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Nonreciprocal quantum coherence in spinning magnomechanical systems
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We theoretically investigate the quantum coherence and its nonreciprocity in a cavity magnomechanical
system composed of a spinning microwave resonant cavity and an yttrium iron garnet sphere. The optical
Fizeau shift related to the driving direction of the microwave cavity is responsible for an important source of
nonreciprocity in the stability of the system, which leads to the nonreciprocal quantum coherence. Remarkably,
the quantum coherence of the mechanical motion mode can be greater than that of the microwave photon and the
magnon modes, which describes a significant enhancement of the correlations of the system. We also analyze
in detail the influence of the strength of the magnomechanical coupling, the Kerr nonlinearity, and the effective
detunings on the quantum coherence. Our paper paves the way for optimizing the stability range of coupled
systems and maintaining more reliable quantum coherence by designing and modulating the system parameters
in cavity magnetomechanical systems.
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I. INTRODUCTION

Recently, the cavity magnomechanical system including an
yttrium iron garnet (YIG) material has drawn considerable
attention [1], which provides an ideal platform for study-
ing the quantum properties of a mechanical motion mode
and the nonreciprocal transmission of a microwave field [2].
Especially the YIG spheres in the system have a relatively
high spin density [3–7] and low damping rate and therefore
a strong light-matter interaction between the subsystems can
be realized. For example, the magnon mode in the mag-
nomechanical system can be generated by the collective spin
motion of a large number of zero wave vectors (Kittel mode)
in the YIG and strongly coupled to the microwave cavity
photons through the magnetic dipole interactions at cryo-
genic or room temperature [8]. Simultaneously, the phonon
mode comes from the mechanical deformation of the YIG
sphere and can be coupled to the magnon mode by the
magnetostrictive force [9,10]. Based on the hybrid couplings
between the subsystems, some interesting quantum properties,
such as the magnon squeezed states [11–13], the steady Bell
state generation via magnon-photon coupling [14], and the
photon-magnon-phonon tripartite entanglement state [9], are
investigated in detail. In addition, the remote manipulation
of spin current, magnon lasers based on Brillouin light scat-
tering, and magnetically manipulated slow light [15,16] is
explored carefully by designing the magnomechanical sys-
tems. In general, the cavity magnomechanical system has
great flexibility in contrast to an optomechanical system with
movable mechanical parts [17], since the frequency of the
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magnon excitation can be tuned by adjusting the bias mag-
netic field [8,18,19]. Furthermore, the concept of the magnon
Kerr effect caused by the anisotropy of magnetocrystalline in
YIG crystal has been proposed and experimentally demon-
strated in a strongly coupled cavity-magnon system [20,21],
which brings about many intriguing phenomena, such as the
magnon-induced high-order sideband generation and bistabil-
ity [2,22].

It is noted that the quantum coherence is a defining feature
of coupled quantum systems, which describes the signif-
icant correlation between the quantum fluctuations of the
system [23–30] and can be regarded as an essential element
for the quantum information processing [31–35], quantum
metrology [36], exciton and electron transport in biomolecular
networks [37–41], and phase transition [42,43]. Based on
various macroscopic structures, i.e., the Josephson junction
[44–46], a superconducting quantum circuit, and optomechan-
ical systems [47–50], the macroscopic quantum coherence has
been explored in detail. Remarkably, in order to compare the
classical and quantum properties of the system, the concept
of classical states must be specified to classify the resources
of quantum technologies [31,51]. One way to achieve this is
the introduction of the concept of quantum coherence [25]. In
this regard, the quantum coherence is primarily accountable
for the advantage offered by quantum tasks [32]. Physically,
quantum coherence can be used as a resource to generate
quantum entanglement [52–55]. This especially leads to a
one-to-one transfer of single-mode nonclassical correlations
to entanglement in quantum optics [56]. More importantly,
as a key factor in promoting quantum technology, it is very
desirable to be able to accurately quantify the usefulness of
coherence as a resource for such applications. In terms
of quantifying quantum coherence, many different measures
of quantum coherence have been proposed, such as relative
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entropy of coherence [24], convex-roof coherence measure-
ment [26], and geometric and concurrence measurements
[27,28,30]. Quantitative description of quantum coherence
helps to probe macroscopic quantum patterns through the
method of optical detection [53,57,58]. Nonetheless, the
quantum coherence of open systems is easily influenced by
the surrounding environment and will eventually disappear
with the dissipation of the surroundings. These dissipative
problems require further development of quantum coherence
optimization control.

