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Atomic arrays can exhibit collective light emission when the transition wavelength exceeds their lattice
spacing. Subradiant states take advantage of this phenomenon to drastically reduce their overall decay rate,
allowing for long-lived states in dissipative open systems. We build on previous work to investigate whether or
not disorder can further decrease the decay rate of a singly excited atomic array. More specifically, we consider
spatial disorder of varying strengths in a one-dimensional (1D) half waveguide and in 1D, two-dimensional (2D),
and three-dimensional (3D) atomic arrays in free space and analyze the effect on the most subradiant modes.
While we confirm that the dilute half waveguide exhibits an analog of Anderson localization, the dense half
waveguide and free-space systems can be understood through the creation of close-packed, few-body subradiant
states similar to those found in the Dicke limit. In general, we find that disorder provides little advantage in
generating darker subradiant states in free space on average and will often accelerate decay. However, one could
potentially change interatomic spacing within the array to engineer specific subradiant states.
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I. INTRODUCTION

Controllable light-matter interfaces play a central role in
the realization of future quantum technologies. They are es-
sential to manipulating and controlling quantum information
[1,2], for quantum networking applications and can serve
as efficient quantum memories. One promising platform for
achieving such interfaces involves arrays of atoms in well-
defined geometries that interact with photonic modes of a
cavity or waveguide or the electromagnetic vacuum in free
space [3–5].

While cavities and waveguides can transmit photons over
long distances, strong interaction between emitters via coher-
ent photon exchange in free space only occurs if the emitter
distance is much smaller than the transition wavelength. The
resultant light-induced dipole-dipole interactions [6,7] be-
tween atoms in such systems are inherently long range, which
leads to intriguing cooperative effects. Prominent examples
include super [8,9] and subradiance [10–13]. Chief among
these collective effects are a short-lived superradiant burst
of decay and long-lived subradiant modes with suppressed
decay rates. Understanding these effects in detail can provide
avenues towards efficient photon emission in the superradi-
ant case and robust quantum memory in the subradiant case
[11,14–19].

The seemingly separate phenomenon of localization within
condensed matter physics also provides a method for arresting
the relaxation of a many-body initial state. Typically studied
in closed systems, the phenomena of Anderson localization
[20,21] and more recently many-body localization (MBL)
[22–26] describe the halting of transport within a disordered
medium of single and multiple interacting excitations, respec-
tively. In such a regime, the system will fail to thermalize and
will instead show a strong memory of initial conditions and
slow growth of entanglement. Although one might expect that,
upon coupling the system to a bath to create open dynamics,

any localization would be lost, this is not always the case. This
insight has gained much interest in recent years, as reflected
in a series of studies on localization or the lack thereof in open
systems and more generally the role of disorder in collective
decay [27–37], showing that different types of localization can
be either destroyed or preserved when dissipation is added. In
particular, the authors of Ref. [34] noted that, while spectral
localization in the spatial support of eigenstates guarantees
dynamical localization of energy in closed systems, the same
does not apply to open systems. Such distinctions provide a
rich phenomenology to study when considering the effect of
disorder in open systems where the environment cannot be
ignored.

The question of whether Anderson localization of light
exists in disordered three-dimensional (3D) collections of
emitters was previously investigated in Ref. [35]. It was found
that fully disordered clouds of atoms did not display local-
ization: although many of the slowest-decaying eigenstates
displayed spatial localization over just a few sites, no sup-
pression of decay was found. This led to the conclusion that
any slowdown in decay arose because of subradiance and not
an analog of Anderson localization. Recently, however, the
authors of Ref. [27] showed that many aspects of Anderson
localization and MBL persist in chains of atoms confined to
a half waveguide, a one-dimensional (1D) waveguide with
a mirror at one end. In the dilute regime, where the inter-
atomic spacing is greater than the emission wavelength, the
system exhibits both spectral localization of eigenstates and
dynamical localization of energy, the latter of which halts
transport both within the bulk and also from the bulk into
the vacuum. To bridge these results and expand upon their
analyses, we investigate whether disorder can cause spectral
and dynamical localization of single excitations in both the
half waveguide and 1D, two-dimensional (2D), and 3D arrays
of atoms in free space. In contrast to Ref. [35], we systemat-
ically increase disorder, starting from an ordered case, where
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FIG. 1. (a) Schematic of a half waveguide with and without
spatial disorder. (b)–(d) Ordered arrays in one, two, and three
dimensions.

atoms are assumed to be trapped in a periodic configuration,
and consider multiple different disorder strengths until we
reach full disorder. We also analyze the role of dimension-
ality by considering 1D, 2D, and 3D configurations. Beyond
that, we investigate the role of lattice spacing and density,
which goes beyond the analysis in Ref. [27]. In all cases,
we observe that spatial disorder causes spectral localization,
reducing the support of the delocalized eigenstates. However,
this does not automatically guarantee dynamical localization
of energy within the array, i.e., a suppression of decay. While
select regions of parameter space show an advantage to using
disorder to create more subradiant states, it mostly accelerates
decay to the vacuum. We explain these phenomena using dark
states occurring in Dicke superradiance [8,9] and back up our
interpretations using various numerical results.

