixed
δ, Pη(δ) vanishes perturbatively as (η − 1)2 in the counter-
diabatic limit η → 1, so that the counterdiabatic regime is
only perturbatively stable against such perturbations. In terms
of the small δ expansion of log[Pη(δ)], we find that the LZ
term, of order δ−1, is not modified. Instead, the presence of
the AGP changes the terms at the next order δ0, leading to
a modification of the LZ formula by a universal prefactor. We
also confirm these findings by comparing our formula with the
numerical solution of the time-dependent Schrödinger equa-
tion (TDSE).

Our calculation is based on a generalization of the DDP
formula. While application of the DDP formula assumes that
the Hamiltonian extends analytically to a strip of the complex-
time plane which includes the leading singularities of the
eigenvectors, we find that singularities of the Hamiltonian
itself are intrinsic to the AGP and to the mechanism behind
counterdiabatic driving. Our analysis shows that the singular-
ity of the AGP leads to relative phases between different paths
in the complex-time plane, which suppresses nonadiabatic
transitions by destructive Aharonov-Bohm interference [37].

In an independent recent development, the exact solvability
of a number of models was understood to be due to an under-
lying integrability structure that allows them to be factorized
into a sequence of LZSM problems [38–43]. In particular, in
these models, the condition for adiabaticity can be quantified
in terms of a few δ parameters corresponding to the differ-
ent pairwise crossings. We show that counterdiabatic driving
of these models is also special. Namely, we prove that the
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integrability condition which leads to the factorizability ex-
tends to the AGP. This leads to simplifications in computing
the AGP and in evaluating the probability of transitions Pη(δ)
close to the adiabatic or counterdiabatic regime, as we illus-
trate with three- and four-level examples.

This paper is organized as follows: Sec. II reviews the LZ
formula and the method of counterdiabatic driving. Section III
reviews the derivation of the DDP formula from a more gen-
eral result: the adiabatic theorem in the complex plane. In
Sec. IV, this method is applied to the LZSM model with
AGP, leading to the AGP phase and the modified Landau-
Zener formula Pη(δ). Section V discusses the extension of
the integrability condition to the AGP, with the three-state
bow-tie model as an explicit example. In Sec. VI the results
from Secs. IV and V are combined so that we can evalu-
ate the transition probability Pη(δ) in an integrable four-state
model. Section VII includes a discussion of the results and
interesting future directions. Three Appendixes are included
for additional computational details.

II. TRANSITION PROBABILITY

The problem we consider is as follows. Let H (t ) be a
nondegenerate, time-dependent, two-level Hamiltonian with
a gap of order E which changes over a timescale T . It is then
interesting to rewrite the TDSE in the dimensionless form

iδ∂τ |ψ〉 = h|ψ〉, (1)

where τ = t/T is the dimensionless “slow time,” h(τ ) = 1
E H ,

and

δ = h̄

ET
(2)

is the adiabatic parameter. The instantaneous eigenvalues en

and eigenstates |n〉 are given by

h(τ )|n(τ )〉 = en(τ )|n(τ )〉, n = 0, 1. (3)

We consider the solution of (1) in the form

|ψ (τ )〉 =
∑

n

cn(τ )e− i
δ

∫ τ

0 en−i
∫ τ

0 an |n(τ )〉, (4)

which starts from the ground state,

lim
τ→−∞ cn(τ ) = δn,0. (5)

Here, we also defined the Berry connection,

an = −i〈n|∂τ |n〉. (6)

Then the probability of nonadiabatic transitions is

P ≡ lim
τ→+∞ |c1(τ )|2. (7)

We can compute P for Hamiltonians with different parame-
ters. Then the adiabatic theorem says that its dependence on
the adiabatic parameter P(δ) is such that

P −−→
δ→0

0, (8)

and the LZ formula gives the leading behavior of P(δ) as we
deviate away from this limit,

P ∼ e−π/δ. (9)

This formula is quite generic and has been applied to many
different systems. It is often interpreted in terms of the ro-
bustness of the adiabatic limit: for small but nonzero δ, the
probability is nonperturbatively small. For the LZSM model
we discuss below it is actually exact, although in this paper
we are concerned with the small-δ regime. We also note that
the π value of the coefficient in the exponent corresponds to a
particular choice of the δ parameter in the LZSM Hamiltonian
[Eqs. (16) and (17)]. The probability is, of course, independent
of this choice, which will become clear from the DDP formula
discussed in the next section.

Importantly, various exceptions, to the adiabatic theorem
in general and to the LZ formula in particular, exist. In many
cases, the physics of these exceptions can be traced back
to the existence of additional Hamiltonian parameters that
introduce time and energy scales not accounted for by the
adiabatic parameter δ [44]. For example, by repeatedly driving
a system through LZSM transitions with certain periods, one
can resonantly populate the excited state [45]. The resulting
deviations from the intuitive picture above can range from
an effective shift of the adiabatic parameter [46] to essential
deviations from the DDP formula, for example, when the drive
is strongly nonlinear [47]. In this sense, the LZ formula should
be thought of as (1) a paradigm of adiabatic stability, on the
basis of which exceptions can be analyzed, and (2) a building
block which one can use to construct toy models with richer
dynamics.