Nonreciprocal elements also have attracted a great deal
of interest [59–66], which are crucial in many scientific
fields, such as invisible sensing or cloaking, acoustics,
thermodynamics, rotating resonators, and nanophotonic com-
munication systems [67–70]. As an important application,
the design of nonreciprocal devices allows signals to propa-
gate in one direction and prevents signals from propagating
in the opposite direction, and therefore plays a key role
in backaction-immune communications. Traditionally, peo-
ple break the time-reversal symmetry by magneto-optical
(Faraday-rotation) crystals [71,72] to realize nonreciprocity.
However, such devices tend to be bulky, costly, and unsuit-
able for on-chip integration. Hence, it is of great interest
to pursue alternative mechanisms to break the reciprocity of
light on a microscale platform. Over the past few years, non-
reciprocal devices including circulators [73,74], isolators or
diodes [75–77], and directional amplifiers [78] have been pro-
posed theoretically and implemented experimentally [79,80].
In addition, an optical diode with 99.6% isolation has been ex-
perimentally demonstrated using a spinning resonator, where
the nonreciprocity is caused by the Fizeau shift of circulat-
ing lights [81]. Further, the Fizeau shift of circulating lights
in spinning microwave magnomechanical or cavity optome-
chanical systems can be designed to realize the nonreciprocal
transmission and the nonreciprocal quantum entanglement of
light and motion [82–84].

The context of this paper highlights a proposed rotating
microwave magnomechanical system, which is composed of
a microwave cavity and an embedded YIG sphere with a
magnon and a mechanical mode. We also noticed that in
a recent study of a rotating microwave resonator, Zheng
et al. [84] have demonstrated how the Fizeau shift in a
cavity magnonic system induces the nonreciprocal tripartite
entanglement among the microwave photon and two magnon
modes. In contrast, we aim to make the circulating light in
the resonant cavity undergo Fizeau shift by adjusting different
driving directions, ultimately leading to different effective
detunings of the photons and generating nonreciprocity of the
quantum coherence of a target mode, i.e., photon, magnon, or
phonon mode. To this end, we focused on the quantification of
coherence in bosonic Gaussian states of infinite-dimensional
systems, which is evaluated by the coherence measurement
based on the relative entropy [24]. We found that the Fizeau
shift of the microwave resonator leads to a significant differ-
ence in the system stability and the quantum coherence for
driving the cavity field from opposite directions. In parallel,
considering the feasible parameters in the experiment, we
show the influence of the driving power of the cavity field,
the magnomechanical and magnon-photon couplings, the Kerr
coefficient, and the effective detuning of the cavity photon
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FIG. 1. (a) Sketch of the system. A YIG sphere is placed inside
a microwave cavity near the maximum magnetic field of the cavity
mode and biased by a uniform magnetic field along the z direction.
(b) Equivalent schematic diagram of the hybrid coupled system,
where G and g are the coupling strengths of the magnon mode to
the cavity mode and the mechanical mode, respectively. (c) Changes
in microwave frequency. When the microwave resonator rotates in
the fixed clockwise (CW) direction, the resonance frequencies of the
CW and the counterclockwise (CCW) photon modes will experience
different Fizeau shifts. The Fizeau shift �F < 0 corresponds to the
situation of driving the microwave resonator from the left (y axis)
side, while �F > 0 means that the microwave resonator is driven
from the right (−y axis) side.

and magnon mode on the quantum coherence. In particular,
by properly selecting the parameters and stable region of the
system, the quantum coherence of the mechanical motion
mode can be greater than that of the microwave photon and
magnon mode, which can be seen as the result of the quantum
coherence transfer from the photon and magnon modes to
the mechanical mode. These results open a door toward the
synthesis of novel microscale magnon structures for potential
applications in realizing highly tunable information process-
ing and quantum communications.

The paper is organized as follows. In Sec. II, we give the
theoretical model and derive the Heisenberg-Langevin equa-
tion describing the system dynamics. In Sec. III, we quantify
the quantum coherence of the target modes in the system
and analyze the influence of the external parameters on the
quantum coherence in detail. Finally, a short summary of the
paper is given in Sec. IV.