The remainder of the paper is outlined as follows. In
Sec. II, we revisit the half waveguide from Ref. [27] and
expand the analysis of the single-excitation spectrum to both
the dilute and dense regimes, laying the groundwork for the
phenomena behind the localization. In Sec. III, we move to
1D chains of atoms in free space and repeat the analysis.
We explain our results through approximate few-body Dicke
states and comment on why disorder accelerates or suppresses
decay in different regimes. Finally, in Sec. IV, we move to 2D
and 3D arrays and see similar results while commenting on
the diminishing returns of disorder.

II. HALF WAVEGUIDE

The analysis in this section is strongly inspired by
Ref. [27]. We not only expand upon their results but also use it
as a guideline for the analysis of the free space case presented
below. In a half waveguide, pictured in Fig. 1(a), an ensemble
of N two-level atoms with transition frequency ω0 interacts

with a 1D continuum of modes. Because the speed of light
c is by far the shortest timescale in the system, we can use
the Born-Markov approximation and trace out the photonic
degrees of freedom. This results in a dissipative “spin” model
described by the following master equation (h̄ = 1 for the
remainder of this work) [27,38–40]:

ρ̇ = −i[Hhwgρ − ρH†
hwg] +

∑
i j

�i jσ
ge
i ρσ

eg
j , (1)

where

Hhwg = ω0

∑
i

σ ee
i − i

γ0

2

∑
i j

[exp(−ik0|zi − z j |)

− exp(−ik0|zi + z j |)]σ eg
i σ

ge
j . (2)

Here, �i j = γ0[cos(k0|zi − z j |) − cos(k0|zi + z j |)], k0 = ω0

/c, and γ0 is the spontaneous emission rate of a single excited
atom in a full waveguide with no mirror. In addition, σ

eg
i =

|ei〉 〈gi| and σ
ge
i = |gi〉 〈ei| are the atomic transition operators,

which raise and lower the spin state of the ith atom. Through-
out this work, we focus on the single-excitation regime, which
implies that the on-site energies only contribute an overall
phase to the wave function and therefore only appear as an
overall shift when calculating the dynamic fluorescence spec-
trum below.

Given this model, we numerically analyze the effect of
disorder on the system. Although analytics can be used to
exactly solve few-atom systems, we find that our results can,
in general, be understood using the solutions to the simplest
such case: a two-atom system. This setup has been solved and
analyzed throughout the literature (e.g., Ref. [7]). Increasing
the number of atoms N in analytic calculations adds com-
plexity without providing a much deeper understanding of
our current results; as such, we focus on numerics in this
work. Simulating the entire master equation significantly lim-
its our system sizes to about N � 10, so we consider some
alternatives. The authors of Ref. [41] used a cumulant expan-
sion of the Heisenberg-Langevin equations up to three-body
cumulants. Although this method gives accurate simulations
for large systems at short times, it begins to give unphysical
results as time goes on and four-body cumulants become
important. Because we are analyzing long-lived subradiant
states and searching for even slower decay, we find the cumu-
lant expansion inapplicable in this regime. Rather, we restrict
ourselves to the Nexc = 1 manifold to look for analogs of
Anderson localization. In this limit, the term ∝ σ

ge
i ρσ

eg
j will

not contribute to dynamics in the single-excitation subspace
[42], and the entire time evolution is governed by the non-
Hermitian Hamiltonian Hhwg.

We begin by analyzing dynamics in an N = 50 chain of
atoms coupled to a 1D half waveguide. To avoid any bias in
the choice of initial conditions, we use an equal superposition
of all singly excited basis states and multiply each such state
by a random phase. The authors of Ref. [27] used initial
conditions similar to these; however, instead of a superposi-
tion of all Nexc = 1 states, it only includes those in the left
half of the system, near the mirror, in an effort to localize
energy far from the vacuum. In contrast, this paper attempts
to remove any initialization bias. At long times, we expect the
most subradiant states to dominate the evolution, regardless
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(a) (b)

FIG. 2. (a) Time evolution of excited atom population in a randomly initialized N = 50 half waveguide. The ordered case (black) already
displays subradiance relative to the noninteracting case (green), while static disorder (red) further slows the decay. (b) Dynamic fluorescence
spectrum of evolution in (a) evaluated at γ0t ′ = 100.

