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Giant atoms, where the dipole approximation ceases to be valid, allow us to observe unconventional quantum
optical phenomena arising from interference and time-delay effects. Most previous studies consider giant
atoms coupling to conventional materials with right-handed dispersion. In this study, we first investigate the
quantum dynamics of a giant atom interacting with left-handed superlattice metamaterials. Different from those
right-handed counterparts, the left-handed superlattices exhibit an asymmetric band gap generated by anomalous
dispersive bands and Bragg scattering bands. With the assumption that the giant atom is in resonance with the
continuous dispersive energy band, spontaneous emission will undergo periodic enhancement or suppression
due to the interference effect. At the resonant position, there is a significant discrepancy in the spontaneous
decay rates between the upper and lower bands which arises from the differences in group velocity. Second,
we explore the non-Markovian dynamics of the giant atom by considering the emitter’s frequency outside
the energy band, where bound states will be induced by the interference between two coupling points. By
employing both analytical and numerical methods, we demonstrate that the steady atomic population will be
periodically modulated, driven by variations in the size of the giant atom. The presence of asymmetric band edges
leads to diverse interference dynamics. Finally, we consider the case of two identical emitters coupled to the
waveguide and find that the energy within the two emitters undergoes exchange through the mechanism of Rabi
oscillations.
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I. INTRODUCTION

In recent years, there has been considerable research inter-
est in the study of giant atoms due to their ability to produce
peculiar phenomena in quantum optics. Unlike small atoms,
which are typically treated as pointlike particles, the size of gi-
ant atom is much larger than or comparable to the wavelength
of the propagating field, indicating that the dipole approxi-
mation is not valid [1–7]. Under these conditions, it becomes
essential to consider the phase accumulation between different
coupling points [2,8,9], which leads to a variety of intriguing
phenomena, such as frequency-dependent couplings [10–13],
decoherence-free interactions [14–17], unconventional bound
states [18–24], and chiral quantum optics [25–29]. In exper-
imental setups, giant atoms are typically realized in circuit
quantum electrodynamics (circuit-QED) platforms [30–36].

The interaction between giant atoms and conventional
waveguides has been extensively explored in previous studies
(e.g., see [37–44]). In addition to conventional waveguides
and cavities, microwave photons can also exist in artifi-
cial environments. An emblematic example is circuit-QED
metamaterials, where the dispersion properties and vacuum
eigenmodes can be freely tailored in experiments. The struc-
tured spectra and asymmetric band gaps can be realized
in such metamaterials, providing an intriguing platform for
exploring QED phenomena with no analog in traditional
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circuit-QED setups [45–49]. For instance, by spatiotempo-
rally modulating the effective impedance, a superconducting
quantum interference device metamaterial can be designed
as a chiral quantum waveguide [50]. When combined with
transmission lines, we can achieve multimode strong coupling
in circuit QED [51].

In a conventional band-gap environment, such as pho-
tonic crystals [52,53] and the Su-Schrieffer-Heeger model
[54,55], the two bands E±(k) are induced by the same
mechanism. Therefore, the group velocities and band cur-
vatures of the two bands are symmetric with respect to the
band gap, i.e., v+

g (k) = −v−
g (k) and α+(k) = −α−(k) [with

α±(k) = ∂2ω±(k)/∂2k]. The left-handed superlattice meta-
material (LHSM) in circuit QED exhibits a unique negative
index of refraction [51,56–59]. This distinctive property arises
from the unconventional interchange of capacitance and in-
ductance, distinguishing LHSMs from right-handed materials
[60–62]. When the impedance of the LHSM is modulated
periodically, an asymmetric band gap emerges due to the
different physical mechanisms: The upper band at ω+(k = π )
is the infrared cutoff of the anomalous dispersion [43,58],
while the lower band is a result of Bragg scattering induced
by periodic impedance modulation. Because these two bands
stem from different mechanisms, their mode properties (for
example, the group velocity and band curvature) are asymmet-
ric with v+

g (k) �= −v−
g (k) and α+(k) �= −α−(k). These unique

spectral features may allow us to observe unusual dynamics
phenomena of giant emitters [63–65].
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FIG. 1. Sketch of a superconducting giant atom coupled to the
left-handed superlattice metamaterial. The superlattice cell is com-
posed of two substructures with differing capacitances C and εC and
inductances L and εL, represented by cell a and cell b, respectively.