II. SYSTEM MODEL AND DYNAMICS

The three-mode coupled cavity magnomechanical system,
as schematically shown in Figs. 1(a) and 1(b), consists of
a spinning microwave resonator and a YIG sphere in which
the magnon mode described by collective motions of a num-
ber of spins is coupled to the deformation (phonon) mode
of the sphere. Moreover, the magnon mode can be coupled
significantly to the microwave mode via the magnetic-dipole
interaction when the YIG sphere is placed close to the maxi-
mum magnetic field of the microwave cavity, which is driven
by an external laser field with power P. We also assume that
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the Kerr nonlinear effect originated from the magnon-magnon
scattering is included to comprehensively influence the char-
acteristics of the system. The total Hamiltonian of the system
reads (setting h̄ = 1) [9,68]

H = (ωa + �F )â†â + ωmm̂†m̂ + ωbb̂†b̂ + gm̂†m̂(b̂† + b̂)

+ G(m̂†â + â†m̂) + Km̂†m̂m̂†m̂ + iε(â†e−iωd t − âeiωd t ),

(1)

where â†(â), b̂†(b̂), and m̂†(m̂) are the bosonic creation (an-
nihilation) operators of the cavity mode, the phonon mode,
and the magnon mode, respectively. ωa, ωb, and ωm are the
resonance frequencies corresponding to the target modes a, b,
and m. By spinning the microwave resonator, the resonance
frequency of the photon mode undergoes a Fizeau shift that
depends on the amplitude and direction of the angular velocity
of the spinning cavity [68,81,85], i.e., ωa → ωa + �F with
�F = ± nr�ωa

c (1 − 1
n2 − λ

n
dn
dλ

). Here r(n) is the radius (refrac-
tive index) of the microwave resonator, and c (λ) is the speed
(wavelength) of microwave photons in vacuum. In Fig. 1(c),
we describe the changes in microwave frequency due to the
rotation. That is, when the microwave resonator rotates in the
fixed clockwise direction, the Fizeau shift �F < 0 (�F > 0)
corresponds to the situation of driving the microwave res-
onator from its left (right) side [82]. In the case of the Fizeau
shift due to the rotation, the opposite frequency shift of these
two backpropagation modes will result in the steady states
of the system being related to the direction of microwave
propagation, thereby disrupting the system’s time-reversal
symmetry and inducing the generation of various nonreciproc-
ities in the system. In addition, the magnon frequency in the
YIG sphere is proportional to the external bias magnetic field
H0, i.e., ωm = γ H0 with γ /2π = 28GHz/T being the gyro-
magnetic ratio [9]. In contrast, the frequency of the phonon
mode in the YIG sphere generally decreases with the increase
of the sphere size, which has been evaluated experimentally
[8]. Further, the role of the mechanical mode in the hybrid
system can be inferred by sending weak probe signals into the
spinning cavity and measuring its reflection. The G and g in
Eq. (1) are the linear photon-magnon coupling strength and
the general magnomechanical coupling strength, respectively.
In the magnomechanical system, the electromagnonical cou-
pling G can be larger than the damping rate of the microwave
mode κa and of the magnon mode κm [86]. The Kerr nonlinear
strength is symbolized by K , which is the order of magnitude
of µHz. The strength of the pump laser is ε = √

2Pκa/h̄ωd

with a driving frequency ωd .
In a rotating frame with the cavity driving frequency

ωd , the Hamiltonian (1) of the three-mode system can be
written as

H = (�a + �F )â†â + �m0m̂†m̂ + ωbb̂†b̂ + gm̂†m̂(b̂† + b̂)

+Km̂†m̂m̂†m̂ + G(m̂†â + â†m̂) + iε(â† − â), (2)

where �a = ωa − ωd (�m0 = ωm − ωd ) is the detuning be-
tween the photon (magnon) mode and the driving field. In
terms of Eq. (2), it can be easily concluded that the dynamics
of the system are reciprocal and will be independent of the
driving direction of the pump field when the microwave cavity

is stationary and therefore there is no contribution of Fizeau
shift in the effective cavity detuning �a + �F . Conversely,
when the microwave cavity rotates, the effective cavity de-
tuning �a + �F increases or decreases because the different
driving direction of the system will lead to opposite Fizeau
shifts. Consequently, an increase or decrease in the effec-
tive detuning will cause the system to operate in different
steady states, which significantly affects the quantum fluc-
tuation dynamics of the system and alters the characteristics
of quantum coherence in the system. In particular, for the
same angular velocity, due to the opposite frequency shift for
the forward and backward drive, the quantum coherence may
appear unidirectionally. It is worth noting that the realization
of asymmetric quantum properties can be achieved by simply
increasing or decreasing the cavity detuning �a even in the
absence of the Fizeau shift. However, the realization of these
quantum coherence properties requires us to choose different
driving frequencies ωd , which is actually the result of chang-
ing the parameter characteristics of the system. Here, our main
purpose is to study the generation of nonreciprocal quantum
coherence in a cavity magnomechanical system by controlling
the driving direction of the system to achieve the opposite
Fizeau shift [83].