of their spatial support. Therefore, we evolve the system for
200 decay times and plot the excited atom population in
Fig. 2(a). For reference, we also plot the evolution of the
system in the absence of interactions. On these timescales,
the decay is extremely rapid, whereas the full ordered system
decays relatively slowly. This slowdown shows that subradi-
ant states are already populated in the system, but we can
further slow the decay using spatial disorder. The position
of each atom is randomly offset by some amount di such
that zi = ia + di, where a is the lattice constant of our array.
We will sample di from a uniform distribution of width rd

such that di ∈ [−rd/2, rd/2], and in Fig. 2(a) we consider
maximum disorder rd = a = 0.15λ0, where λ0 = 2πc/ω0 is
the wavelength of emission. Each curve is averaged over
100 individual trajectories, accounting for both random initial
conditions and spatial disorder. Unless otherwise stated, all
results shown below use 100 realizations. When averaging
different trajectories for pexc, we use the geometric mean
throughout this paper. In cases where all trajectories lie within
the same order of magnitude, as in Fig. 2(a), the geometric and
arithmetic mean barely differ. However, in later cases where
different trajectories span many different orders of magnitude,
the geometric mean offers a more accurate depiction of the av-
erage disordered system. Otherwise, very rare, extremely dark
states in certain disorder realizations will dominate the late
time arithmetic mean. In all other cases besides the excited
population, averaging will refer to the arithmetic mean.

We also consider the dynamic fluorescence spectrum of the
system as measured from the end of the waveguide, defined as
[41,43]

S
(
ω, t ′) = 2Re

[ ∑
n

∫ ∞

0
dτei(k0zn−ωτ )

〈
σ eg

n (t ′ + τ )σ ge
n (t ′)

〉]
.

(3)

We evaluate the spectrum at γ0t ′ = 100 and plot the results
in Fig. 2(b). By this point in the evolution, the noninteracting
case has decayed enough that its spectrum is essentially zero.
The ordered case displays a clear, slightly shifted resonance,
while the disordered case displays two peaks. In addition to
slowing decay, we find that disorder has widened the main
resonance, similar to the findings in Ref. [44]. Although one

typically associates narrower resonances with slower decay,
here the widening occurs because many slowly decaying
states with different shifts remain populated at late times.

The behavior in Fig. 2(a) can be explained using the single-
particle spectrum of Hhwg. We begin by analyzing the effect of
disorder on exchanges between atoms, which we visualize by
plotting the spatial support of each eigenmode of the same
N = 50 non-Hermitian Hamiltonian in Fig. 3(a) for a single
realization of spatial disorder. Each column in the figure cor-
responds to a different eigenmode, and we order the modes
with decreasing decay rate. Many of these modes are strongly
delocalized, but the slowest decaying ones show clear signs of
localization, with support that decays over its nearest neigh-
bors. The fastest decaying modes have most of their support
near the edge of the system far from the mirror (bottom left),
while the slowly decaying modes have negligible support on
this edge and are rather concentrated in the bulk or near the
mirror.

In our pursuit of long-lived states, however, we are more
interested in the dissipative nature of the Hamiltonian. Thus,
we next plot the decay rate of each eigenmode in Fig. 3(b).
As a reference, the decay rate of a single, noninteracting
emitter is plotted as a horizontal line, such that superradiant
modes fall above the line and subradiant below. We then
compare the ordered case to the disordered case, averaged
over different realizations. Here, disorder keeps the decay
rate approximately the same for the modes with large decay
rates. As we move to longer-lived states, however, disorder
suppresses the decay rates relative to the ordered case. This
effect is most pronounced for the slowly decaying modes at
the far right of the spectrum, some of which have decay rates
near the numerical precision of our calculations. The late
time behavior in Fig. 2(a) therefore occurs because of these
longer-lived modes.

To analyze the effect of the lattice spacing and disorder
strength on this system, let’s focus our attention on the slowest
decaying mode in the spectrum, i.e., n = N = 50 in our cur-
rent ordering. This mode will always dominate the late time
dynamics for a general initial state and therefore allows us
to remove any bias we might include in a choice of initial
conditions. In Fig. 4(a), the average decay rate of this slowest
mode is plotted as a function of the lattice spacing a/λ0 for
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(a)

(b)

FIG. 3. (a) The spatial profile |ψn( j)| and (b) decay rates γn =
−2 Im[En] of single-excitation eigenmodes of the N = 50 half
waveguide non-Hermitian Hamiltonian, ordered by their decay rate
from fastest (left) to slowest (right) decay. In (a), we plot the eigen-
modes of a single realization of spatial disorder, while in (b) we
compare the rates of a single noninteracting atom, the full ordered
chain and the disordered chain averaged over realizations. We con-
sider spatial disorder with maximum strength rd = a. The thin ribbon
corresponds to the standard deviation in the mean.

various disorder strengths rd/a. To avoid any slightly nega-
tive decay rates from numerical noise, we take the absolute
value and plot |2 Im[EN ]|. The thinner curves indicate the
minimum decay rate achieved over 100 realizations, allowing
us to find possible outliers in the average that may dominate
the arithmetic mean of the excited population. Beginning with
the ordered case rd = 0, we see that, as the lattice spacing
shrinks, so does the smallest decay rate in the system. In the
full waveguide, this occurs because the system approaches the
Dicke limit with no coherent interactions and totally symmet-
ric dissipative interactions. In the half waveguide, however,
all interactions tend to zero as the atoms bunch up next to
the mirror and the two exponentials in Hhwg approximately
cancel. At larger lattice spacing, the decay rate fluctuates due
to resonances where the mirror causes complete destructive
interference and sends all coherent and dissipative interactions