On the other hand, suppose the eigenstates (3) depend on
time through the parameter θ , and let U (θ ) be the correspond-
ing unitary operator which diagonalizes the Hamiltonian.
Then the AGP is

Aθ = −iδU∂θU †, (10)

and it is easy to check by direct computation that the original
eigenstates (3),

e− i
δ

∫ τ

0 en−i
∫ τ

0 θ̇an |n(τ )〉, (11)

where θ = θ (τ ), are exact solutions of the TDSE with the new
Hamiltonian

h(θ ) + θ̇Aθ . (12)

In other words, adding the AGP to the Hamiltonian replaces
(9) by

P = 0. (13)

We investigate the stability of this exact suppression of nona-
diabatic transitions by calculating Pη(δ), the probability of
transitions for the one-parameter family of Hamiltonians

h + ηθ̇Aθ , (14)

where the strength η of the AGP term tunes the Hamiltonian
from the original drive at η = 0 to the counterdiabatic drive at
η = 1. We find that, for small δ,

Pη ∼ cos2 ηπ

2
e−2η/3e−π/δ. (15)

Interestingly, the usual LZ exponent of order 1/δ is un-
changed. Instead, the AGP suppresses this estimate by a
δ-independent prefactor which vanishes perturbatively as
(η − 1)2 in the counterdiabatic limit η → 1.
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III. THE DDP METHOD

Note that formulas (9) and (15) vanish in all orders of
perturbation theory in the parameter δ. To capture the non-
perturbative result, we proceed using the method of Dykhne,
Davis, and Pechukas, which makes use of the analytic proper-
ties of the Hamiltonian. Since, as we will see, the singularity
of the AGP does not allow us to immediately apply the DDP
formula, we first review how to derive it from a more elemen-
tary result in the familiar LZSM case (for more details, see
[33]). The LZSM Hamiltonian is

H =
(

at b
b −at

)
. (16)

The eigenvalues ±√
a2t2 + b2 have an avoided crossing at t =

0, with minimal gap 2b. Thus, it is natural to take E = b and
T = b/a, so that the TDSE takes the form (1) with

h = e(τ )[sin θσ x + cos θσ z], δ = h̄a

b2
, (17)

where

e(τ ) =
√

1 + τ 2, tan θ = 1

τ
. (18)

The instantaneous eigenstates are

|0〉 =
(− sin θ

2
cos θ

2

)
, |1〉 =

(
cos θ

2

sin θ
2

)
, e0,1 = ∓e(τ ), (19)

and we consider the decomposition of the solution in terms of
the eigenstates as in (4). Then the coefficients cn(τ ) satisfy the
equations

ċ0 = p01e
i
δ

∫ τ

0 (e0−e1 )+i
∫ τ

0 (a0−a1 )c1(τ ), (20)

ċ1 = p10e
i
δ

∫ τ

0 (e1−e0 )+i
∫ τ

0 (a1−a0 )c0(τ ), (21)

with the anti-Hermitian coefficients pnm = −〈n|∂τ |m〉. We
consider the solution with initial condition (5).

The essence of the method lies in extending these equa-
tions to complex τ . Since the Hamiltonian (17) is analytic
in the complex plane, the solution of the TDSE (1) is well
defined everywhere [48]. However, a subtlety appears when
writing the equations for the amplitudes cn (20,21): although
the solution |ψ (τ )〉 is single valued, the eigenstates are not.
Indeed, the eigenvalues ±e(τ ) = ±√

1 + τ 2 have square-root
branch points at the complex degeneracies ±τ ∗, where

τ ∗ = i, (22)

so that going around one of these points amounts to swapping
the two eigenstates. Therefore, the decomposition (4) of the
solution of the TDSE only makes sense with respect to a
specific curve, which we will keep track of by using super-
scripts: cA,B,...

n will denote the amplitudes of |ψ (τ )〉 in terms
of the eigenstates defined continuously along the curve γ A,B,....
Additionally, since we are ultimately interested in the ampli-
tudes cn(τ ) for real τ , we introduce branch cuts from ±τ ∗ to
infinity for when we extend the eigenstates continuously from
the real axis as in Fig. 1. With this definition, the labeling of
adiabatic amplitudes cB

n on a given curve γ B coincides with
the one on the real axis γ A if the curve does not cross the
branch cut and gets relatively swapped if the curve crosses

FIG. 1. Level lines of the function �A(τ ) (23) for the eigenvalues
of the LZSM model. There is a square-root branch point τ ∗, from
which an extra level line extends vertically. We place the branch cut
on top of this extra level line. Then we can see that both the real axis
γ A and the curve γ B satisfy the condition of nonincreasing �(τ ) for
the adiabatic theorem.

it. The LZ formula follows from comparing the amplitudes
corresponding to different curves in the adiabatic limit.

In the limit δ → 0, Eqs. (20) and (21) are dominated by
the dynamical phase factors, and this leads to an important
result. Let γ A(s) be a curve on the complex plane such that
Re[γ A(s)] −−−−→

s→±∞ ±∞. If, on γ A, the function

�A(τ ) = Im

[∫ τ=γ A(s)

0

(
eA

0 − eA
1

)
ds′

]
(23)

is nonincreasing, then it can be shown that the adiabatic theo-
rem is valid, that is,

cn(γ A(s))
δ→0−−−−→

s→+∞ δn0. (24)

This result includes the adiabatic theorem since �A(τ ) van-
ishes when the real axis is taken as the path γ A, but the point
is that there are other curves to which it also applies, thus
earning it the name “adiabatic theorem in the complex plane.”
In Fig. 1, we plot the level lines of the function �(τ ), which
is defined by analytic continuation of �A(τ ) evaluated on the
real axis, with the branch cut as shown. It increases away from
the real axis, and the level line splits into three at the branch
point τ ∗. Consider now the curve γ B in Fig. 1. To the left of
the branch cut, it traverses the decreasing level lines, while
to the right it traverses the increasing level lines. But since
the labeling of eigenstates is swapped as the curve crosses the
branch cut, �B(τ ), which is defined analogously to (23), is
also nonincreasing on all of γ B.