In this paper, we find several intriguing phenomena in the
circuit-QED system composed of giant atoms and LHSMs.
First, we derive the dispersion relation of the LHSM and
explain the mechanism behind the band gap generated by
the left-handed dispersion band and a band caused by Bragg
scattering. By considering a transmon coupled to the proposed
LHSM waveguide, we derive the Hamiltonian of the system.
When assuming that the emitter is resonant with the upper or
lower band, spontaneous emission is enhanced and suppressed
periodically due to the interference effect. Given that the emit-
ter’s frequency is outside the continuous dispersion band, an
atom-photon bound state forms at each coupling point. Due to
the asymmetric band edges, the interference dynamics inside
the two continuous dispersion energy bands exhibit significant
differences, with the atomic steady population in the upper
band being much larger than that in the lower band. Last,
we consider the case of two giant atoms and explore how the
dipole-dipole interaction can be modulated by the interference
effect.

II. LEFT-HANDED SUPERLATTICE METAMATERIAL

The model where a giant atom couples to the LHSM is
depicted in Fig. 1; it can be regarded as a one-dimensional
waveguide. The LHSM consists of two alternating left-handed
inductor-capacitor (LC) cells, each formed by series capac-
itors and grounded inductors [57]. The ratio of capacitance
or inductance between neighboring cells is denoted as ε. The
length of one LC cell is designed as �x. We consider two adja-
cent LC cells as a superlattice unit with a length of d0 = 2�x.
The Lagrangian of the LHSM is [51,66]

L = 1

2

∑
n

[C(�̇n − �̇n−1)2 + εC(�̇n − �̇n+1)2]

− 1

2

∑
n

[
1

εL
�2

n + 1

L
�2

n−1

]
, (1)

FIG. 2. (a) Dispersion relations for two energy bands of the left-
handed superlattice metamaterials with ε = 1.4. (b) The width of the
lower band W− and the band gap �G as a function of the superlattice
parameter ε. Parameters of the system are C = 2.5 × 10−11 F and
L = 2 × 10−10 H.

where C (L) represents the capacitance (inductance) of the
LHSM. Assuming that the field takes the form of a plane
wave, denoted as �n = ei(kn�x−ωt ), we obtain the dispersion
relation of the LHSM by deriving the Euler-Lagrange equa-
tion (see details in Appendix A)

ω± = ωr√
(1+ε)2

2 ±
√

(1+ε)4

4 + ε2[2 cos (kd0) − 2]

, (2)

where the resonance frequency of an individual LC cell
is denoted as ωr = 1/

√
CL, with k being the wave vector.

In our study, we set the values of C = 2.5 × 10−11 F and
L = 2 × 10−10 H. Under these conditions, we plot the
dispersion relation ω±(k) as a function of k, as shown
in Fig. 2(a), while taking ε = 1.4 and d0 = 1. We find
that for k = 0, the upper band exhibits divergence, while
the lower band converges toward the infrared cutoff
frequency. As k increases, the frequency ω+(k) gradually
decreases to a finite value, corresponding to the left-hand
characteristic inherent in this model. Simultaneously,
due to the Bragg scattering, ω−(k) increases to a finite
value. The resulting band gap, [ω−(±π ), ω+(±π )],
displays asymmetry arising from distinct underlying
mechanisms.
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In Fig. 2(b), we plot the relationship between the superlat-
tice parameter ε and two important quantities: the band gap
width �G and the width of lower band W−, i.e.,

�G = ω+(±π ) − ω−(±π ), W− = ω−(±π ) − ω−(0). (3)

The LHSM is constructed from two periodic substructures
with distinct refractive indices. Within the system, the band
gap arises as a result of destructive interference in Bragg scat-
tering occurring at the interface of cells a and b. Specifically,
when ε = 1, the band gap reaches its maximum width. In this
case, all cells have the same index of refraction, rendering
the LHSMs isotropic. Therefore, the band gap disappears due
to the lack of Bragg’s scattering, resulting in a band gap
width of zero. The phenomenon was previously investigated
in Ref. [43]. When ε deviates from ε = 1, the difference in the
refractive indices between neighboring cells increases. This
amplifies the strength of Bragg scattering at cell boundaries.
In this work, for the sake of generality, we take the superlattice
parameter ε = 1.4.