(b)

(a)

1011

FIG. 4. (a) Average (thick) and minimum (thin) magnitude of the
slowest decay rate γN in the spectrum of an N = 50 half waveguide
as a function of lattice spacing for three disorder strengths. At
late times, the average decay rate determines the geometric mean
of the excited population, whereas the minimum dominates the arith-
metic mean. An example for rd/a = 0.5 and a/λ0 = 0.15 is shown
in (b).

to zero. Such resonances occur when a/λ0 = n/2 for n ∈ Z,
and two are clearly visible at a/λ0 = 1 and 10 where the decay
rate shoots down to zero.

While the authors of Ref. [27] only considered the dilute
regime where a > λ0, here we further investigate the role of
disorder strength over a range of a values. Once we add dis-
order, the subwavelength and superwavelength cases behave
quite differently. For a > λ0, we confirm that any strength of
disorder will cause localization of energy within the system.
As soon as rd is increased, the decay rate falls sharply to
near zero. Here, the slowest mode is localized on about two
sites but displays no clear phase structure; while fully real,
the wave function in some cases is purely positive and in
other cases has fluctuating sign. This is consistent with the
analysis in Ref. [27], where it is argued that such states are
slowly decaying because they are localized within the bulk
and cannot transport their energy to the edge, where decay
into the vacuum is nonnegligible. The precise phases within
such localized states are not crucial to the localization. When
we move to the dense regime, where a < λ0, we begin to see a
large dependence on disorder strength. Weak disorder, where
rd/a = 0.1, barely slows decay at all, whereas full disorder
pushes the rate down to essentially zero. In this limit, the wave
functions of the slowest decaying modes show an oscillatory
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phase structure, where adjacent atoms have opposite sign in
ψn, similar to the asymmetric, subradiant states in the Dicke
limit. Because of these two trends, we hypothesize that lo-
calization of energy in the bulk and halting transport to the
vacuum is no longer the phenomenon behind slowed decay.
Rather, the reduction in decay rates seems to come from de-
structive interference between groups of nearby atoms. As the
strength of disorder increases, groups of atoms explore more
configurations, and spacings where atoms can destructively
interfere become more and more common. Although the pres-
ence of the mirror in the half waveguide somewhat muddies
this picture, the large dependence on disorder strength and the
phase structure of long-lived modes still point to destructive
interference as the cause of the reduction in decay rates.

If we now look at the minimum curves, most are around the
same order of magnitude as the average curves. The exception
to this trend appears for rd = 0.5a at small lattice spacing,
where the minimum curve is around five orders of magnitude
lower than the average. Although both curves already have
very small decay rates, the difference in scale becomes evident
if we evolve the population to very late times. In Fig. 4(b),
we evolve to γ0t = 1011 and calculate both the arithmetic and
geometric mean once again for rd/a = 0.5 and a/λ0 = 0.15.
Now, the darkest states across all 100 realizations dominate
the arithmetic mean, while the average decay rate determines
the geometric mean’s path.

We therefore confirm that the half waveguide displays
an analog of Anderson localization in the dilute regime and
also expand the analysis to different densities and disorder
strengths. Once we decrease the lattice spacing, however, the
phenomenon behind suppressed decay drastically changes and
seems to rely on destructive interference rather than spatial
localization, similar to the findings in Ref. [35].

III. 1D CHAIN IN FREE SPACE

The intuition gained from the waveguide example above
can now be translated into the more complex radiative en-
vironment of atoms interacting with the electromagnetic
continuum of free space. Superradiance in 1D groups of
atoms in free space has attracted much research over the past
decades. While it was historically studied via scattering in
Bose-Einstein condensates [45,46], experiments have more
recently analyzed superradiance in dense clouds of laser-
cooled atoms [47,48]. Such systems also generically host
many subradiant modes, so our analysis has experimental
relevance in these setups. In free space, we have the full
spectrum of modes found in three dimensions, and the master
equation is now given as [6,7,15,41]

ρ̇ = −i[Hfreeρ − ρH†
free] +

∑
i j

�i jσ
ge
i ρσ

eg
j , (4)

where

Hfree = ω0

∑
i

σ ee
i +

∑
i j

[
−3πγ0

ω0
d†G(ri j, ω0)d

]
σ

eg
i σ

ge
j ,

(5)

and �i j = −2 Im[− 3πγ0

ω0
d†G(ri j, ω0)d] are the dissipative in-

teractions. We can also define the coherent interactions as the

real part of this expression: Ji j = Re[− 3πγ0

ω0
d†G(ri j, ω0)d]. d

is the transition dipole moment of each atom and G(r, ω0) is
the Green’s tensor for a point dipole in a vacuum, given by
[6,7]

Gαβ (r, ω) = eikr

4πr

[(
1 + i

kr
− 1

(kr)2

)
δαβ

+
(

−1 − 3i

kr
+ 3

(kr)2

)
rαrβ

r2

]
+ δαβδ(3)(r)

3k2
.