Considering the fluctuation-dissipation processes affecting
the microwave photons, phonons, and magnons in the system,
the Heisenberg-Langevin equation describing the dynamics of
the system are given by

˙̂a = −[i(�a + �F ) + κa]â − iGm̂ + ε +
√

2κaâin,

˙̂b = −(iωb + κb)b̂ − igm̂†m̂ +
√

2κbb̂in,

˙̂m = −(i�m0 + κm)m̂ − iGâ − igm̂(b̂† + b̂)

−iKm̂ − 2iKm̂†m̂m̂ +
√

2κmm̂in, (3)

where κb stands for the decay rate of the phonon mode.
The ôin(o = a, b, m) describes the input noise operators
of the target mode o, which has a zero mean value
and is fully characterized by the following correlation
functions: 〈ôin†(t )ôin(t ′)〉 = Noδ(t − t ′) and 〈ôin(t )ôin†(t ′)〉 =
(No + 1)δ(t − t ′) with No = [exp(h̄ωo/kBT ) − 1]−1 being the
mean thermal phonon number. Here kB denotes the Boltzmann
constant and T is the environmental temperature of the whole
system.

Next we derive the linearized dynamics of the quan-
tum fluctuations around the steady-state expectation values
of the coupled system. This requires the system to be
driven by a strongly pumped laser, so that the operators in
Eq. (3) can be decomposed as the sum of the steady-state
value and a small fluctuation, i.e., ô = 〈o〉 + δô. By inserting
this expansion into Eq. (3), the time evolution equations for
the steady-state values can be obtained as

0 = −[i(�a + �F ) + κa]〈a〉 − iG〈m〉 + ε,

0 = −(iωb + κb)〈b〉 − ig|〈m〉|2,
0 = −(i�m0 + κm)〈m〉 − iG〈a〉 − iK〈m〉

−ig〈m〉(〈b〉 + 〈b〉†) − 2iK|〈m〉|2〈m〉. (4)
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In terms of Eq. (4), the steady-state solutions of the dynamical
variables are as follows:

〈a〉 = −iG〈m〉 + ε

i�′
a + κa

,

〈b〉 = −ig|〈m〉|2
iωb + κb

,

〈m〉 = −iGε

(i�m + κm)(i�′
a + κa) + G2

, (5)

where �′
a = �a + �F , and �m = �m0 + g(〈b〉 + 〈b〉†) +

4K|〈m〉|2 are the effective detunings of the cavity and magnon
modes. We further introduce the quadrature fluctuation op-
erators defined as δXo = (δô + δô†)/

√
2 and δYo = (δô −

δô†)/(
√

2i), and the corresponding noise operators defined
as X in

o = (δôin + δôin,†)/
√

2 and X in
o = (δôin − δôin,†)/(

√
2i).

Then the linearized quantum Langevin equations are calcu-
lated as

δẊa = �′
aδYa + GδYm − κaδXa +

√
2κaX in

a (t ),

δẎa = −�′
aδXa − GδXm − κaδYa +

√
2κaY

in
a (t ),

δẊb = wbδYb − κbδXb +
√

2κbX in
b (t ),

δẎb = −wbδXb − κbδYb − g(〈m〉 + 〈m〉∗)δXm

+ig(〈m〉 − 〈m〉∗)δYm +
√

2κbY
in

b (t ),

δẊm = ig(〈m〉∗ − 〈m〉)δXb + GδYa − κmδXm

+(�m − 2K|〈m〉|2)δYm +
√

2κmX in
m (t ),

δẎm = −κmδYm − GδXa − g(〈m〉 + 〈m〉∗)δXb

−(�m + 2K|〈m〉|2)δXm +
√

2κmY in
m (t ). (6)

Here we consider that the system starts from Gaus-
sian states. In this case, the system dynamics gov-
erned by the linearized Eq. (6) evolves always in Gaus-
sian and the state of the system is completely deter-
mined by the 6×6 correlation matrix with matrix ele-
ment Vi j = 〈ui(t )u j (t ) + u j (t )ui(t )〉/2 [87], where u(t ) =
[δXa(t ), δYa(t ), δXb(t ), δYb(t ), δXm(t ), δYm(t )]T is the vector
of the fluctuation operator. In the steady state, the correlation
matrix of the system satisfies the following Lyapunov equa-
tion [53]:

AV + V AT = −D, (7)

where D = diag[(2Na + 1)κa, (2Na + 1)κa, (2Nb + 1)κb,

(2Nb + 1)κb, (2Nm + 1)κm, (2Nm + 1)κm] is the noise matrix
and A is the coefficient matrix of Eq. (6),

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−κa �′
a 0 0 0 G

−�′
a −κa 0 0 −G 0

0 0 −κb ωb 0 0
0 0 −ωb −κb g1 g2

0 G −g2 0 −κm �′
m

−G 0 g1 0 −�′′
m −κm

⎤
⎥⎥⎥⎥⎥⎥⎦

, (8)

where g1 = −g(〈m〉 + 〈m〉∗), g2 = ig(〈m〉 − 〈m〉∗), �′′
m =

�m + 2K|〈m〉|2, and �′
m = �m − 2K|〈m〉|2.

We are interested in the generation of macroscopic quan-
tum properties in a cavity magnomechanical system which

can be explored by solving the correlation matrix in Eq. (8).
To this end, the coupled system must reach a unique steady
state conforming to the Routh-Hurwitz criterion, which can be
achieved by selecting appropriate external system parameters
to ensure that all eigenvalues of the matrix A have negative
real part, i.e., Emax = max{Real[Eig(A)]} < 0. However, in
the present model we will not list the analytical conditions due
to its complicated expressions but instead check the stability
of the system through numerical calculations.

III. NONRECIPROCAL QUANTUM COHERENCE

We first evaluate the quantum coherence of the target
modes in the coupled system. Physically, quantum coherence
describes the degree of correlation between quantum fluctu-
ations of the quadrature operators in the system [23–30] and
is necessary for generating entanglement [88]. For the present
continuous-variable system, we adopt the relative entropy in
terms of the Gaussian state to quantify the quantum coher-
ence, which is determined by the first and second moments of
the Gaussian state [24,31]. For example, for a given one-mode
Gaussian state ρ(Vo, �do) with the fluctuation quadratures δXo

and δYo, its first moment is the mean value of the quadrature
vector, i.e., �do = (do1, do2) with do1 = (〈o〉 + 〈o)〉∗)/

√
2 and

do2 = (〈o〉 − 〈o〉∗)/i
√

2, while the second moment Vo is the
covariance matrix extracted from the correlation matrix V in
Eq. (7). That is, the second moments of the photon mode,
the photon mode, and the magnon mode in the system are,
respectively,

Va =
(

V11 V12

V21 V22

)
,

Vb =
(

V33 V34

V43 V44

)
,

Vm =
(

V55 V56

V65 V66

)
.

Then, the quantum coherence of photon mode, magnon mode,
and phonon mode can be witnessed when [24]

Co[ρ(Vo, �do)] = −F (vo) + F (2n̄o + 1) > 0, (9)

where the specific expression of the function F is
F (X ) = X+1

2 log2( X+1
2 ) − X−1

2 log2( X−1
2 ). vo = √

Det(Vo) is
the symplectic eigenvalue of the target mode o and n̄o =
[Tr(Vo) + d2

o1 + d2
o2 − 2]/4 is determined by the first and sec-

ond moments of the target mode o. Finally, according to the
definition in Eq. (9), the quantum coherence corresponding to
the target mode a, b, and m can be expressed as [24]

Ca = Ca[ρ(Va, �da)],

Cb = Cb[ρ(Vb, �db)],

Cm = Cm[ρ(Vm, �dm)]. (10)

We stress that the quantum coherence Ca, Cb, or Cm of
the one-mode Gaussian state can be evaluated experimentally,
as the first and second moments of each target mode can be
acquired straightforwardly or indirectly through homodyne
detection of the output field [53]. Moreover, the present meth-
ods are based on the mean-field approximation around the
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steady-state expectation values in Eq. (5). Therefore, these
results change explicitly if one goes beyond this approxima-
tion. This is because the performance parameters describing
quantum properties, such as quantum coherence Ca, Cb, and
Cm, fail when the system works beyond the linearized picture.
In essence, this is the result that the steady state of the quan-
tum fluctuations in the system cannot be fully characterized
by a 6×6 correlation matrix V . The evaluation of the quantum
properties (such as coherence) for a non-Gaussian state in-
duced by the hybrid couplings requires knowledge about the
third- and fourth-order cumulants in the system in addition
to the first and second cumulants (moments) [89,90]. In the
present paper, in order to ensure that the system works in
the linearization regime, the driving power selected is always
large enough.