III. GIANT ATOM INTERACTING WITH THE LHSM

As shown in Fig. 1, the giant atom interacts with the LHSM
at two distinct points through capacitances [13,20,58]. The
giant atom takes the form of, for example, a transmon qubit
consisting of two identical Josephson junctions. The Hamil-
tonian of the transmon qubit can be expressed in terms of the
charge operator n̂ and the phase operator ϕ̂ [30,50,67–71],

ĤT = 4ECn̂2 − EJ cos ϕ̂,

n̂ = Q̂/2e, ϕ̂ = (2π/�0)�̂, (4)

where EJ [EC = e2/(2C
 )] represents the Josephson (charg-
ing) energy of the transmon. The total capacitance is C
 =
Cq

J + 2Cq.
For transmon qubits, since EJ/EC � 1, the charge zero-

point fluctuations dominate over the phase zero-point fluctua-
tions, i.e., σ (n̂) � σ (ϕ̂). Therefore, we express the transmon
Hamiltonian as

ĤT = 4ECn̂2 + 1
2 EJ ϕ̂

2 − EJ
(

cos ϕ̂ + 1
2 ϕ̂2

)
, (5)

where we have neglected the bias charge term associated with
ng [40,67]. Because σ (ϕ̂) � 1, Eq. (5) can be rewritten as

Ĥq = 4ECn̂2 + 1

2
EJ ϕ̂

2 − 1

4!
EJ ϕ̂

4, (6)

which can be viewed as a Duffing oscillator [40,67,72]. The
charge operator and phase operator can be denoted by the
creation and annihilation operators b̂† and b̂ as

ϕ̂ =
(

2EC

EJ

) 1
4

(b̂† + b̂), n̂ = i

2

(
EJ

2EC

) 1
4

(b̂† − b̂). (7)

Therefore, the Hamiltonian can be expressed in a simplified
form,

Ĥq =
√

8ECEJ b̂†b̂ − EC

12
(b̂† + b̂)4

≈ h̄ωqb̂†b̂ − EC

2
b̂†b̂†b̂b̂, (8)

with ωq = √
8ECEq

J − EC .
When the coupling strength is significantly smaller than

the anharmonicity of the transmon qubit, i.e., g � η � −EC ,
we can neglect higher energy levels and consider the transmon
qubit as a two-level system. By considering the two lowest en-
ergy levels of the emitter, we employ transformations b̂†b̂ →
σz, b̂ → σ−, and b̂† → σ+ to describe the system Hamilto-
nian [40,67,72], i.e.,

Hq = 1
2ωqσz. (9)

As derived in Refs. [20,73], the Hamiltonian of the LHSM
can be quantized as (see details in Appendix B)

Ĥ0 =
N∑

k=1

h̄ωk

(
a†

kak + 1

2

)
, (10)

where ak (a†
k ) is the annihilation (creation) operator of the

photonic modes with the wave vector k.
In the rotating-wave approximation, the interaction Hamil-

tonian between transmon qubit and the LHSM is expressed
as

Hint =
∑

k

gk (â†
k σ̂− + âk σ̂+), (11)

where σ+ = (σ−)† = |e〉〈g|, with |e〉 (〈g|) being the excited
(ground) state of the emitter. The coupling strength is given
by [20]

gk = e

h̄

Cg
J

C


√
h̄ωk

CW
, (12)

with CW denoting the total capacitance of the LHSM waveg-
uide. Finally, by setting h̄ = 1, the Hamiltonian of the system
can be described by

Ĥ = H0 + Hq + Hint = 1

2
ωqσz

+
∑

k

ωka†
kak +

∑
k

gk (â†
k σ̂− + âk σ̂+). (13)

IV. THE DYNAMICS OF THE SYSTEM

A. Quantum dynamics in the dispersive band

When the emitter resonates with the upper or lower band,
there will be a significant number of modes with nonzero
group velocity coupled to the emitter. This coupling phe-
nomenon leads to an exponential emission of photons by the
emitter. However, as the emitter’s frequency approaches the
band edge, the Wigner-Weisskopf approximation will break
down, leading to the non-Markovian dynamics [35,74,75]. We
first explore the spontaneous decay of the giant atom when its
frequency is significantly removed from the band edges.

In the rotating frame of atomic frequency ωq, the total
Hamiltonian, as given in Eq. (13), is derived as [76]

H =
∑
k∈BZ

�ka†
kak +

∑
k∈BZ

(gka†
kσ− + g∗

kakσ+), (14)

where the frequency detuning is �k = ωk − ωq [within the
first Brillouin zone (BZ)]. The system’s state can be expanded
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in the single-excitation subspace as

|ψ (t )〉 =
∑

k

cg,k (t )|g, 1k〉 + ce(t )|e, 0〉, (15)

where |g, 1k〉 corresponds to the state where the giant atom is
in the ground state and a single photon is excited at mode k.
We assume that the giant atom (waveguide) is initially in the
excited (vacuum) state, i.e., |ψ (t = 0)〉 = |e, 0〉. According
to Schrodinger equation, we obtain the following differential
equations:

ċg,k (t ) = −i[�kcg,k (t ) + gkce(t )], (16)