(6)

Here, ri j = ri − r j is the displacement between atoms i and j
and k = ω/c. The diagonal dissipative interactions are given
by the individual atoms’ free space decay rate �ii = γ0. We
also absorb the Lamb shifts Jii into the definition of ω0. In one
and two dimensions, we consider d perpendicular to the array,
while in three dimensions we consider it oriented along one
of the cube axes.

We now analyze the effect of spatial disorder on a one-
dimensional chain with N = 50 atoms in free space with
the same parameters as the half waveguide. Such a chain is
pictured in Fig. 1(b). The eigenmodes of the single excita-
tion manifold are plotted in Fig. 5(a). Compared to the half
waveguide, there are now many localized states across the
spectrum, with many being concentrated on a single pair of
atoms. Despite this, we do not expect the system to show
any open system analog of localization because of disorder’s
effect on decay rates. These are plotted in Fig. 5(b), analogous
to Fig. 3(b). Now, disorder increases the decay rate not just for
a majority of eigenmodes but also to the long-lived, subradiant
modes that originally persisted at long timescales. Thus, al-
though disorder spatially localizes eigenmodes, it accelerates
the system’s dissipation.

We can gain more insight into this effect by considering
again the slowest decaying mode in the spectrum and how its
decay rate depends on lattice spacing and disorder strength.
We plot these curves in Fig. 6(a) in direct analogy to Fig. 4(a).
We now observe a sharp phase transition from approximately
noninteracting emission to subradiance as we decrease the
lattice spacing in the ordered case. The authors of Ref. [13]
explained how, as a decreases past λ0/2, certain states can
no longer decay transverse to the chain and must propagate
longitudinally through the entire array to escape to the vac-
uum. These states therefore become very subradiant and cause
the transition observed in the figure. If we then increase the
disorder strength, we slowly wash out the transition and find a
smoother, approximately power-law trend between the slow-
est decay rate and the lattice spacing. Examining the phase
structure of the slowest decaying states in all disorder real-
izations reveals they are two-body singlet states between the
most closely packed atoms. Spatial disorder will, by chance,
push two atoms very close together; in this limit, their decay
rates and eigenstates will match those of a Dicke superradiant
system, and will therefore form a two-body dark state given by
a singlet [these pairs will also create much brighter symmetric
triplet states, which appear in the spectrum around n = 15 in
Fig. 5(a)]. The trends in Fig. 6 can, therefore, be understood
as a comparison between the decay rate of the darkest many-
body eigenstate and the average decay rate of few-body dark
states of closely packed atoms.
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(a)

(b)

FIG. 5. (a) The spatial profile |ψn( j)| and (b) decay rates γn =
−2 Im[En] of single-excitation eigenmodes of the non-Hermitian
Hamiltonian of an N = 50 1D chain in free space. All parameters
besides the photon modes are the same as in Fig. 3.

FIG. 6. Magnitude of the slowest decay rate γN in the spectrum
of an N = 50 1D chain in free space as a function of lattice spacing
and disorder strength. The minima curves show very dark states
appearing in certain realizations.

At large a, where the ordered case has not transitioned
to the subradiant regime yet, we see that increasing disorder
reduces the decay rate. Since the many-body state still decays
at approximately the vacuum rate γ0, increasing the decay
allows more approximate two-body singlets to form, creating
more dark Dicke states and lowering the decay rate. The
darkest of these states, the closely packed singlets, can be
seen in the minimum rd/a = 1 curve, which reaches many
orders of magnitude lower than both the ordered case and the
average rate. The weaker disorder cannot create such close-
packed pairs, and therefore remain close to their averages.
However, at small a, we see a dramatically different trend. The
many-body state is now fully subradiant, and the destructive
interference which causes this relies on the regular spacing of
the lattice. As such, we expect disorder to actually increase
the decay rate, as it destroys the system-wide destructive
interference. The many-body approximate Dicke state has
a smaller decay rate than the two-body approximate Dicke
state, and therefore no advantage is gained with disorder. We
also see that in the extremely small a/λ0 limit, the largest
decay rate is achieved by rd/a = 0.5. While rd/a = 0.1 has
not fully destroyed the destructive interference of the ordered
case and rd/a = 1 can create extremely close-packed pairs
of atoms, the intermediate disorder case has neither of these
advantages and amplifies decay the most. In contrast, all dis-
order strengths have essentially overlapping minimum curves
at small a, and at small enough lattice spacing, they overtake
the ordered case and suppress decay. At such densities, all
disorder strengths can create close-packed pairs, and as they
get closer and closer, the darkest among them can overtake the
many-body subradiant state.