We compare the eigenstate decompositions of |ψ (τ )〉 on
the real axis γ A and on the curve γ B. Since, to the left of the
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cut, the labels of the eigenstates agree, the initial condition
becomes

cA
n (τ ) −−−−→

τ→−∞ δn0, (25)

cB
n (τ ) −−−−→

τ→−∞ δn0. (26)

And since in both γ A and γ B the adiabatic theorem is satisfied,
we have that

cA
n (τ )

δ→0−−−−→
τ→+∞ δn0, (27)

cB
n (τ )

δ→0−−−−→
τ→+∞ δn0. (28)

However, due to the relative crossing of the branch point, the
adiabatic-limit answer (28) gives the leading correction to the
adiabatic limit in (27) by matching the coefficients of the wave
function. With a slight abuse of notation,

|ψ (+∞)〉 = e−i
∫ γ B (∞)

0 ( e0
δ

−a0 )|0B(+∞)〉

=
∑

n

cA
n (+∞)e−i

∫ γ A (∞)
0 ( en

δ
−an)|nA(+∞)〉. (29)

Since |0B(+∞)〉 = |1A(+∞)〉, matching this coefficient gives

cA
1 (+∞) = ei

∫ γ A (∞)
0

(
eA
1
δ

−aA
1

)
e−i

∫ γ B (∞)
0

(
eB
0
δ

−aB
0

)
(30)

= e− i
δ

∫ τ∗
0 (e0−e1 ), (31)

where in the second line we deformed the integration contour,
represented by the dotted line in Fig. 1 [49]. Because the
LZSM Hamiltonian (17) is purely real, the Berry phase factor
vanishes. The result is Dykhne’s formula: the probability of
transitions is fixed by the phase integral of the gap between
the eigenstates up to the closest branch point,

P = ∣∣cA
1 (+∞)

∣∣2 ∼ e− 2
δ

Im[
∫ τ∗

0 (e1−e0 )]. (32)

Using the explicit eigenvalues of the LZSM model, we find

P ∼ e− 4
δ

Im[
∫ τ∗

0

√
1+τ 2] = e−π/δ, (33)

which is the LZ formula. The more general contour integral
(30), known as the DDP formula, can account for a general
distribution of branch-point singularities, and it is covariant
with respect to different choices of the δ parameter. Different
applications, extensions, and limitations of the DDP formula
have been studied in the literature [47,50–53].

IV. THE AGP PHASE

Let us now see how this calculation is changed by the AGP.
The LZSM Hamiltonian (17) is diagonalized by

U (θ ) =
(

− sin θ
2 cos θ

2

cos θ
2 sin θ

2

)
= e−i θ

2 σ y
σ x, (34)

with time dependence θ = θ (τ ) from (18), so that the AGP
takes on the form [11]

θ̇Aθ = − δ

2(1 + τ 2)
σ y. (35)

FIG. 2. Level lines of the function �A(τ ) (23) for the eigenvalues
of the counterdiabatic LZSM model (14). We introduce a Dirac string
extending from the singularity of the Hamiltonian at τX (red). In
the upper half of the complement of the Dirac string M+, there
are three branch points, from which we define the branch cuts as
above: one extending up from τ ∗

1 along the vertical level line and
one connecting τ ∗

2 to τ ∗
3 . Then we can see that both the real axis γ A

and the curve γ B satisfy the condition of nonincreasing �(τ ) for the
adiabatic theorem.

Thus, the Hamiltonian (14), parametrized by η ∈ [0, 1], is
given by

h(η) = e(τ )[sin θσ x + cos θσ z] + ηθ̇Aθ (36)

= σ x + τσ z − ηδ

2(1 + τ 2)
σ y. (37)

We see that, while the LZSM Hamiltonian is analytic every-
where, the presence of the AGP leads to poles at ±τX , where

τX = i. (38)

In particular, this means that the solution of the TDSE (1) is
not well defined everywhere. In fact, in the punctured plane
C \ {τX ,−τX }, it is multivalued, and the DDP formula cannot
be applied.

A simple work-around for dealing with singular gauge
fields that have nontrivial holonomy is known from the theory
of Dirac’s magnetic monopole [54]: we make the domain of
the TDSE simply connected by introducing a Dirac string ex-
tending from each pole to infinity (represented by the red line
in Fig. 2). Then, on the complement of the Dirac string M,
the solution is well defined and single valued. For simplicity,
we take the strings to become parallel to and very close to the
real axis as Re[τ ] → +∞.
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On the other hand, the eigenvalues of the new Hamiltonian
(37) are

e0,1 = ∓ 1

1 + τ 2

√
(1 + τ 2)3 + η2δ2

4
, (39)

which vanish at the six square-root branch points ±τ ∗
1,2,3 at

τ ∗
1,2,3 = i

[
1 +

(
ηδ

2

) 2
3

ei 2π
3 k

] 1
2

, (40)

with k = 0, 1, 2. Compare Figs. 1 and 2. For η > 0, there
are three branch points τ ∗

1,2,3 surrounding each pole of the
Hamiltonian τX , while for η → 0 all of these collapse to the
single branch point of the LZSM model.