ċe(t ) = −i
∑

k

g∗
kcg,k (t ). (17)

By defining c̃g,k (t ) = cg,k (t )ei�kt and substituting its integral
form into Eq. (17), we obtain

ċe(t ) =
∑

k

g2
k

∫ t

0
ce(t ′)ei�k (t−t ′ )dt ′. (18)

Note that gk is the coupling strength in k space [20]. We con-
sider the giant atom coupled to the waveguide at two points,

x1 = 0 and x2 = ds. The separation distance ds corresponds
to the giant atom’s size. Unlike the setup with a small atom
where gk is a constant, the coupling strength gk for giant atoms
exhibits dependence on the parameter ds, i.e.,

gk = g(1 + eikds ). (19)

The summation over k can be replaced with an integral,
i.e.,

∑
k → N

2π

∫ π

−π
dk. We can rewrite Eq. (18) as

ċe(t ) = − N

2π

∫ π

−π

g2
kdk

∫ t

0
ce(t ′)ei�k (t−t ′ )dt ′. (20)

We consider that the emitter is resonant with the upper
(lower) band at kr (kr > 0), i.e., ωq = ωkr . As depicted in
Fig. 2, since the resonant frequency is significantly separated
from the band edges, the dispersion relation around k can
be approximated as a linear relation, i.e., ωk � vg(k)k, with
vg(k) being the group velocity at k. By calculating v±

g (k) =
dω±(k)/dk, we obtain the group velocity vg,

v±
g (k) = −ε2 sin k

2
√

(ε+1)4

4 + ε2(2 cos k − 2)
[ (ε+1)2

2 ∓
√

(ε+1)4

4 + ε2(2 cos k − 2)
] 3

2

, (21)

where the group velocity v+(−)
g (k) of the upper (lower)

band is of the left-handed characteristic. In the Born-
Markovian regime, the coupling strength is much smaller
than the bandwidth around k, allowing us to extend the
integral ±π bound to infinity. Moreover, in the emis-
sion spectrum, the atomic spontaneous radiation is centered
on the transition frequency ωq; we can employ the in-
tegral

∫ ∞
−∞ dωkei(ωk−ωq )(t−t ′ ) = 2πδ(t − t ′) and replace [1 +

cos(kds)]/vg(k) by [1 + cos(krds)]/vg(kr ) [77–79]. Conse-
quently, the evolution ċe(t ) is derived as

ċe(t ) = − N

2π

∫ ∞

−∞

g2
k

vg(k)
ei�k (t−t ′ )dωk

∫ t

0
ce(t ′)dt ′ (22)

= − N

2πvkr

(
g2

kr + g2
−kr

) ∫ t

0
2πδ(t − t ′)ce(t ′)dt ′, (23)

where vkr is the group velocity at kr (kr > 0). Consequently,
the probability amplitude ce(t ) is derived as

ċe(t ) = −2Ng2

vkr

[1 + cos (krds)]ce(t ). (24)

We solve the equation for ce(t ) under the Weisskopf-
Wigner approximation and obtain [80]

ce(t ) = e− �
2 t , � = −4Ng2

vkr

[1 + cos (krds)], (25)

where � is the spontaneous decay rate of the giant atom.
Note that � depends on the size of the giant atom ds. These
approximations are valid in our work and can rigorously dis-
play the underlying dynamics. As depicted in Fig. 3(a), the

derived analytical results with Markovian approximation are
in excellent agreement with the numerical calculations.

By setting ωq = ω(kr = π/2), we depict the spontaneous
decay rate as a function of the giant atom’s size in Fig. 3(b).
The simulation methods can be found in Appendix C. The
color-coding of the curves corresponds to the varying cou-
pling strengths. It can be verified from Eq. (25) that the
spontaneous decay rate exhibits periodic behavior in response
to changes in the emitter’s size. Given that � = 0, when ds =
2M, with M being an odd integer, the emitter is trapped in
its excited state without decaying. We demonstrate the decay
rates, calculated through dynamic evolution for various values
of kr , in Fig. 3(c). Regarding the calculation of the spon-
taneous decay rate, we initially assumed that the dispersion
relation near kr approximates linearity, i.e., ωk � vgk. How-
ever, the dispersion is nonlinear in fact [see Fig. 2(a)], leading
to discrepancies between our numerical and analytical fittings.
Furthermore, the presence of asymmetric energy bands gives
rise to distinct spontaneous decay dynamics when the atom
couples to its respective continuum. At the coupling position
kr , the spontaneous decay rate � within the lower energy
band greatly exceeds that within the upper band due to the
substantial disparity in group velocities.