Finally, we note the dip in decay rates around a/λ0 ≈ 0.2.
This dip was also observed in Ref. [41] as a peak in subra-
diant population and was attributed to a balance between the
approach to completely dark states in the Dicke limit and the
coherent transfer between subradiant and superradiant states.
We note that the exact value of a/λ0 where this occurs is
different between our analysis and that of Ref. [41] because
we consider the most subradiant single-excitation eigenstate
in contrast to a general multi-excitation state.

IV. HIGHER-DIMENSIONAL ARRAYS

Given this picture, we now move to 2D and 3D arrays
of atoms in free space as pictured in Figs. 1(c)–1(d). As
it is less intuitive to plot the support of eigenmodes on a
single axis now, we will opt for plotting the inverse partici-
pation ratio (IPR) of each mode instead, defined as IPR(n) =∑

j |ψn( j)|4. For states localized on a single site, IPR = 1,
while completely delocalized states have IPR = 1/N .

In Fig. 7(a), we consider a N = 10 × 10 square array and
calculate the IPR for both the ordered and maximally dis-
ordered cases, the latter being averaged over the standard
100 realizations. We see that all disordered modes are more
localized than the ordered case, and in general the slower
decaying modes (n → N = 100) are more localized. The ex-
ception to this trend appears around n � 20, where a large
peak in the IPR appears. Just as in the 1D case, this can be
attributed to the bright, approximately symmetric triplet states
created between closely packed pairs of atoms, orthogonal
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(a) (b)

(c) (d)

FIG. 7. The inverse participation ratios of single-excitation eigenmodes of the non-Hermitian Hamiltonian of an (a) N = 10 × 10 2D
square and (b) an N = 5 × 5 × 5 3D cube in free space. We also visualize the spatial support of the slowest decaying mode in both an
(c) ordered and (d) disordered 5 × 5 × 5 array of atoms. In the ordered case, the mode has support across the system with slightly more
participation at the edges. In the disordered case, all but two atoms are essentially unoccupied and the two occupied atoms are so close together
they appear on top of each other. Analysis of the wave function reveals the atoms are in an approximate singlet state, the dark state from the
two-atom Dicke limit.

to the dark two-body singlet states appearing on the right
of the graph. Despite spatial localization, we again find that
most decay rates are amplified, as shown in Fig. 8(a). In

Figs. 7(b) and 8(b), we consider a N = 5 × 5 × 5 3D cubic
array, and the same observations apply. We also visualize the
most subradiant modes in three dimensions in both the ordered

(a) (b)

FIG. 8. Decay rates γn = −2 Im[En] of single-excitation eigenmodes of the non-Hermitian Hamiltonian of an (a) N = 10 × 10 2D square
and (b) an N = 5 × 5 × 5 3D cube in free space.

013720-7



GJONBALAJ, OSTERMANN, AND YELIN PHYSICAL REVIEW A 109, 013720 (2024)

(a) (b)

FIG. 9. Magnitude of the slowest decay rate γN in the spectrum of an (a) N = 10 × 10 2D square and (b) an N = 5 × 5 × 5 3D cube in
free space as a function of lattice spacing and disorder strength.

and disordered cases in Figs. 7(c) and 7(d). Just as predicted,
the disordered case is limited to the two closest atoms in
the cloud.

If we again focus on the most subradiant mode’s decay rate
in Figs. 9(a) and 9(b), we find that there is no sharp transition
between plateaus in two and three dimensions. Once the array
becomes subwavelength, the ordered decay rate diminishes
without any sort of plateau, and by the time a/λ0 = 0.01, the
slowest decay rate is about six orders of magnitude smaller
than in the 1D case. Below the figure’s border, numerical
noise causes unphysical fluctuations in the decay rate, so we
leave out these data points. The curves for spatial disorder,
on the other hand, follow roughly the same trend as they do
in Fig. 6. Looking to the dilute regime in two dimensions,
we see a couple of choices for a where disorder slows decay.
However, this suppression of decay is not as strong as in
one dimension and does not persist for all values of a � λ0;
only the minimum rd/a = 1.0 curve shows any substantial
suppression of decay. By the time we get to three dimensions,
any advantage from disorder seems to be washed away for
the average disorder realization, while the arithmetic mean
will still be dominated by dark outliers. Taken together, these
observations seem to support the two- and few-body dark state
picture, as the higher dimensionality in two and three dimen-
sions should make close few-body systems rarer and therefore
make disorder slightly less effective at slowing decay. On
the other hand, the higher connectivity in higher dimensions
clearly allows the ordered case to create longer-lived subradi-
ant states. Thus, as we move to higher and higher dimensions,
we expect many-body subradiant states to always decay more
slowly than the disordered few-body subradiant states.

While the examples shown here were shown for a 10 ×
10 square and a 5 × 5 × 5 cube, a more detailed analysis on
the N dependence of the subradiant transition can be found in
Appendix A.