In the following, we numerically evaluate the nonrecip-
rocal characteristics of the quantum coherence induced by
the rotation of the microwave cavity. Furthermore, we also
study what kind of parameter range can be used to realize that
the quantum coherence of the macroscopic phonon mode
exceeds that of the other two modes. We select the accessi-
ble parameters of the microwave cavity, i.e., the frequency
of the driving field, ωd = 2π×10.1×109 Hz [2,86], and the
decay rate of the microwave cavity κa = 2π×2×106 Hz. The
frequency and the dissipation rate of the mechanical YIG
sphere are ωb = 2π×10×106 Hz and κb = 2π×100 Hz, re-
spectively. The effective detuning of the magnon mode and
the decay rate of the magnon mode are �m = 0.1ωb and
κm = 2π×0.56×106 Hz, respectively. We also assume that
the magnon and photon modes are in resonance, that is, �a =
ωb. The strengths of the photon-magnon and phonon-magnon
couplings are G = 2π×10×105 Hz and g = 2π×1 Hz, re-
spectively. The Kerr nonlinearity K = 2π×0.2×10−6 Hz and
the temperature of the system is T = 1.5 K.

Figure 2 shows the quantum coherence of the photon,
phonon, and magnon modes Ca, Cb, and Cm, as a function
of the nondimensionalized driving power P/P0 with P0 =
1.007 nW being the driving power corresponding to a natural
energy scale of the driving strength ε = ωd . From Fig. 2, it
is found that different driving directions (the left or right)
will result in different quantum coherence Ca, Cb, and Cm.
For example, compared with the stationary case with �F = 0,
the quantum coherences Ca, Cb, and Cm of the spinning mag-
nomechanical system always increase for �F < 0, while they
decrease for �F > 0. In addition, the power range generating
quantum coherence narrows when �F < 0, and widens when
�F > 0. This is because the generation of quantum coherence
is always limited by the stability of the system. When the
rotation of the magnetomechanical system is considered, the
stability of the system is nonreciprocal with different driving
directions, which leads to the nonreciprocal quantum coher-
ence. Moreover, we find that the quantum coherences of the
photon and the magnon modes are always larger than that
of the mechanical mode, i.e., Ca > Cb and Cm > Cb. This
results from the fact that the environmental incoherence of the
mechanical mode is usually greater than that of the microwave
field and magnon mode. We emphasize that the quantum co-
herence of the phonon mode Cb is significantly related to the
dissipation rate κb of the phonon mode, which determines the
degree of environmental incoherence of the mechanical mode.
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FIG. 2. Quantum coherences Ca (a), Cb (b), and Cm (c), as func-
tions of the nondimensionalized driving power P/P0 with three
different scenarios �F = 0, 0.5ωb, and −0.5ωb. The other pa-
rameter values are ωd = 2π×10.1×109 Hz, ωb = 2π×10×106 Hz,
κb = 2π×100 Hz, κa = 2π×2×106 Hz, κm = 2π×0.56×106 Hz,
G = 2π×10×105 Hz, g = 2π×1 Hz, K = 2π×0.2×10−6 Hz, �m =
0.1ωb, �a = ωb, P0 = 1.007 nW, and T = 1.5 K.

In Fig. 3 we show the quantum coherence of the phonon mode
Cb, as a function of the nondimensionalized driving power
P/P0 with different κb at given �F = 0.5ωb. From Fig. 3, it
can be clearly seen that the quantum coherence Cb increases
with the decrease of the dissipation rate κb. As a result, a
smaller decay rate κb is the preferred choice for enhancing the
quantum coherence of the mechanical mode. In order to show

0 2 4 6 8 10
P/P

0 106

10

15

20

25

30

35

C
b

b=2 500 Hz

b=2 100 Hz

b=2 20 Hz

FIG. 3. Quantum coherence Cb as functions of the nondimen-
sionalized driving power P/P0 with different κb at given �F =
0.5ωb. The other parameter values are the same as those in Fig. 2.
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FIG. 4. Quantum coherences Ca, Cb, and Cm and the real part
of the maximum eigenvalue Emax as a function of the ratio G/ωb

with three different scenarios �F = 0 (a), �F = 0.1ωb (b), and
�F = −0.1ωb (c). The pink area surrounded by black lines of eigen-
values Emax depicts the stability of the system. Here the driving
laser power is P = 9.931×105P0, the magnomechanical coupling is
g = 2π×2 Hz, and the other parameter values are the same as those
in Fig. 2.