B. Quantum dynamics in the asymmetric band gap

In this work, we explore the behavior of the bound state of
a single giant atom by considering ωq inside the asymmetric
band gap [81]. There is no continuum mode resonant with the
giant emitter. As a result, spontaneous emission is suppressed,
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FIG. 3. (a) The spontaneous decay rate of the giant atom changes with the giant atom’s size ds. We fix ωq = ω+(k = π/2). The curves
and symbols correspond to the numerical and analytical results, respectively. (b) Dynamical evolution obtained via numerical simulation for
various ds. (c) The spontaneous decay rate of a giant atom resonating with mode kr of the lower and upper bands. The coupling strength is set
as g = 0.0001. Other parameters remain consistent with those in Fig. 2.

leading to the confinement of energy in the form of a bound
state [22,75,82].

To derive the evolution analytically, we utilize the Laplace
transform

c̃g,k(e)(s) =
∫ ∞

0
cg,k(e)(t )e−st dt . (26)

Equations (16) and (17) are respectively derived as [75]

sc̃e(s) − sc̃e(0) = −i
∑

k

gkc̃g,k (s), (27)

sc̃g,k (s) − sc̃g,k (0) = −i�k c̃g,k (s) − igkc̃e(s). (28)

Under the initial condition ce(0) = 1 and cg,k (0) = 0,
Eq. (28) can be simplified as

c̃g,k (s) = −igkc̃e(s)

(s + i�k )
. (29)

By substituting Eq. (29) into Eq. (27), we obtain [83,84]

c̃e(s) = 1

s + ∑
e(s)

, (30)

∑
e

(s) =
∑

k

|gk|2
s + i�k

, (31)

where
∑

e (s) is the so-called self-energy. Then we can take
the inverse Laplace transform of Eq. (30) in the complex space
to get the time-dependent evolution ce(t ) and obtain

ce(t ) = 1

2π i
lim

E→∞

∫ γ+iE

γ−iE
c̃e(s)est ds, (32)

where γ (γ > 0) is a real number that makes the path inte-
gral of c̃g,k(e)(s) in the domain of convergence. As depicted
in Fig. 4(a), we assume the emitter’s frequency is ωq = ω3

(refer to Fig. 2), and only the modes with k = 0 contribute
significantly to the system’s dynamics. When the frequency
resides within the asymmetric band gap, denoted as ωq = ω1

(ω2), we confine our analysis to modes around k = π . Conse-
quently, around k = 0 or k = π , the dispersion relation can be

effectively approximated by a quadratic function, i.e.,

E+(k) = E+ min + α+(k ± π )2,

E−(k) = E− max − α−(k ± π )2,

E−(k) = E− min + α0(k − 0)2,

ωq = ω1,

ωq = ω2,

ωq = ω3.

(33)

At the band edges, we denote the curvatures α± and α0 as
the second-order derivatives, which are expressed as

α± = d2E±(k)

dk2

∣∣∣∣
k=±k0

. (34)

In this case, by setting δk = k − k0, the interaction strength is
written as

gk = g[1 + eids (k0+δk)]. (35)

By replacing
∑

k as the integral form N
2π

∫
dk, we rewrite

Eq. (31) as

∑
e(s) � N

2π

∫ π

−π

|gk|2
s + i�k

dk. (36)

Finally, by inserting Eqs. (33–35) into Eq. (36), we obtain

∑
e

(s) = Ng2

π

{ ∫ 0

−π

1 + cos [ds(δk + k0)]

s + i[�0 + α±(0)(k + k0)2]
d (δk)

+
∫ π

0

1 + cos [ds(δk − k0)]

s + i[�0 + α±(0)(k − k0)2]
d (δk)

}
. (37)

Because the emitter’s frequency is close to the edge of
the upper (lower) band, we limit our consideration to modes
around k0 = 0 (k0 = π ) when calculating the self-energy. As
a result, the self-energy is derived as∑

e

(s) = −iNg2

√
α(�0 − x)

[
1 + cos (dsk0)e−ds

√
�0−x

α

]
. (38)

We can use the residue theorem to obtain the steady-state
probability

|ce(t = ∞)|2 = |Res(s0)|2, (39)

Res(s0) = 1

1 + ∂s
e(s)

∣∣∣∣
s=s0

, (40)
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FIG. 4. Bound states of giant atoms. The population of trapped atomic states |ce(t → ∞)|2 varies as a function of the giant atom’s size ds

for different conditions: (a) ωq = ω1, (b) ωq = ω2, and (c) ωq = ω3. The parameters are the same as those in Figs. 2 and 3. The solid lines with
circles and triangles represent the numerical and analytical solutions, respectively.