Again, we find that the expansion (4) of the wave function
is not well defined in the whole M. Thus, we extend the
labeling of eigenstates from the real time axis to the upper
half-plane sector M+ by introducing branch cuts as in Fig. 2:
one cut extending from τ ∗

1 to infinity along the imaginary
axis and one connecting τ ∗

2 to τ ∗
3 . The level lines of �(τ ) are

plotted in Fig. 2. Outside the region occupied by the singular
points, they look similar to the LZSM case, so we can easily
check that the adiabatic theorem applies to the curve γ B,
and we have Eqs. (25)–(28). However, since the curves γ A

and γ B are separated by the Dirac string, the two expansions
cannot be immediately matched at Re[τ ] → +∞. Indeed, the
wave function itself is not continuous upon jumping across
the string, and the discontinuity is found by integrating the
TDSE on a path going around the Dirac string. Recalling that
we take the string to lie arbitrarily close to the real axis, we
find the matching condition

|ψ (+∞)〉 = e−η i
δ

∮
τX dτ θ̇Aθ |ψ (+∞ + iε)〉, (41)

where the exponent corresponds to a residue integral of the
AGP around the pole at τX ,

e− i
δ
η

∮
Aθ dθ = eiη π

2 σ y
, (42)

so that

e− i
δ

∮
τX dθAθ |0B(+∞)〉 = cos

(ηπ

2

)
|1A(+∞)〉

− sin
(ηπ

2

)
|0A(+∞)〉. (43)

Therefore, comparing the |1A(+∞)〉 coefficients of (41), we
find

cA
1 (+∞) = ei

∫ γ A (∞)
0

(
eA
1
δ

−aA
1

)
e−i

∫ γ B (∞)
0

(
eB
0
δ

−aB
0

)
cos

ηπ

2

= cos
ηπ

2
e− i

δ

∫ τ∗
1

0 (e0−e1 )ei
∫ τ∗

1
0 (a0−a1 ), (44)

where the integrations from zero to the branch point τ ∗
1 in

these expressions are along paths circumventing the branch
cuts. Thus, the transition probability is

Pη ∼ cos2 ηπ

2
e2Im[

∫ τ∗
1

0 (a1−a0 )]e− 2
δ

Im[
∫ τ∗

1
0 (e1−e0 )]. (45)

We see that there are two modifications from the Dykhne
formula (32): the Berry phase factor, which in this case is
nonzero, and the first prefactor, which appears due to the
topological phase introduced by the AGP.

FIG. 3. Inverse probability of nonadiabatic transitions P−1 as
a function of inverse adiabatic parameter δ−1 for Hamiltonians
(14) with different values of η. The solid lines are formula (45),
and the dots are the results of numerically solving the TDSE (1)
for the transition probability P = |c1(200)|2 with initial condition
cn(−200) = δn0.

Again, the integrals can be evaluated by deforming the
contour, although one should be careful with the branch cuts.
In Appendix A, we find that the O(1/δ) and O(1) terms in the
dynamical phase are

e− 2
δ

Im[
∫ τ∗

1
0 (e1−e0 )] = e−π/δ+2η/3, (46)

while the geometric phase factor, although not identically
vanishing, does not contribute at this order. Finally, we find
the modified LZ formula

Pη ∼ cos2 ηπ

2
e−2η/3e−π/δ. (47)

As shown in Fig. 3, this formula agrees with the results found
by numerically solving the TDSE for different values of η.

We find that, for small but fixed δ, Pη(δ) vanishes perturba-
tively as (η − 1)2 in the counterdiabatic limit η → 1. In terms
of the small δ expansion of the exponent of Pη(δ), the LZ
term, of order δ−1, is not modified. Instead, the presence of
the AGP changes the terms at the next order δ0 and leads to a
universal prefactor, independent of the adiabatic parameter δ,
which is not accounted for in the DDP formula. This prefactor
is due to the non-Abelian holonomy (42) of the adiabatic
gauge potential, which generates relative phases between the
different paths. Thus, we find that the complex-time picture of
counterdiabatic drive is the Aharonov-Bohm interference due
to the topology of the AGP.

V. ADIABATIC GAUGE POTENTIAL AND
INTEGRABILITY

Formula (47) is particular to the LZSM model. However,
it can be used to estimate deviations from counterdiabatic
dynamics in Hamiltonians which are related to the LZSM
model by integrability. The main ingredient is an integrability
constraint which is satisfied by the AGP, as we now show. In
the next section, we apply this result to compute Pη(δ) in an
integrable four-state problem.

Consider again the TDSE,

i∂t |ψ〉 = H0|ψ〉, (48)
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in the (−∞,∞) time interval, where we restored units to h̄ =
1. Integrable time-dependent quantum Hamiltonians (ITQHs)
have an extra structure in which one can find Hamiltonian
parameters x j (such as matrix elements in H0) and correspond-
ing auxiliary operators Hj such that the collection (Hμ) =
(H0, Hj ) satisfies the compatibility condition

∂μHν − ∂νHμ + i[Hμ, Hν] = 0, (49)

where (xμ) = (t, x j ). Then we can extend the TDSE to an
equation for parallel transport on the whole (xμ) space with
connection form Hμdxμ,

i∂μ|ψ〉 = Hμ|ψ〉. (50)

Since Eq. (49) is the zero-curvature condition for this connec-
tion, it implies that the solution of (50) is independent of the
path of integration.

For a given initial condition at t → −∞ and fixed x j , we
can use this freedom to find the solution for t → +∞ by
solving the TDSE on a convenient path in the (xμ) space. It
is interesting to choose a path for which |x| is always large
because, generally, this guarantees that the eigenvalues are
far apart and the solution only gains the appropriate phases
multiplying each instantaneous eigenstate. The exception is
when the path intersects the hypersurfaces where an avoided
crossing happens. Crossing one of these hypersurfaces is
equivalent to a Landau-Zener problem for the corresponding
states which come close together. This reduces the matrix of
transition probabilities to a product of Landau-Zener factors(

1 − P P
P 1 − P

)
, (51)

where the LZ transition probabilities are given by (9) with the
appropriate adiabatic parameter for each crossing hypersur-
face. In this way, we can see the LZSM model as a building
block of integrable time-dependent quantum Hamiltonians.
Examples that fall under this paradigm include multilevel
Landau-Zener models [39–42], Gaudin magnets, and driven
BCS Hamiltonians [43].