the generation of quantum coherence and its nonreciprocity
in the stability region more clearly, in Fig. 4, we depicted
the quantum coherences Ca, Cb, and Cm and the maximum
eigenvalue of the matrix A as a function of the magnon-
photon coupling strength G with different �F at the pump
power P = 9.931×105P0 and the magnomechanical coupling
g = 2π×2 Hz. It is found that the stability of the coupled
system depends strongly on the coupling strength G and the
Fizeau shift �F . Compared with the stationary case with
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FIG. 5. Quantum coherences Ca, Cb, and Cm and the real part
of the maximum eigenvalue Emax as the function of the magnon-
phonon coupling g. The driving laser power is P = 4.965×106P0,
�F = 0.1ωb, and the other parameters are the same as those in
Fig. 2.

�F = 0, the range of the G with positive eigenvalue value
narrows when �F < 0, and widens when �F > 0. Therefore,
the quantum coherence of the system will be nonreciprocal
and can be established within a relatively large coupling range
of G for �F > 0. Further, from Fig. 4 we can see clearly
that the quantum coherence of a single mode, i.e., Ca, Cb,
or Cm, is not a monotonic function of the ratio G/ωb and
always vanishes when the system works in the unstable regime
with the positive eigenvalues. In particular, the values of Ca,
Cb, and Cm decrease rapidly to zero at each stable-unstable
critical point so that the quantum coherences of the system
change significantly. Another interesting feature is that when
the system operates in a stable region with moderate cou-
pling strength G, the quantum coherence of the phonon mode
is always greater than that of the photon and the magnon
modes, i.e., Cb > Ca,m. For example, in the absence of the
Fizeau shift �F , the range of the coupling strength G corre-
sponding to the inverted quantum coherence (i.e., Cb > Ca,m)
is between 0.319ωb and 0.380ωb. The range of the G with
inverted quantum coherence will be widened when �F > 0,
i.e., 0.333ωb < G < 0.447ωb. Conversely, the range of the
G reduces to 0.304ωb < G < 0.327ωb when �F < 0. These
inverted characteristics mean that the coupling between the
subsystems can resist the environmental incoherence of the
mechanical mode and induce a significant enhancement of
the correlations of the system. When the coupling strength
G becomes relatively large, such as G = 0.5ωb, the quantum
coherence of the phonon mode is greater than that of the
photon mode, but less than that of the magnon mode, i.e.,
Cb > Ca and Cb < Cm. In contrast, in the two stable regions
where the coupling strength G approaches the leftmost critical
point and the rightmost critical point, the phonon mode has the
smallest quantum coherence. These results show that people
can flexibly manipulate the quantum coherence of photon,
phonon, and magnon modes and their nonreciprocal charac-
teristics by adjusting the magnon-photon coupling strength G.

The magnomechanical coupling g between the phonons
and magnons provides a direct channel for the coherence
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FIG. 6. Quantum coherences Ca, Cb, and Cm and the real part
of the maximum eigenvalue Emax as a function of the Kerr nonlin-
earity K . The driving laser power is P = 4.965×106P0, �F = 0,
G = 0.38ωb, and the other parameters are the same as those in Fig. 2.

transfer between the phonon mode and the magnon mode. In
Fig. 5, we depicted the quantum coherences Ca, Cb, and Cm

as a function of the magnon-phonon coupling g. Here and in
the subsequent numerical simulations, we only consider the
case where the microwave field is driven from the left side,
i.e., �F = 0.1ωb. From Fig. 5, we can see clearly that the
quantum coherences Ca and Cm decrease monotonously with
the increase of the coupling coefficient g. In contrast, the quan-
tum coherence of the phonon mode Cb is not a monotonous
function of the coupling coefficient g and the peak appears at
the intermediate value of the g, i.e., g ≈ 10 Hz. That is, the
degree of coherence increases first and then decreases rapidly
with the increase of the coupling coefficient g. Further, when
the coupling coefficient g approaches the stable-unstable crit-
ical point, i.e., g = 14.07 Hz, each single-mode quantum
coherence always drops sharply to zero. This is because when
the coupled system passes through the stable and unstable
point and enters the unstable region, the quantum fluctuations
of the system are significantly amplified, resulting in the loss
of all quantum coherence in the system. Similarly, the quan-
tum coherence of the macroscopic phonon mode can exceed
simultaneously that of the other two modes, i.e., Cb > Ca,m,
by adjusting properly the magnon-phonon coupling g, such as
g > 10 Hz. These results also show that quantum coherence
can be transferred from the photon and the magnon modes to
the mechanical mode, which results from the direct coupling
between the phonon and the magnon modes and the indirect
effective beam-splitter interaction between the photon and the
phonon modes.