where Res(s0) is the steady population for a giant atom and
s0 is the purely imaginary pole of the transcendental equation,
which can be obtained with

s +
∑

e

(s0) = 0. (41)

Given that the giant atom is coupled to the LHSM waveg-
uide at two distinct points, static bound states are formed
at each of these coupling locations. As the separation be-
tween these coupling points diminishes, the two bound states
interfere, giving rise to a periodic interference pattern in
the dynamical evolution of the giant atom. As depicted in
Figs. 4(a) and 4(b), the dynamics evolution of the emitter’s
population |ce(t )|2 varies with ds. Due to the asymmetric
nature of the band gap, the curvatures α±, which correspond to
different mode densities, exhibit dissimilarity. Therefore, the
interference patterns at the upper and lower band edges exhibit
disparities. When ds is odd, it leads to a dominant destructive
interference, causing the coupling strength to nearly vanish.
Consequently, the majority of the energy remains confined
within the emitter, with minimal escape into the waveguide.

Conversely, for even values of ds, constructive interference
prevails, resulting in a significantly reduced trapped atomic
population, as depicted in Figs. 4(a) and 4(b). In cases where
ds is comparable to or exceeds the size of the bound state,
the interference effect diminishes, and the steady-state atomic
population asymptotically reaches its stable value.

In Fig. 5, we depict the steady-state population as a func-
tion of detuning � for the upper and lower bands. Note that
due to the distinct mode densities in these two bands, the
amplitude of the steady state in the upper band consistently
exceeds that of the lower band. Moreover, as ωq is tuned to-
wards the lower bound of the lower band [see ω3 in Fig. 2(a)],
the oscillating interference effect no longer exists since only
the modes around k = 0 are excited (satisfying the condition
kds = 0). In cases where the two fields do not significantly
overlap for large values of ds, the steady-state population
converges to a constant value.

V. TWO EMITTERS

As shown in Fig. 6, we now consider two identical giant
atoms interacting with the LHSM separated by a distance Dq,

with frequencies ωq inside the band gap. When the separation
distance Dq between atoms is relatively small, the bound
states of two atoms will overlap, leading to a strong interaction
between them [85,86]. As Dq increases, the overlap area of
the two fields diminishes, and the dipole-dipole interaction
becomes weak. Similar to the case when a single emitter
couples to the waveguide, in the rotating frame, the interaction
Hamiltonian is written as [16,17,87,88]

HI =
∑
i=1,2

∑
k

gkia
†
kei�ktσ−

i + H.c. (42)

At the initial state, one atom is excited, and the other is
in the ground state, with the bases |e, g, 1k〉 and |g, e, 1k〉.
Employing the framework of the effective Hamiltonian theory
[89], the effective Hamiltonian can be expressed in the form

Heff (t ) =
∑
m,n

1

ω̄mn
[Â†

m, Ân]ei(ωm−ωn )t , (43)

1

ω̄mn
= 1

2

(
1

ωm
+ 1

ωn

)
, (44)

FIG. 5. The trapped atomic population changes with detuning �

to the upper and lower band edges. The parameters are the same as
those in Fig. 4.
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FIG. 6. Two giant emitters with size ds, coupled to the LHSM.
The separation between two emitters is denoted as Dq.

where ω̄mn is the average of ωm and ωn, with �k = ωk − ωq.
We make the identification A†

1 = gk1a†
kσ

−
1 and A†

2 = gk2a†
kσ

−
2 .

Substituting these conditions into Eq. (43), we obtain the
system’s effective Hamiltonian as

Heff =
∑
i=1,2

∑
k

gkig∗
ki

�k
(σ−

i a†
kσ

+
i ak − σ+

i akσ
−
i a†

k )

+
∑

k

gk1g∗
k2

�k
(σ−

1 a†
kσ

+
2 ak − σ+

2 akσ
−
1 a†

k ) + H.c.