In these examples, the Hamiltonians Hμ are real and sym-
metric. We can then separate the real and imaginary parts of
(49),

∂μHν − ∂νHμ = 0, (52)

[Hμ, Hν] = 0. (53)

We find that the AGP

A0 = −iU∂τU †, (54)

which suppresses nonadiabatic transitions in H0, inherits the
integrable structure. More precisely, there are partner opera-
tors A j such that Aμ = (A0,A j ) satisfy the flatness condition

∂μAν − ∂νAμ + i[Aμ,Aν] = 0. (55)

The partner operators A j are the adiabatic gauge potentials for
the extended TDSE (50),

Aμ = −iU∂μU †. (56)

We can also show that

∂μ(Hν + Aν ) − ∂ν (Hμ + Aμ)

+ i[Hμ + Aμ, Hν + Aν] = 0. (57)

If, additionally, [Aμ,Aν] = 0, then, for any η,

∂μ(Hν + ηAν ) − ∂ν (Hμ + ηAμ)

+ i[Hμ + ηAμ, Hν + ηAν] = 0. (58)

We include proofs of these facts in Appendix B.
Equation (57) is deeply connected to the multidimensional

WKB approximation in (xμ) space used to solve ITQHs
[38], which relies on the property that nonadiabatic transi-
tions are restricted to the same regions of parameter space
for all the Hamiltonians Hμ and is also related to the fact
that the auxiliary Hamiltonians Hj can themselves be inter-
preted as counterdiabatic potentials [39]. Equation (58) shows
that the integrable structure allows one to continuously sup-
press transitions in all directions of the extended parameter
space by tuning a single parameter, η. In geometric terms,
the AGP gives a continuous deformation of Hμdxμ into the
fully counterdiabatic regime through a path of flat connections
parametrized by η.

As an explicit illustration of the flatness of the AGP, con-
sider the three-state bow-tie model [55,56],

Ht =
⎛
⎝ 0 ag bγ

ag a2t 0
bγ 0 b2t

⎞
⎠. (59)

Corresponding to parameters a and b, the partner Hamiltoni-
ans are

Ha =

⎛
⎜⎝

0 gt 0
gt at2 − b2γ 2

a(a2−b2 )
bgγ

a2−b2

0 bgγ
a2−b2 − ag2

a2−b2

⎞
⎟⎠, (60)

Hb =

⎛
⎜⎝

0 0 γ t

0 bγ 2

a2−b2 − agγ
a2−b2

γ t − agγ
a2−b2 bt2 + a2g2

b(a2−b2 )

⎞
⎟⎠, (61)

and we can directly check Eqs. (52) and (53). This inte-
grable structure was used to rederive the exact solution of this
model in [43]. As one can expect from the fact that the AGP
(At ,Aa,Ab) are defined as derivatives of the instantaneous
eigenvectors, they are given by complicated expressions in
terms of the Hamiltonian parameters (see Appendix C for de-
tails). The formulas simplify considerably in the b → a limit.
Although Ha and Hb are singular in this limit, the combination
Ha + Hb is well defined,

H̃a = lim
b→a

(Ha + Hb) =

⎛
⎜⎝

0 gt γ t

gt at2 + γ 2

2a − gγ
2a

γ t − gγ
2a at2 + g2

2a

⎞
⎟⎠, (62)

and together H̃t = Ht |b→a and H̃a satisfy (52) and (53). The
corresponding AGP are

At,a = iAt,a

⎛
⎝0 −g −γ

g 0 0
γ 0 0

⎞
⎠, (63)
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with the coefficients 
A = (At , Aa) given by


A = 1

2
√

g2 + γ 2
∇

[
tan−1

(
at

2
√

g2 + γ 2

)]
. (64)

Note that (63) implies that [At ,Aa] = 0, and (64) implies that
∂aAt − ∂tAa = 0. Thus, for the bow-tie model,

∂aAt − ∂tAa + i[Aa,At ] = 0. (65)

We can also directly check that [H̃t ,Aa] = [H̃a,At ], which
implies (57) and (58).

VI. A MULTILEVEL EXAMPLE

We illustrate how formula (47) can be combined with (58)
to estimate deviations from counterdiabatic evolution in an
integrable four-level system. Let (Hμ) = (Ht , Hx ), where

Ht =

⎛
⎜⎜⎝

at + x 0 g −γ

0 −at + x γ g
g γ bt 0

−γ g 0 −bt

⎞
⎟⎟⎠, (66)

Hx =

⎛
⎜⎜⎜⎝

t + ax
a2−b2 0 g

a−b − γ

a+b
0 t − ax

a2−b2 − γ

a+b − g
a−b

g
a−b − γ

a+b − bx
a2−b2 0

− γ

a+b − g
a−b 0 bx

a2−b2

⎞
⎟⎟⎟⎠, (67)

which satisfy (52) and (53) in the (xμ) = (t, x) space
[38,57,58]. The integrable structure allows us to find new
solvable models by considering evolution along different
paths in this space, and in particular on the line (t, x) =
(τ, x0 + vτ ) we have the Hamiltonian

Hτ = Ht + vHx

=

⎛
⎜⎜⎝

a+τ + x+ 0 g+ −γ+
0 −a−τ + x− γ− g−

g+ γ− b′τ + y 0
−γ+ g− 0 −b′τ − y

⎞
⎟⎟⎠,

(68)

where

λ± = v/(a ± b), a± = a(1 + λ+λ−) ± 2v,

x± = x0(1 ± aλ+λ−/v), b′ = b(1 − λ+λ−),

y = −x0bλ+λ−/v, g± = g(1 ± λ−), γ± =γ (1±λ+),

and we assume a > b > 0. Note that Hτ is similar to Ht , but
a little more general. Indeed, it was shown in [38] that the
solution is different from that of Ht if v > a − b.