Apart from the magnon-photon coupling, the magnon-
phonon coupling, and the driving power, the quantum
coherences in the system Ca, Cb, and Cm are also related to
the Kerr nonlinearity originating from the magnetocrystalline
anisotropy. In Fig. 6, we depict the quantum coherences Ca,
Cb, and Cm and the maximum eigenvalue as functions of the
Kerr coefficient K . We can see from Fig. 6 that the quantum
coherences Ca, Cb, and Cm increase first and then decrease
with the increase of the Kerr coefficient. Furthermore, the
peak of the quantum coherence Cb appears near the stable-

FIG. 7. Quantum coherences Ca (a), Cb (b), and Cm (c) as a
function of the effective detunings �a and �m, The driving laser
power is P = 4.965×106P0, �F = 0.1ωb, G = 0.38ωb, and the other
parameters are the same as those in Fig. 2.

unstable critical point of the Kerr coefficient. In addition,
under the selected parameters, the quantum coherence of the
phonon mode is always greater than the quantum coherence
of the photon mode and magnon mode. Therefore, we can
select an appropriate value of the Kerr coefficient to increase
the quantum coherence of the phonon mode.

We can investigate in detail the effect of the detunings of
the microwave mode and magnon mode, �a and �̃m, on the
single-mode quantum coherences Ca, Cb, and Cm. In Fig. 7, We
depict the quantum coherences Ca, Cb, and Cm as functions of
the effective detunings �a and �̃m. It is found from Fig. 7 that
as long as the system works in the stability region, the quan-
tum coherence of photon, phonon, and magnon modes can
always be generated. As a result, we can carefully design and
adjust the system parameters, such as the detunings �a and
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�m, to make the stability range of the coupled system as large
as possible, so that we can achieve the quantum coherence in a
larger parameter range. It is also noted that the stability of the
coupled system depends strongly on the photon-magnon and
phonon-magnon interactions, the pump power, and the Kerr
coefficient in the coupled system. Further, from Figs. 7(a)–
7(c), we can see clearly that the optimal values of the quantum
coherence appear at the region of �a > 0 and �m > 0, which
results from the effective magnomechanical coupling between
the subsystems.

IV. CONCLUSIONS

In conclusion, we have theoretically demonstrated the
quantum coherence of the photon, phonon, and magnon
modes in a three-mode coupled cavity magnomechanical sys-
tem consisting of a microwave cavity and a YIG sphere, where
the magnon mode and deformation (phonon) mode of YIG are
coupled with each other by the magnetostrictive interaction
when YIG is driven directly by a uniform external magnetic
field. In contrast, the magnon mode and the microwave cavity
mode are coupled through the magnetic dipole interaction.
Our investigation shows that the optical Fizeau shift in the
spinning magnomechanical system directly causes the non-
reciprocal quantum coherence of the photon, phonon, and
magnon modes. Further, the rotation of the microwave res-

onator leads to a significant difference in the system stability
for driving the cavity field from opposite directions, which
promotes the nonreciprocal characteristics of the quantum
coherence of the subsystem. In particular, the quantum co-
herence of the mechanical motion mode can be greater than
that of the microwave photon and the magnon modes when
the system operates in an appropriate stable region. We stress
that the quantum coherence can be transferred from the photon
and the magnon modes to the mechanical mode, which is
attributed to the indirect effective beam-splitter interaction
between the phonon and the photon modes and the direct cou-
pling between the phonon and the magnon modes. In addition,
a detailed discussion was directed regarding the numerical
influences of the coupling strength between subsystems, the
Kerr nonlinearity, and the effective detunings on the charac-
teristics of the quantum coherence. The results help to achieve
the nonreciprocal quantum coherence in a large parameter
range, which has potential applications in achieving highly
tunable information processing.
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