V. CONCLUSION

We analyzed the effect of disorder on subradiant single-
excitation states in multiple different atom array configura-
tions. Motivated by previous work in 1D waveguides and

3D free-space clouds, we searched for analogs of Anderson
localization to create extremely long-lived states using spatial
disorder. Although disorder always slows decay in the half
waveguide, disorder in free space can either speed up or slow
down decay depending on the relative lattice spacing of the
array. In the dilute half waveguide, eigenstates are localized
and display no particular phase structure, and any strength
of disorder will cause dramatic suppression of decay. How-
ever, as the lattice spacing is decreased, the phase of the
longest-lived states begins to oscillate on adjacent sites and the
relative suppression of decay depends strongly on the strength
of disorder. These trends seem to imply that while the dilute
half waveguide slows decay because of a true localization of
energy within the bulk, the dense case relies on destructive
interference within groups of atoms packed close together by
strong disorder.

In free space, the effect of spatial disorder can also be
understood through its creation of close-packed few-body
subradiant states. This effect is primarily seen through the
creation of pairs of atoms spaced very close to each other,
effectively making other atoms irrelevant. These two atoms
then form an approximate Dicke system, with a bright sym-
metric triplet state and a very dark antisymmetric singlet
state. Whether disorder slows down decay in free space then
becomes a question of how this average two-body dark state
compares to the ordered, many-body dark state. In one di-
mensions, we observe a set of lattice spacings a � λ0 where
disorder can slow decay, but as we move to two and three
dimensions, this effect is washed away.

We observe spectral localization in all of our setups, but,
in contrast with closed systems, this does not generally guar-
antee a dynamical localization of energy within the array.
Although disorder can sometimes slow decay, our analysis
reveals that it relies on the creation of few-body dark states
and does not persist in higher dimensions. Although the aver-
age over these disordered geometries does not generally slow
decay, one could engineer the spacing of atoms within the
chain to create certain bright and dark states, allowing the
modification of cooperative decay.

Our analysis opens up multiple questions for future study.
One of the most obvious next steps is to consider states with
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more than one excitation. Although this makes it harder to
analyze the eigenmodes of the Hamiltonian, and although
Nexc = 1 states are generically the most subradiant, the pos-
sibility of an analog of MBL in open arrays warrants study.
Another next step would involve an in-depth analysis of the
effect of dynamic disorder as opposed to static shifts in po-
sition. Although one could imagine having each atom do a
random walk within its unit cell, the exact implementation
of such disorder is up for debate. The eigenmode analysis
also would not apply, and one would instead have to rely on
numerical evolution or perturbation theory as in Ref. [44].
Finally, one can consider other interactions besides waveg-
uides and free space dipole-dipole interactions. One such
possibility is the soft-core interactions in a Rydberg dressed
system [49–52]. In this setup, one slightly mixes the excited
state with a Rydberg state using an off-resonant driving. The
Rydberg blockade then creates a soft-core interaction at small
distances, while at large distances it resembles a van der Waals
interaction. Since this interaction is multi-excitation, it does
not affect the single-excitation dynamics studied here, but
future works with Nexc > 1 could analyze the effect of such
dressing.
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APPENDIX A: N DEPENDENCE
OF SUBRADIANT TRANSITION

To analyze the transition observed in the slowest decaying
mode from normal decay to subradiance, we consider many
different arrays of varying size N in Fig. 10. Restricting our-
selves to the ordered case, we consider 1D [Fig. 10(a)], 2D
[Fig. 10(b)], and 3D [Fig. 10(c)] systems and calculate this
slowest decay rate in the spectrum as a function of lattice spac-

ing. In one dimension, we observe the previously mentioned
transition getting sharper and sharper. It also occurs at the
single value of a/λ0 = 0.5 for all values of N , as mentioned in
Ref. [13]. In two and three dimensions, however, this picture
breaks down, and we instead see a crossover into subradiance.
Although increasing N in higher dimensions does amplify
subradiance and make the change sharper, there is still no
single value of a/λ0 where we observe a transition. This lack
of a sharp transition is one reason why disorder in systems
with a � λ0 does not provide a subradiant advantage as it does
in one dimension.

APPENDIX B: ENTANGLEMENT EVOLUTION

Recent work examined measures of entanglement, like av-
erage pairwise concurrence [53], in characterizing subradiant
modes in dissipative systems. We calculate the entanglement
generated during our simulations as an additional axis to
analyze the presence or absence of localization. Spatial lo-
calization should slow the initial growth of entanglement in
the system, just as in traditional Anderson or many body
localization. In addition, a slowed decay should extend the
lifetime of said entanglement before the system relaxes to
the entanglement-free ground state. Thus, our analog of lo-
calization would correspond to a broader, shorter peak in
entanglement compared to the ordered case. Instead of av-
erage pairwise concurrence, we use the mutual information
between two halves of the system A and B, given by

I (A, B) = S(A) + S(B) − S(A, B) , (B1)

where S is the von Neumann entropy of a given subsystem

S(A) = −Tr[ρA log ρA]. (B2)