We wish to compute the probability of nonadiabatic transi-
tions Pη(δ) as a function of the AGP amplitude η in the model
(68). Thus, we consider the dynamics of the Hamiltonian

Hτ + ηAτ (69)

modified by the AGP Aτ . Note that, like in the LZSM case,
being in the small-δ regime will be important for our calcula-
tion of Pη(δ). However, although adiabaticity certainly means
that the coefficients a± and b′ are small compared to g± and
γ±, at this point the exact adiabaticity criterion is not yet
clear since there are many ways to construct an admissible
dimensionless quantity δ from the coefficients in (68). This

point will become clear below, where we see that integrability
narrows down the adiabaticity condition to the smallness of
two combinations of the coefficients.

From our result (58), we know that the modified Hamil-
tonian Hτ + ηH corresponds to a special direction of the
integrable system defined by Ht + ηAt and Hx + ηAx in the
(t, x) plane. Thus, the same technique used to solve Hτ can be
applied to the modified Hamiltonian (69). Instead of solving
the TDSE for Hτ from τ = −T to τ = +T , with T → ∞, we
can go from point (ti, xi ) = (−T, x0 − vT ) to point (t f , x f ) =
(T, x0 + vT ) using a more convenient path. A good choice is
to integrate first

i∂x|ψ〉 = (Hx + ηAx )|t=ti |ψ〉 (70)

with x from xi to x f , followed by

i∂t |ψ〉 = (Ht + ηAt )|x=x f |ψ〉 (71)

with t from ti to t f . The advantage is that, for large T , the
Hamiltonians Ht and Hx have large diagonal entries. In the
T → ∞ limit, there are no transitions between the instanta-
neous eigenstates, and in fact, the adiabatic levels coincide
with the diabatic levels (the diagonal entries). Moreover, as
discussed in Appendix C, in this basis the AGP is off diagonal
and is given by

〈m|Aμ|n〉 = i
〈m|∂μHμ|n〉

En − Em
, (72)

which therefore vanishes in the T → ∞ limit.
The only exception to this argument happens around points

of the path (t∗, x∗) where two of the diabatic levels cross,
which leads to an avoided crossing of the instantaneous eigen-
states. For example, let us consider the case a − b < v <

a + b. Then at the point (t∗, x∗) = (− x f

a+b , x f ) we can easily
check that H11

t = H44
t . Let us expand |ψ〉 = ∑

n cn|ñ〉, where
we introduced the notation |ñ〉 to distinguish the nth diabatic
level from the nth instantaneous eigenstate |n〉. Ignoring the
amplitudes on levels |2̃, 3̃〉, which are separated by a gap
proportional to T , and expanding Ht , we find that the TDSE
at (t∗ + t ′, x∗) reads

i
dc1

dt ′ = at ′c1 − γ c4 − i
η(a + b)γ

4γ 2 + (a + b)2t ′2 c4,

i
dc4

dt ′ = −bt ′c4 − γ c1 + i
η(a + b)γ

4γ 2 + (a + b)2t ′2 c1, (73)

where we computed the AGP using the method in Ap-
pendix C. In particular, only the components of the AGP
between states |1̃〉 and |4̃〉 survive the T → ∞ limit. For
example, we find that

〈1̃|At |2̃〉 = i
(a + b)2gγ

2av[4γ 2 + (a + b)2t ′2]

1

T
+ O

(
1

T 2

)
. (74)

By rescaling t ′ and Ht , (73) reduces to the LZSM model
modified by the AGP (37) with the adiabatic parameter

δγ = a + b

2γ 2
= a+ + a− + 2b′ + 2

√
(a+ + b′)(a− + b′)

2(γ+ + γ−)2

and counterdiabatic parameter η. It follows that, for small δγ ,
integration across (t∗, x∗) is equivalent to multiplication of the
amplitudes c1 and c4 by the matrix of transition amplitudes
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in the modified LZSM model M14
η (δγ ), Eqs. (41)–(44). There

are four pairwise crossings (t1,2,3,4, x1,2,3,4) in total, and the
resulting matrix of transition amplitudes is

S = Ut (t f , t4)M23
η (δ4)Ut (t4, t3)M14

η (δ3)Ut (t3, ti )

×U x(x f , x2)M13
η (δ2)U x(x2, x1)M24

η (δ1)U x(x1, xi ),

where U μ(xμ
i , xμ

j ) is the diagonal matrix of adiabatic phases
computed by integrating the diagonal entries of Hμ from xμ

j to
xμ

i , and we find that δ1,2 = δg and δ3,4 = δγ , where

δg = a − b

2g2
= a+ + a− − 2b′ + 2

√
(a+ − b′)(a− − b′)

2(g+ + g−)2
.

To compute the probability of transitions between instanta-
neous eigenstates, we have to remember that on each LZSM
avoided crossing the labels of instantaneous eigenstates are
swapped with respect to the diabatic levels. Thus, for a
system prepared in the instantaneous eigenstate |1〉 = |1̃〉 at
τ → −∞, the probability of transitions to the instantaneous
eigenstate |2〉 = |1̃〉 at τ → +∞ is

P1→2
η = |S11|2 = ∣∣(M14

η (δ3)
)11∣∣2∣∣(M13

η (δ2)11)∣∣2
(75)

= cos4
(ηπ

2

)
e−4η/3e−π/δγ e−π/δg, (76)

where we denote by (A)i j the i j entry of matrix A, and in
the last step we used Eq. (47). This result is valid in the
adiabatic regime, which is now seen to correspond to small
δγ ,g. When comparing this result to the LZSM model, we find
that in the case of the integrable four-state Hamiltonian (68),
the attenuation of transitions by the AGP is doubly strong,
vanishing as (η − 1)4 in the η → 1 limit.