(45)

The first two terms correspond to the atomic frequency shift,
while the second pair of terms accounts for the exchange
interaction between the two atoms. Since the two emitters are
alternately excited, the waveguide can be approximated to be
in the vacuum state. Therefore, under the approximation

〈a†
kak〉 � 0, 〈aka†

k〉 � 1. (46)

The dipole-dipole interaction Hamiltonian can be simplified
as

Heff,d = −
∑

k

gk1g∗
k2

�k
σ+

2 akσ
−
1 a†

k + H.c. (47)

We can obtain the interaction strength

J12 =
∑

k

gk1g∗
k2

�k
, (48)

where the coupling strengths of two giant atoms are respec-
tively given as

gk1 = g(1 + eikds ), gk2 = gk1eikDq . (49)

Substituting Eq. (49) into Eq. (48) and replacing the sum with
the integral form, we obtain

J12 = N

2π

∫ π

−π

2g2[1 + cos (kds)]eikDq

�k
dk, (50)

which can be expressed as

J12 = Ng2

π

{∫ 0

−π

cos(kDq) + cos(kDq) cos (kds)

�0 + α(k + kr )2 dk

+
∫ π

0

cos(kDq) + cos(kDq) cos (kds)

�0 + α(k − kr )2 dk

}
, (51)

where the dispersion relation is approximated as a quadratic
form. Finally, we derive the dipole-dipole interaction strength
as

J12 = Ng2

αβ
cos(Dqπ )e−Dqβ

[
1 + cos(dsπ )

2
(e−dsβ + edsβ )

]
,

β =
√

�0

α
. (52)

In Fig. 7(a), we depict the dynamics of the two emitters
through numerical simulations and observe that the two atoms
can coherently exchange excitation without decaying. Subse-
quently, Fig. 7(b) shows a numerical depiction of the variation
of J12 with the separation distance Dq, which is approximately
described by an exponential form in Eq. (52). Finally, Fig. 7(c)
demonstrates the size-dependent characteristic of the dipole-
dipole interaction, which arises from the periodic modulation
of the bound state by the giant atom’s size ds.

FIG. 7. (a) Rabi oscillations between two giant emitters. The parameters are set as ds = 3, Dq = 6, and g = 0.0001. (b) The Rabi frequency
of two giant two emitters varies with Dq, with ds = 2. (c) Rabi oscillations as a function of ds, with Dq = 6. Other parameters remain consistent
with those in Fig. 4.
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VI. CONCLUSION

In this paper, we explored the quantum dynamics by con-
sidering giant atoms interacting with LHSMs. The emergence
of an asymmetric band gap by the left-handed dispersion band
and the Bragg scattering band leads to several unconventional
phenomena in quantum optics. We considered the giant atom
in resonance with either the upper or lower band. Through
the analysis of the interference phenomena induced by these
giant atoms, we found that the spontaneous decay rate changes
periodically with the giant atom’s size. The asymmetric band
structure results in distinct quantum dynamics for giant atoms
resonating with different bands. As a consequence, sponta-
neous emission can be modulated by adjusting either the size
or the resonant frequency of the giant atom, allowing us to
enhance or suppress the process as needed.

Most remarkably, when confining the emitter’s frequency
within the asymmetric band gap, we found that the dynam-
ics dramatically depends on the band edge’s properties. By
calculating the steady population, we observed a periodic
modulation in the dynamical evolution, a consequence of the
interference effects caused by variations in the giant atom’s
size. Moreover, the asymmetric band edges lead to differ-
ent interference amplitudes for the upper and lower band
edges. Similarly, the dipole-dipole interaction between two
giant atoms depends on their respective sizes and the distance
that separates them. This mechanism reveals that our work
provides a method to engineer the interaction between giant
atoms and a metamaterial environment in future studies.
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APPENDIX A: DERIVING THE DISPERSION RELATION
OF THE LEFT-HANDED SUPERLATTICE

METAMATERIAL

In this Appendix, we derive the dispersion relation of the
LHSM. The Lagrangian form is given in Eq. (1) in the main
text. The structure of the LHSM is shown in Fig. 3. According
to the Euler-Lagrange equation d

dt
∂L
∂φ̇

− ∂L
∂φ

= 0, we obtain the
following equations for motions:

εC[�̈n+1 − �̈n] − C[�̈n − �̈n−1] = 1

εL
�n, (A1)

C[�̈n+2 − �̈n+1] − εC[�̈n+1 − �̈n] = 1

L
�n+1. (A2)

By adopting the Helmholtz equation �̈ = −ω2�, we rewrite
Eqs. (A1) and (A2) as

ω2C[(�n − �n−1) + ε(�n − �n+1)] = 1

εL
�n, (A3)

ω2C[ε(�n+1 − �n) + (�n+1 − �n+2)] = 1

L
�n+1, (A4)

which result in

�n+1 = ε�n + �n+2(
ε + 1 − 1

ω2LC

) , �n−1 = ε�n−2 + �n(
ε + 1 − 1

ω2LC

) . (A5)

After substituting Eq. (A5) into Eq. (A4), we obtain

C

(
1 + ε − 1

ω2εLC

)
�n − C2 ε�n−2 + �n[

(ε + 1)C − 1
ω2L

]
− εC2 ε�n + �n+2[

(ε + 1)C − 1
ω2L

] = 0. (A6)