S(A, B) refers to the von Neumann entropy of the entire
system’s mixed state. In Fig. 11(a), the mutual information
of the fully disordered N = 50 half waveguide from Fig. 3
is plotted. Rather than a randomized initial state, we choose
the product state with only the atom at j = 26 excited. The
mutual information then tracks both the spreading and lifetime
of this excitation. In the ordered case, the quick buildup of
coherence typically associated with collective decay causes
an initial peak in the mutual information. However, as the
excitation decays, this entanglement is slowly lost. As ex-

(a) (b) (c)

FIG. 10. Scaling of the transition to subradiance in the slowest decaying mode as we increase N in free space with no disorder. In (a) one
dimension, we see the transition get sharper and sharper as the number of atoms increases. In (b) two and (c) three dimensions, while the shift
to subradiance does get sharper with increasing N , the crossover does not occur at one value of a/λ0.
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(a) (b) (c)

FIG. 11. Mutual information between two halves of a N = 50 chain in the half waveguide with (a) a/λ0 = 0.15, (b) free space with
a/λ0 = 0.15, and (c) free space with a/λ0 = 1.35. The system is initialized with the j = 26th atom excited and evolves both without disorder
and with maximum disorder.

pected, the presence of disorder slows the spreading of mutual
information, resulting in a lower peak, and extends the life-
time of the excitation, resulting in a longer, higher tail. We
note that choosing a larger value for a does not qualitatively

affect the graph, as even for large spacing the system has
slowly-decaying localized states.

Turning to free space, we repeat the calculations for the
fully disordered N = 50 1D chain from Fig. 5 (with a/λ0 =
0.15) and plot the results in Fig. 11(b). Although the first

(a) (b)

(c) (d)

FIG. 12. The slowest decay rate γN in the spectrum for various strengths of detuning disorder in (a) the N = 50 half waveguide, (b)
N = 50 1D free space chain, (c) N = 10 × 10 2D free space square, and (d) N = 5 × 5 × 5 3D free space cube. In the half waveguide,
spectral localization halts transport and still localizes energy within the bulk, suppressing decay. In free space, since atoms can no longer group
together in space, dark singlets are no longer created and disorder offers no advantage on average at any lattice spacing or strength.
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time step of the disordered curve has a large average mutual
information than the ordered case, the peak is still lower and
the initial rate of growth is also shallower. The accelerated
decay mentioned in Sec. III also causes the tail to decay
much faster than in the ordered case. In this case, disorder
suppresses entanglement at both early and late times.

Finally, we consider a dilute 1D chain in free space, with
a/λ0 = 1.35, in Fig. 11(c). Now, we still have spectral lo-
calization, but we also slow decay on average with disorder.
Because the ordered case has a larger decay rate in the dilute
regime, the peak in mutual information is much smaller, but
because disorder suppresses this decay, it actually reaches
a larger maximum mutual information before dropping near
zero. Although it’s not visible on these scales, the slowdown
in decay also extends the tail of the disordered curve compared
to the ordered one. Although spectral localization and decay
suppression were both visible in the half waveguide, we see
that here the shift in decay rates dominates the behavior of the
mutual information.

APPENDIX C: ON-SITE DETUNING DISORDER

For completeness, we also consider disorder in the transi-
tion frequency of each emitter, effectively applying random
detunings to each atom. This is the case considered in
Ref. [41], where a speedup in emission was observed from
detuning disorder in N = 3 1D chains in free space, and
Ref. [44], where disorder in the totally symmetric Dicke
Hamiltonian was used to slow decay. In Eq. (5), we restrict
G(r, ω) to resonance, where ω = ω0. To ensure this approx-

imation is still valid, we restrict the strength of detuning to
a single linewidth, i.e., ωd � γ0. We define ωd such that the
detuning of each atom �i = ωi − ω0 is drawn from a uniform
distribution of width ωd , so �i ∈ [−ωd/2, ωd/2].

Since these small detunings will begin to break the res-
onant hopping between atoms, we still expect at least some
spectral localization. However, because we can no longer push
two atoms close together, we will not see any dark singlets
or bright symmetric triplets. We therefore should not expect
to see any average suppression of decay in free space at any
lattice spacing or disorder strength. In the half waveguide,
however, where transport plays a dominant role in decay, we
should still expect to see longer-lived states when disorder is
present. In Fig. 12, we plot the analog of Fig. 4(a) for detuning
disorder in a half waveguide and 1D, 2D, and 3D arrays in free
space, using the same parameters from the body of the paper.

In the half waveguide, detuning disorder still localizes
eigenstates and halts resonant hopping. We therefore observe
a slow-down in decay for different detuning strengths as we
would expect. While spatial disorder showed equal suppres-
sion of decay for different disorder strengths at large a, here
the opposite seems to be happening. In a very dense array, all
different detuning disorder strengths suppress decay equally,
whereas dilute arrays show a stronger dependence on ωd .
The exact reason for this is left to future work, but we still
observe a link between spectral and dynamical localization in
the half waveguide. In free space, we see just what we expect:
since dark singlets and similar few-body dark states cannot be
created now, disorder does not suppress average decay at any
lattice spacing or disorder strength.
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