VII. DISCUSSION

The adiabatic gauge potential completely suppresses nona-
diabatic transitions. However, it does so only if one can
exactly realize the time-dependent AGP Hamiltonian. In real
experimental settings, perturbations to the original Hamil-
tonian and to the AGP are inevitable, so quantifying the
stability of this method of counterdiabatic control is of both
conceptual and practical importance. In this work we found
that, in terms of deviations of the AGP amplitude η from the
counterdiabatic regime η = 1, the probability of transitions
Pη(δ) has the form of a modified LZ formula [Eq. (47)]. The
modification is given by a prefactor which depends on η but
not on the adiabatic parameter δ. This prefactor was derived
by extending the derivation of the DDP formula to account
for a singularity of the AGP in complex time. This singularity
leads to nontrivial holonomy of the AGP field, and the re-
sulting Aharonov-Bohm phase interference between different
complex-time paths gives the counterdiabatic suppression of
the transition probability. In this way, our calculation gives ge-
ometric insight into the mechanism behind the counterdiabatic
drive. Moreover, the modified LZ formula (47) implies that,
unlike the nonperturbative suppression of transitions in the
adiabatic limit δ → 0, they are only perturbatively suppressed
in the counterdiabatic limit η → 1.

Although intuitive, the choice of the amplitude of the AGP
as the counterdiabatic parameter η corresponds to a single

type of deformation of the Hamiltonian. In a general exper-
imental setting, the Hamiltonian can be perturbed in many
other ways, and the counterdiabatic suppression of transitions
might be even less stable under different types of perturbation.
This is similar to the many deviations from the Landau-Zener
formula which appear when the LZSM Hamiltonian is per-
turbed or enriched in interesting ways. Whether effects like
resonance and interference can strongly destroy the control of
eigenstates by the AGP is an interesting question for future
work. In particular, it is possible that our method could be
extended to more general models with analytic (or meromor-
phic) Hamiltonians which could probe into these questions. It
would also be interesting to understand how the cosine pref-
actor derived here is related to the generic formulas derived in
[59] by the method of superadiabatic renormalization.

Complementarily, we also studied the properties of the
AGP in integrable time-dependent quantum Hamiltonians. We
showed that, in a precise sense, the AGP is compatible with
integrability. Namely, the AGP satisfies the flatness condition
and gives an integrable deformation of these models. This
leads to a number of simplifications, as illustrated with three-
and four-level examples, which showed that ITQHs provide
good models on which to study counterdiabatic control in a
multilevel setting. As an example, we computed the depen-
dence of the probability of nonadiabatic transitions Pη on the
counterdiabatic parameter in a four-state model. A bonus of
our results is that the modified Hamiltonians Hμ + ηAμ might
lead to new examples of ITQHs, as hinted at by the fact that
the expressions for the AGP are, in general, quite complicated.
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APPENDIX A: DYNAMICAL AND GEOMETRIC
EXPONENTS

In evaluating the integrals in the dynamical and geometric
exponents appearing in (45), we can again deform the contour
to lie on the imaginary axis. However, this means crossing the
branch cut at τX = i (see Fig. 2). For example, the dynamical
phase becomes

Im

[∫ τ ∗
1

0
(e1 − e0)

]

=Re

⎡
⎣2 lim

ε→0

⎛
⎝∫ 1−ε

0
−

∫ √
1+a

2
3

1+ε

⎞
⎠

√
1 − y2 + a2

(1 − y2)2
dy

⎤
⎦,

(A1)

where

a = ηδ

2
(A2)
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is small. One important consequence of the change in sign at
the cut is that the integral is finite. The leading term can easily
be found from the first integral at a = 0,∫ 1

0

√
1 − y2dy = π

4
, (A3)

and just gives the LZ exponent. To get the next term in a, we
have to carefully expand the second integral. One way is to
write the integrand as

∫ √
1+a

2
3

1+ε

√
a

4
3 − a

2
3 (1 − y2) + (1 − y2)2

√
1 − y2 + a

2
3

1 − y2
dy,

(A4)
which correctly separates out the pole at the lower limit and
the zero at the upper limit of the integral, and expand the first
square root in a

2
3 . We find

∫ √
1+a

2
3

1+ε

√
1 − y2 + a

2
3 = a

3
+ · · · , (A5)

which gives the leading value of the dynamical phase for small
δ as

e− 2
δ

Im[
∫ τ∗

1
0 (e1−e0 )] = e−π/δ+2η/3. (A6)

APPENDIX B: INTEGRABILITY CONDITION
FOR THE AGP

We consider real symmetric Hamiltonians Hμ satisfying

∂μHν − ∂νHμ = 0, (B1)

[Hμ, Hν] = 0. (B2)

From (B2), we can find a unitary U such that

H̃μ = U †HμU (B3)

are all diagonal. Then the AGPs are

Aμ = −iU∂μU †, (B4)

and using the fact that (∂μU )U † = −U∂μU †, we find

[Aμ,Aν] = −(U∂μU †U∂νU † − U∂νU †U∂μU †) (B5)

= ∂μU∂νU † − ∂νU∂μU † (B6)

= ∂μ(U∂νU †) − ∂ν (U∂μU †), (B7)

so that the Aμ satisfy the flatness condition

∂μAν − ∂νAμ + i[Aμ,Aν] = 0. (B8)

Now, from (B1),

0 = ∂μ(UH̃νU †) − ∂ν (UH̃μU †) (B9)

= U (∂μH̃ν − ∂νH̃μ)U † + [Hν,U∂μU †] − [Hμ,U∂νU †].
(B10)

Conjugating by U , we get

(∂μH̃ν − ∂νH̃μ) + {[H̃ν, (∂μU †)U ] − [H̃μ, (∂νU †)U ]} = 0.