If we adopt the plane-wave form �n = ei(kn�x−ωt ) (d0 =
2�x), the dispersion relation can be derived as

ω± = ωr√
(1+ε)2

2 ±
√

(1+ε)4

4 + ε2[2 cos (kd0) − 2]

. (A7)

APPENDIX B: DERIVING THE HAMILTONIAN
OF THE WAVEGUIDE

We now calculate the Hamiltonian of the superlattice meta-
material. The Lagrangian of the LHSM can be written as
[20,73]

L = 1
2
�̇�T Ĉ �̇� − 1

2
��T L̂−1 ��, (B1)

where the flux vector �� is

��T = (�0,�1, . . . , �N ). (B2)

According to Eq. (1) in the main text, the capacitance and
inductance matrices are

Ĉ = C

⎛
⎜⎜⎜⎜⎝

1 −1 0 0 · · ·
−1 (ε + 2) −(ε + 1) 0 · · ·
0 −(ε + 1) (2ε + 2) −(ε + 1) · · ·
0 0 −(ε + 1) (2ε + 2) · · ·
...

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠
(B3)

and

L̂−1 = 1

L

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 · · ·
0 1+ε

ε
0 0 · · ·

0 0 1+ε
ε

0 · · ·
0 0 0 1+ε

ε
· · ·

... 0 . . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠. (B4)

Based on the Euler-Lagrange equation, the Hamiltonian of the
LHSM is given as

H0 = �QT �̇� − L = 1
2

�QT Ĉ−1 �Q + 1
2
��T L̂−1 ��, (B5)

where the charge vector is defined as �Q = Ĉ �̇�. As derived in
Refs. [20,73], the Hamiltonian of the LHSM is quantized as

Ĥ0 =
N∑

k=1

h̄ωk

(
a†

kak + 1

2

)
, (B6)

where ak (a†
k) is the annihilation (creation) operator of

the photonic mode with wave vector k. Note that the
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eigenfrequency ωk and the eigenvectors �ψ s
k = Ĉ

1
2 �� satisfy the

equation Ĉ− 1
2 L̂−1Ĉ− 1

2 �ψk = ω2
k

�ψk .

APPENDIX C: THE NUMERICAL SIMULATION METHOD

We simulate the dynamics of the system by considering a
giant emitter coupled to an N-mode LHSM metamaterial. The
numerical calculations proceed through the following steps:

(a) In our simulation, we discretize a total of N = 5000
modes within the first BZ k ∈ (−π, π ], which is equivalent

to considering a finite waveguide of length L = 5000λ in real
space. The substantial length L ensures that the propagating
wave packet does not reach the boundary throughout the
simulation.

(b) In the single-excitation subspace, i.e., |ψ (t )〉 =∑
k cg,k (t )|g, 1k〉 + ce(t )|e, 0〉, the Hamiltonian can be repre-

sented as a matrix with dimensions 2N + Q, with Q being
the number of atoms. To illustrate, we take two giant atoms
(Q = 2) as an example, and the Hamiltonian matrix is given
by

Hint =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω+
k1 0 · · · 0 0 0 · · · 0 gk1 gk1

0 ω+
k2

. . .
... 0 0 · · · 0 gk2 gk2

...
. . .

. . . 0
...

...
. . .

...
...

...

0 · · · 0 ω+
kN 0 0 · · · 0 gkN gkN

0 0 · · · 0 ω−
k1 0 · · · 0 gk1 gk1

0 0 · · · 0 0 ω−
k2

. . .
... gk2 gk2

...
...

. . .
...

...
. . .

. . . 0
...

...

0 0 · · · 0 0 · · · 0 ω−
kN gkN gkN

g∗
k1 g∗

k2 · · · g∗
kN g∗

k1 g∗
k2 · · · g∗

kN ωqa 0
g∗

k1 g∗
k2 · · · g∗

kN g∗
k1 g∗

k2 · · · g∗
kN 0 ωqb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C1)

with ω±
ki

denoting the frequency of the upper (lower) energy
band and gki being the coupling strength between emitter 1 (2)
and mode ki.

(c) Assuming that the giant atom (waveguide) is initially
in the excited (vacuum) state, i.e., |ψ (t = 0)〉 = |e, 0〉, we
employ the QUTIP package [90,91] to numerically solve the

time-dependent Schrödinger equation, which allows us to ob-
tain the probability of the emitter |ce(t )|2 and the spontaneous
decay rate.

Based on the method above, we plot all the dynamical
evolutions in our work.
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