(B11)

Since the H̃μ are diagonal, the contribution from the first term
(in parentheses) is diagonal and that from the second term (in
curly brackets) is off diagonal. They separately give

∂μEν,n − ∂νEμ,n = 0, (B12)

[Hμ,Aν] − [Hν,Aμ] = 0. (B13)

Finally, using (B1),(B2), (B8), and (B13), we find that

∂μ(Hν + Aν ) − ∂ν (Hμ + Aμ) + i[Hμ + Aμ, Hν + Aν] = 0,

(B14)
so that the Hamiltonians corrected by the AGP terms still
satisfy the flatness condition. In other words, the adiabatic
gauge potential is consistent with time-dependent quantum
integrability. Additionally, if (B8) separates into

∂μAν − ∂νAμ = 0, (B15)

[Aμ,Aν] = 0, (B16)

then

∂μ(Hν + ηAν ) − ∂ν (Hμ + ηAμ)

+ i[Hμ + ηAμ, Hν + ηAν] = 0 (B17)

for all η.

APPENDIX C: EVALUATING THE AGP
AND INTEGRABLE EXAMPLES

In this Appendix, we collect useful properties of the AGP
and discuss how they apply to integrable Hamiltonians. First,
note that we defined the AGP suppressing transitions in the xμ

direction as

Aμ = −iU∂μU †, (C1)

where U is a unitary such that

H̃μ = U †HμU (C2)

are all simultaneously diagonal. In general, calculating Aμ

through (C1) is difficult since U has a complicated expres-
sion in terms of the Hamiltonian parameters. A more direct
alternative is the following. First note that

∂μHμ = ∂μUH̃μU † + U∂μH̃μU † + UH̃μ∂μU † (C3)

= U∂μH̃μU † − i[Aμ, Hμ], (C4)

where repeated indices are not summed over. ∂μH̃μ is the
diagonal matrix of derivatives of the eigenvalues of Hμ, so
U∂μH̃μU † commutes with Hμ = UH̃μU †. Therefore, Aμ sat-
isfies the equation [15]

[Hμ, i∂μHμ − [Aμ, Hμ]] = 0. (C5)

This gives a linear equation for Aμ which we can solve by
expanding Aμ on a basis of Hermitian operators.

As an example, we consider the bow-tie model, which has
an integrable structure in terms of the space of parameters
(xμ) = (t, a, b) and the Hamiltonians

Ht =

⎛
⎜⎝

0 ag bγ

ag a2t 0

bγ 0 b2t

⎞
⎟⎠, (C6)
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Ha =

⎛
⎜⎜⎝

0 gt 0

gt at2 − b2γ 2

a(a2−b2 )
bgγ

a2−b2

0 bgγ
a2−b2 − ag2

a2−b2

⎞
⎟⎟⎠, (C7)

Hb =

⎛
⎜⎝

0 0 γ t

0 bγ 2

a2−b2 − agγ
a2−b2

γ t − agγ
a2−b2 bt2 + a2g2

b(a2−b2 )

⎞
⎟⎠. (C8)

The eigenvectors can be made real so that the Aμ are
imaginary and antisymmetric. Solving (C5) for the three in-
dependent coefficients, we find

At = i

f4

⎛
⎝ 0 f3 − f2

− f3 0 f1

f2 − f1 0

⎞
⎠, (C9)

with the polynomial expressions

f1(a, b, g, γ , t ) = abtgγ (a2 − b2){a4(b2t2 − g2)

− b4γ 2 + a2b2[b2t2 + g(g2 + γ 2]},
(C10)

f2(a, b, g, γ , t ) = bγ {a8t2(b2t2 − g2)

+ a6(6b2g2t2 − 2b4t4 − 3g4) + b6γ 4

+ a2b4[5g2γ 2 + 2b2t2(2g2 + γ 2)]

+ a4b2[4g4 + b4t4 − 2b2t2γ 2 − 3g2(3b2t2 + γ 2)]},
(C11)

f3(a, b, g, γ , t ) = − f2(b, a, γ , g, t ), (C12)

f4(a, b, g, γ , t )

= (a2t2 + 4g2)[a3g2 + ab2t2(a2 − b2)]2

+ 2a2b2γ 2[6a2g4 + (10a4 − 19a2b2 + 10b4)g2t2

+ (2a6 − 4a4b2 + a2b4 + b6)t4]. (C13)

Similarly, we can find Aa,b. We find that f1,2,3 simplify greatly
in the b → a limit, so that

At → ia

a2t2 + 4(g2 + γ 2)

⎛
⎝0 −g −γ

g 0 0
γ 0 0

⎞
⎠. (C14)

In this limit, we can easily solve (C5) for Aa as well, and the
results are shown in (63) and (64), which agree with (C14).

Equation (C5) also leads to an important expression for the
AGP in the basis of instantaneous eigenstates |n〉. From (C4),

i〈m|(∂μHμ − U∂μH̃μU †)|n〉 = 〈m|[Aμ, Hμ]|n〉 (C15)

= (En − Em)〈m|Aμ|n〉. (C16)

Thus, in the basis of instantaneous eigenstates, where Aμ is
off-diagonal, its matrix elements are given by [11]

〈m|Aμ|n〉 = i
〈m|∂μHμ|n〉

En − Em
. (C17)

In particular, in regions of the parameter space xμ where
the levels are far apart this formula shows that the AGP is
suppressed.
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